\ —
’///

“ t— -

i\

ORACLE

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. |

Agenda:

*Why would you want this?

*Other known patching techniques.
*Patching!

*Tiny details.

*Roadmaps.

*Call to developers!

ORACLE

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. |

Why not migrate to another host?
* Local storage (SATA?),

* PCl pass-through (SR-10OV),

* NUMA locality,

* Giant guests (memory or CPU) and cannot fit on other hosts,

* Or system administrator simply does not want to reboot host.

ORACLE

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. |

Known patching techniques.

* On Linux:
— kGraft (SuSE).
— kPatch (Red Hat).
— kSplice (Oracle).
— Linux hot-patching (upstream) — merge of kGraft + kPatch.

°* On Xen:

— Amazon’s hotpatching design:

* http://www.linuxplumbersconf.net/2014/ocw//system/presentations/2421/original/xen_hotpatchin
g-2014-10-16.pdf

— Oracle’s - borrowing ideas/concepts from kSplice git tree (pre acquisition):
* http://lists.xen.org/archives/html/xen-devel/2015-07/msg04951.html

ORACLE

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. |

Patching!

* At first blush this sounds like binary translation — we convert old code to
new code:

mov %rsp,%rax

and SOXTTFFFTFATF8000, Y%rax movq $0x0,-0x48(%rbp)

movq $0x0,-0x40(%rbp)
movq $0x0,-0x38(%rbp)
mov %rsp,%rax

* XSA-132 “domctl /sysctl: and SOxffffffffffff8000,%rax
don’t leak hypervisor stack
to toolstack” — change inside arch_do_domctl.

* But nobody can translate the code for us. We NEED to change the code in
memory while the hypervisor is executing.

ORACLE

Extra 18 bytes
of code.

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. |

Patching: inserting new code.

* But adding in code means moving other code as well:

arch_do_domctl:

5548 89 E5 48 89 FB 90

89 05A4 9C 1E 00 8B 13
48 8D 0583 71 12 00 8B
14 90 48 B8 00 00 00 80

DO 82 FF FF 48 8D 04 02
49 89 06 8B 03 83 CO 01
890389 C04889057F
9C 1E00488D 3D D0 12
17 00 E8 E3 EC FF FF B8
48 89 EO 48 25 00 80 FF
FF 00 00 00 48 8B 1C 24
4C 8B 64 24 08 4C 8B 6C
24 104C 8B 74 24 18 C9

do_domctl:
5548 89 E548 81 EC 70
01 000048895D D8 4C

ORACLE

v

5548 89 E548 89 FB 90
89 05A49C 1E 00 8B 13
48 8D 0583 71 12 00 8B
14 90 48 B8 00 00 00 80
DO 82 FF FF 48 8D 04 02
49 89 06 8B 03 83 CO 01
8903 89C0488905 7F
9C 1E 00 48 8D 3D DO 12
1700 E8 E3 EC FF FF B8
48 C7 45 B8 00 00 00 00
48 C7 45 B8 00 00 00 00
48 C7 45 B8 00 00 00 00
48 89 EO0 48 25 00 80 FF
FF 00 00 00 48 8B 1C 24
4C 8B 64 24 08 4C 8B 6C
24104C 8B 74 24 18 C9
C3 90 90 90 90 90 90 90
90905548 89 E5 48 81

* Otherwise we end up
executing nonsense code

at old location!

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. |

Patching: Jumping

* We could add padding in all the functions to deal with this. But what if the
amount of changes > padding?
* Jump!
— Allocate new memory.
— Copy new code in memory.
— Check that nobody is running old code.
— Compute offset from old code to new code.
— Add trampoline jump to new code.

ORACLE

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. |

Patching: 1) Allocate + copy new code in

* New arch_do_domctl code at newly allocated memory space:

<arch_do_domctl1>:

55 push %rbp
48 89 e5 mov %rsp,%rbp
41 57 push %rl5

48 c7 45 b8 00 00 00 00 movg $0x0,-0x48(%rbp)

48 c7 45 cO 00 00 00 00 movg $0x0,-0x40(%rbp)

48 c7 45 c8 00 00 00 00 movg $0x0,-0x38(%rbp)

48 89 e0 mov %rsp,%rax

48 25 00 80 ff ff and $Oxffffffffffff8000,%rax

ORACLE

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. |

Patching: 2) Check code 3) Compute offset

* Check that arch_do_domctl is not being executed.

* Figure out offset from new to old code.

<arch_do_domctl1>:

55
48 89 e5
41 57

<arch_do_domctl1>:

55
48 89 e5
41 57

48 89 e0
48 25 00 80 ff ff

push %rbp
mov %rsp,%rbp
push %ril5

mov %rsp,%rax

and $Oxffffffffffff8000,%rax

48 c7 45 b8 00 00 00 00
48 c7 45 cO 00 00 00 00
48 c7 45 c8 00 00 00 00
48 89 e0

48 25 00 80 ff ff

ORACLE

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. |

push %rbp
mov %rsp,%rbp
push %rl5

movg $0x0,-0x48(%rbp)

movg $0x0,-0x40(%rbp)

movg $0x0,-0x38(%rbp)

mov %rsp,%rax

and $Oxffffffffffff8000,%rