
Dynamic Scalable Distributed Face Recognition System Security

Framework

Konrad Rzeszutek

University of New Orleans

Computer Science Department

2000 Lakeshore Drive

New Orleans, LA 70148

krzeszut@cs.uno.edu

May 26, 2002

Abstract

Many of our daily interactions depend on being able

to recognize one's face. Modeling human recogni-

tion can be used in many �elds: surveillance systems,

security systems, autonomous navigation of vehicles

and many more.

Current face recognition technologies are extremely

computationally intensive. To accommodate the load

in near-real time, a multi component scalable dis-

tributed framework is presented. This framework al-

lows separating the functionality of recognition, no-

ti�cation, and replay of camera-feed in di�erent in-

dependent components. Furthermore the framework

was designed with RAS (reliability, availability and

serviceability), adaptability to network changes and

easy path of adding (or replacing) of components in

mind. Also becuase of its distributed nature, it can

work over a large network (Internet).

This paper describes in detail the framework of

such system.

1 Introduction

Face recognition is a paramount functionality in a

human's life. Many of our daily interactions depend

on being able to recognize one's face. Humans can

recognize faces even when the image is occluded (a

person wearing sunglasses) or distorted (as in exam-

ple of a caricature). This recognition task is per-

formed e�ortlessly and in a split of a second. Under-

standing how humans recognize is a mind-boggling

question for physicians, neural scientists, and com-

puter scientists. Many researches think that the hu-

man brain has a region dedicated to face recognition

solely. The attempt to model the brain's functional-

ity by scientists has resulted in many face-recognition

techniques. Unfortunately so far the techniques are

extremely slow and give erroneous results compared

to human's native recognition. Recognizing a face

in any environment using the latest face recognition

technology does not have the same chance of success

as a human has. However, in a controlled environ-

ment the success rate increases.

It might be ba�ing to anybody why modeling or

even understanding human face-recognition is so im-

portant. Besides the cognitive aspects, understand-

ing the under laying mechanism could be used to

build a computer system capable of recognizing not

only human faces but also various other items. Such

system could be used in surveillance systems, biomed-

ical �eld (replacing a human faulty eye), military

(recognizing terrorists by special forces), warehous-

ing (robots capable of moving around without special

markings on the oor), autonomous navigation of ve-



hicles, system security (as a replacement for password

authentication) and many more.

1.1 System security

The system security is of particular interest. The cur-

rent approaches include user authentication through

either unique physical or behavioral attributes (such

as speech recognition, iris checking, thermal scanning

and signature checking) or on keys, PINs or pass-

words. However they are all quite obtrusive.

But face recognition o�ers another approach - the

least obtrusive of them. It's capable of validating the

user without the participation of the user - therefore

eliminating some form of privacy invasion. But that

is not the only �eld in which face recognition can play

an important role.

1.2 Surveillance Systems

The most interesting of these uses is the surveillance

systems. After the September 11th 2001 attack on

United States by Al Qaeda (the terrorist network),

being able to recognize terrorists and alarm the au-

thorities became an urgent need. Many agencies in

United States believe that the solution is in track-

ing its citizens and making sure that people entering

United States carry no weapons.

Another solution is to harness face recognition

technology. The human face is the most widely used

form of authentication around the world - be it on

passports, driver's license, school identi�cation cards,

and many more documents. Therefore it o�ers the

most convenient and easiest form of �nding and rec-

ognizing individuals.

Furthermore, the set of faces that we wish to rec-

ognize (terrorists, criminals, etc) is quite small com-

pared to the world population. With current tech-

nology processing a set of �ve thousand faces or even

more does not present a problem. Though with a set

in order of millions (one face can also have variations

- sunglasses, beard, scars, etc) there is a performance

problem. But a computer framework capable of load

balancing, distributed recognition of faces and o�-site

storage for replay of camera feed would be the most

exible and scalable solution. Furthermore with the

advancement of face recognition technologies a mod-

ule system is preferred - allowing for example the

replacement of the face recognition module without

changing the rest of the framework.

1.3 Aim of this work

Face recognition is a very challenging problem. Im-

ages that appear like humans can be very diÆcult to

match under di�erent environment changes (lighting,

background, clothing, etc). Furthermore, recogniz-

ing faces that might have altered (shaved o� beard,

sunglasses, chin and nose operation) requires expand-

ing the basic image with more possible alternations.

Therefore from one image of a terrorist, �ve thou-

sand can be easily generated. With so many images,

easily approaching the number of millions, a feasible

framework capable of processing the images almost

in real-time is required.

It is also worth noting that to date, no work using a

distributed system in face recognition technique has

been found and this work investigates the aspects of

such system. The work shows how such system is

modeled, and its workings.

2 Dynamic Scalable Dis-

tributed Face Recognition

Security System Framework

The current advances in computer technology has re-

sulted in manufacturing inexpensive, high-capacity,

high-computationally-feasible systems. A cluster of

these systems is capable of outpacing some of the

high-performance supercomputers at a fraction of

cost. Face recognition, belonging to the family

of computationally intensive applications, requires

high-performance systems to perform its calculations.

To solve the calculations in near real-time would re-

quire expensive high-performance supercomputers or

clustering inexpensive systems.

Therefore a scalable distributed multi-component

framework system called Apollo is proposed. This

system would augment the computational intensity

requirments of face recognition matching on a large



scale. Furthermore Apollo was designed with relia-

bility, availability, and serviceability (RAS) in mind.

The reliability lies in its dynamicity and adaptability

traits in changing network environment. The o�-site

storage and redundancy ful�ll the availability pro�le

and the serviceability lies in its scalable feature and

option in replacing (or upgrading) components.

2.1 De�nition of terms

� Pool - The collection of machines in one of the

components.

� Systems - A collection of computer systems.

� Services - A set of computer services (such as

web server, lookup server).

� Clients - Clients using the services (web

browser).

� RTP - From RTP speci�cation (RFC 1889) [?]:

\RTP provides end-to-end network transport

functions suitable for applications transmitting

real-time data, such as audio, video or simu-

lated data, over multicast or unicast network ser-

vices."

� O�-line storage - Storing of camera-feed on a

redudant system for latter replay if neccesary.

2.2 Components of Apollo

Demeter Hermes

Mors

Nemesis

Ares

Figure 1: Components of Apollo

There are �ve components, which are:

� Hermes - the load balancer acting as police of-

�cer directing traÆc to the appropriate compo-

nents capable of handling the required requests

and data.

� Ares - the thin client sending its camera feed

to o�-site storage and face recognition (Demeter

and Nemesis respectively).

� Demeter - the o�-site storage component. Stores

the camera feed for future replay.

� Nemesis - the number crunching component -

processes the images in an attempt to recognize

a face.

� Mors - the logging / notifying component saving

the trigger events (a face is recognized).

2.3 Hermes

Hermes - the messenger of Gods, though in this sce-

nario plays a role of the \police oÆcer" directing traf-

�c (see Fig: 1). Hermes acts as dynamic centralized

information portal. Since the system is distributed

many systems can exist in a Hermes pool and provide

information to its clients. The information is queried

directly from the other three components: Deme-

ter, Nemesis and Mors at every prede�ned amount

of time. This allows for near real-time acquisition of

load information, number of clients using the compo-

nent, the maximum number of connections allowed

and of course the address of the component.

To have such a highly dynamic system, capable of

detecting changes in such dynamic computing envi-

ronment, Hermes must be quite adaptive. Further-

more, Hermes by itself must be scalable too (its part

of a distributed system) - therefore there can be many

systems in a Hermes component pool. Each of them

has the same information about the three other com-

ponents, though each retrieves the information by it-

self.

The main purpose of Hermes is to provide infor-

mation for two components: Ares and Nemesis. Ares

requires information about Nemesis and Demeter,

while Nemesis requires information about Mors (see

Fig: 5). Hermes provides this information - giving the



client the least loaded requested component, there-

fore eliminating bottlenecks and keeping a fairly level

load across the systems. When the load on the spe-

ci�c pool of components if fairly high, the solution

is to add a system of that component, and the load

balance will direct new traÆc to that system.

In summary Hermes' solely task is to provide the

addresses of the desired components with the least

load. Each pool can also perform these tasks indivud-

ually, thus in sense integrating Hermes functionality

in their own component. This in result eliminates

Hermes, but provides fail-safe redudancy and auto-

nomicity.

2.4 Ares

Demeter

NemesisAres

Figure 2: Ares interacting with Demeter and Nemesis

Ares - the God of War - is responsible for cap-

turing the data feed from the camera and sending

it to an o�-site storage and face recognition compo-

nent (Demeter and Nemesis respectively) (see Fig:

2). Since the system is dynamic, it has to be capa-

ble of �nding the required components dynamically.

To do so, it locates Hermes - the load balancer - and

queries for the desired component. Upon receiving

the addresses, it registers itself with these two com-

ponents and starts sending its camera feed (see Fig:

3). On a side note it's worth noting that the camera

feed is �rst processed through motion detection plug-

in to save on bandwidth and time-stamped with data

and location. Also the camera feed is stored locally,

for redundancy reasons.

And that is the extent of the Ares functionality.

It's rather a dull component, more like an eye in a

Ares
Nemesis

Demeter
RTP

RTP

RTP

Figure 3: Ares frames passing through the motion

detection engine, handled o� by media protocol to

be distributed to Nemesis (for face recognition) and

Demeter (for storage).

Demeter

Ares

Figure 4: Demeter interaction with multiple systems

in Ares

human - the eye by itself cannot do any processing,

but the brain does it.

The transportation mechanism implemented in the

work to transfer the camera feed was RTP multicast.

More information about RTP is found in the \RFC

1889".

It is also modular - if one of the systems from this

pool fails, there are many other ones that can take

the job over, thought they might not be in the same

physical place.

2.5 Demeter

Demeter - the goddess of harvest - is responsible for

storing the camera feed from Ares (see Fig: 4). It's a

repository serving to collect in one pool the camera

feed from various Ares components. It's intended to



Mors

Nemesis

Ares

RTP RTP

?

Figure 5: Nemesis interaction with Ares and Mors

allow the generation of time-lapse movies from each

individual Ares. This allows for precise replaying the

camera feed when a face was recognized from a cen-

tralized location.

Since this component requires vast storage capac-

ity, a pool of systems is required. Therefore the

Demeter's pool is scalable - as the need increases,

more systems are added into the pool. Also machines

can be removed and added dynamically (for hardware

upgrades for example) from the pool.

In summary, Demeter is a modular piece of the dis-

tributed system. This component stores the camera

feed (which nota bene is also being done on Ares) -

and furthmore provides another functionality: a cen-

tralized location to replay the camera feed whenever

required. The implementation in the camera-feed is

received using RTP.

2.6 Nemesis

Nemesis - the Greek Goddess of vengeance who pun-

ished those who had broken the moral code. This

component contains the face-recognition engine. It

receives the camera feed from Ares and compares the

image to the ones in its database (see Fig: 5). Since

the face recognition task on a large scale of images

is quite computationally intensive, this component

requires a hefty pool of high-performance machines

(preferable). The images not processed immediately

are bu�ered. This allows for the later matching of

faces. When a match occurs, an event is sent to

Mors along with the image from the camera feed,

Figure 6: Event from Nemesis

the matching image, date, and location of match (see

Fig: 6). This event is also saved locally for redun-

dancy purpose.

The under-laying face recognition technology is

quite computationally intensive . To accommodate

high inow of camera feed among these systems the

inow of data needs to be distributed across the pool.

It is also worth noting it is possible to have a number

of face recognition engines in the Nemesis component.

This would allow for �nding a match that intersects

the results of the face recognition engines.

The mechanism for �nding Mors component is the

same as in all other components - by contacting Her-

mes, the load balancer and �nding the least loaded

Mors server. The transport mechanism to receive the

camera feed is the same as in Demeter - RTP.

In summary, Nemesis is the most second important

component of this framework - it does the face recog-

nition and noti�es other components about possibly

matches.

2.7 Mors

Mors - (aka Thanatos) - personi�cation of death - is

the component that receives face recognition events.

This component is responsible for showing the opera-

tor (the user) that a face-recognition match between

an image in the Nemesis face database and the cam-

era feed from Ares occurred. The location of the

camera, along with date, the camera image and the

matched image is submitted to Mors.

In summary, Mors provides a centralized pool



Demeter
Ares

RTP

Mors

RTP

Nemesis

RTP

?

Figure 7: Primary operation of Apollo

where events are recorded. Having a single point (or

many single points) where events are stored facilities

the instant comparison of the matches with the cam-

era's feed. This allows for humans to verify the result

and act accordingly if there is a need.

2.8 How they work together

Each system is autonomous - in a component pool

each machine is completely independent of each

other. However, not each pool is independent of

each other. Nemesis communicates with Hermes and

Mors. Ares communicates with Hermes, Nemesis and

Demeter.

Hermes, being the \police oÆcer" is the most crit-

ical component. Without Hermes presence, Ares

would be unable to �nd its required components and

newly started services would be unable to �nd their

required services. Thought components that already

have found their services and are communicating are

not a�ected (unless one of the components fails and

its necessary to �nd an replacement).

2.9 Primary operation of Apollo

There are many operations in this system. Each com-

ponent by itself performs internally many functions.

This section focuses on the primary operations of a

face recognition system (see Fig: 7, which are:

� How a frame captured by the camera traverses

through the system.

� What happens to it when it matches to the in-

ternal database of images?

� How is the camera feed saved on an o�-line stor-

age?

The camera feed is handled by one component -

Ares, Ares receives the camera feed and based on

motion detection engine either passes the frames on

or drops them. If the frame passed the check, the

frame is sent to the next two components - Demeter

and Nemesis. When Demeter and Nemesis received

it, they saved it locally. It's assumed that Ares has

already obtained the address of Nemesis and Demeter

from Hermes or individually.

Demeter stores the frames until a prede�ned

amount of time has elapsed (usually twenty four

hours) and at which point it generates a movie from

the stored frames and deletes the frames.

Nemesis bu�ers the received frames and at some

prede�ned period of time tries to match the frames to

its internal database of pictures. If there is no match

the frame is expunged. Otherwise an event (see Fig:

6) is generated which is saved locally and propagated

to Mors. Mors upon receiving the message saves it

locally and displays the event to the operator.

3 Dynamic aspects

The agility and adaptability is a requirement for a

scalar distributed system. The system must be exi-

ble and capable of addressing various problems: net-

work loss connectivity, power outage, demand for

more components, noti�cation of new services and

switching new load onto them, and many more. All

of this must be handled in a reliable distributed sys-

tem. These are a must for a true distributed system.

3.1 Interactions of a distributed sys-

tem

The most essential interactions in this distributed

system are:

� Noti�cation and registration of new components.

� Querying the components for its load and avail-

ability.

� Finding components with the least load.



� Discontinuing the use of deceased components

and using new ones.

� Work dynamically.

3.2 Noti�cation and registration of

new components

Each component, except Aries, whenever they are

started noti�es the other components about its pres-

ence. The only component that takes notice of it this

is Hermes. Hermes, being the load balancer needs to

know the whole set of network components.

The method by which the components �nd out

about each other presence is by using Jini technol-

ogy - mainly leveraging the multicast request protocol

as described in Jini(TM) Architecture Speci�cations

[?]. The method by which a component announces its

presence is by locating the lookup services (which are

native to Jini), download code to control the lookup

service, use that code to register itself (and also up-

load its own code) and then periodically renew the

registration. The code that is uploaded includes sim-

ple information that can be modi�ed and queried -

mainly the count of users, the maximum amount of

users that can be handled, and the address of the

system. This information is used in �nding the load

and availability of the system, which is explained in

the next section.

All of these components: Hermes, Mors, Nemesis

and Demeter are services (in Jini terminology), while

Ares is the client. All the services are using Jini to

announce their presence and �nd, if needed, the other

components (Nemesis looks for Mors using Hermes'

knowledge). Ares on the other hand, being a client

doesn't announce its presence - it searches for the

services it requires.

3.3 Querying the components for its

load and availability

After the service components have been registered

with the lookup server, Hermes queries each new

found components for its information (see Fig 8). It

does that every prede�ned amount of time. This al-

lows for retrieval of near-real time statistical infor-

Mors

Nemesis

RTP

?

Hermes

Figure 8: Information querying by Hermes

mation on the load of each service. It also allows for

discovering if the service has been disconnected or is

no longer operational and accordingly purge informa-

tion about the service.

Only Hermes queries for these information. All

other components just provide the pertinent infor-

mation and change their information accordingly to

their status.

3.4 Finding components with the

least load

Ares and Nemesis are two of the components that

require access to the other components. Ares requires

Demeter and Nemesis, while Nemesis requires Mors.

Each of these clients needs to �nd the appropriate

service.

The requesting client queries Hermes, which knows

the least populated service in the desired pool. Her-

mes provides the address to the least loaded service

and the requesting client uses that address to talk to

the service directly. If the requested component is

not available, no address is returned.

It is assumed to that the components can and will

stop working at some point. Therefore the connection

between the components can break at any time and

should be re-established. If there are no desired com-

ponents at the current time then the service should

continue asking Hermes for that component repeat-

edly until its found.

When the required component is found it's address

is cached and periodically checked. This makes it



possible to discover dead services and request new

ones from Hermes. Vice-versa - if the connection is

ok, there is no need query Hermes for a least loaded

service in the pool

3.5 Work dynamically

With the idea of noti�cation, registration, checking

the components its feasible to adjust to changing net-

work conditions. New services can be taken advan-

tage of and other nodes in a pool can be shutdown

for maintenance. All these features allows for exible

rollover o� services. In turn making the whole system

capable of working truly dynamic scalable distributed

fashion.

4 Future work

Face recognition has many advantages in today's life.

Understanding the under laying mechanism of hu-

man's face recognition could be used to build com-

puter systems capable of recognizing human faces.

The application of such system spawns many topics:

surveillance systems, biomedical �eld, military, sys-

tem security, and many more. With so many applica-

tions a methodology to match faces in near real-time

is an urgent need. This work presents a distributed

scalable face recognition framework that can be used

to solve computational intense problems.

This work has presented a novel idea of matching

faces in face recognition technology. The technology

of face-recognition fused with distributed computing

presents a clear working example of implementing on

a large scale a face-recognition suite.

The work has been implemented and shows to op-

erate in near-real time environment. However, there

are improvements to be made.

Using more than one face recognition technology

to recognize a face, and using the intersecting re-

sults to derive the matching face is the �rst improve-

ment. Complementing one technique with another

technique to improve the face recognition matching

is surely a priority number one.

The next improvement can be made in the motion

detection engine. Optimization to it, such as scaling

the frame to a lower size, only analyzing every �fth

frame, and getting rid of masking the bits.

Another important improvement is to provide sup-

port for other thin-client recognition modules. It can

be such technologies as iris-recognition, �ngerprint-

recognition, or even speech recognition. The combi-

nation of many recognition technologies can serve to

identify a person more easily.

Future work also requires more research to be done

in face operations. Automatically removing back-

ground information from a frame to not introduce

any unnecessary artifacts. Generating from one face

a multitude of others with di�erent alternations -

beard (or the lack of it); sunglasses; long hair (or

short hair). All of these would serve to identify a

possible match with a person who might have change

his or her face appearance.

References

[1] N.M. Allinson, A.W. Ellis, B.M. Flude, and A.J

Luckman. A connectionist model of familiar

face recognition. In IEE Colloquium on Machine

Storage and Recognition of Faces, pages 1{10,

1992. Digest No: 1992/017.

[2] R. Brunelli and T. Poggio. Caricatural e�ects in

automated face perception.

[3] R. Brunelli and T. Poggio. Face recognition

through geometrical features.

[4] R. Brunelli and T. Poggio. Hyberbf networks for

gender classi�cation.

[5] R. Brunelli and T. Poggio. Hyperbf networks for

real object recognition. In Proc. of the 12th IJ-

CAI, pages 1278{1284, Sidney, Australia, 1991.

[6] Kenneth R. Castleman. Digital Image Process-

ing. Prentice-Hall, Inc., 1996.

[7] Ross Cutler. Face recognition using infrared im-

ages and eigenfaces. April 1996.

[8] James D. Foley, Andries van Dam, Steven K.

Feiner, and John F. Hughes. Computer Graphics



Principle and Practice. Addison-Wesley, Inc.,

1997.

[9] Francis Galton. Personal Identi�cation And De-

scription. June 1888.

[10] Gaston Gonnet. Singular value decomposition

and eigenvalue decomposition. November 2001.

[11] Audio-Video Transport Working Group,

H. Schulzrinne, GMD Fokus, S. Casner,

Precept Software Inc., R. Frederick, Xerox

Palo Alto Research Center, V. Jacobson, and

Lawrence Berkeley National Laboratory. Rtp:

A transport protocol for real-time applications.

January 1996.

[12] William H., Teukolsky Saul A., Vetter-

ling William T., and Brian P. Flannery. Numer-

ical Recipes in C: The Art of Scienti�c Comput-

ing. Cambridge University Press, 1992.

[13] L.D. Harmon, M.K. Khan, R. Lasch, and P.F.

Ramig. Machine identi�cation of human faces.

Pattern Recognition, 1981.

[14] Jim He�eron. Linear Algebra.

[15] T. Kanade. Computer recognition of human

faces. Interdisciplinary Systems Research, 1977.

Birkhauser Verlag.

[16] Mohamed Amine Khamsi. Eigenvalues and

eigenvectors technique.

[17] T. Kohonen. Self-organization and associative

memory. Springer-Verlag, 1988. 2nd Edition.

[18] Sun Microsystem. Java(TM) Remote Method In-

vocation Speci�cation. 1998.

[19] Sun Microsystems. JMF Frequently Asked Ques-

tions.

[20] Sun Microsystems. Java(TM) Media Framework

API Guide. November 1999.

[21] Sun Microsystems. Jini Network Technology

Datasheet. May 2001.

[22] Sun microsystems. Jini(TM) Architecture Spec-

i�cation. Sun Microsystems, 2001.

[23] L. Najman, R. Vaillan, and E. Pernot. Face from

sideview to identi�cation. In G. Vernazza, A.N.

Venetsanopouls, and C. Braccini, editors, Im-

age Processing: Theory and Applications. Else-

vier Science Publishers, 1993.

[24] O. Nakamura, S. Mathur, and T. Minami. Iden-

ti�cation of human faces based on isodensity

maps. Pattern Recognition, pages 263{272, 1991.

[25] Alexander Pentland and Terrence Sejnowski.

Neural networks and eigenfaces for �nding an

analyzing faces.

[26] A. Samal and P.A. Lyengar. Automatic recogni-

tion and analysis of human faces and facial ex-

pressions: A survey. Pattern Recognition, 1992.

[27] M. Turk and A. Pentland. Eigenfaces for recog-

nition. In Journal of Cognitive Neuroscience,

March 1991.

[28] Matthew A. Turk and Alex P. Pentland. Face

recognition using eigenfaces. May 1991.

[29] K.H. Wong, H.H.M. Law, and P.W.M. Tsang. A

system for recognising human faces. In Proceed-

ings of the Internation Conference on Acoustics,

Speech and Signal Processing, pages 1638{1642,

1989.

[30] C.J. Wu and J.S. Huang. Human face pro�le

recognition by computer. Pattern Recognition,

pages 255{259, 1990.


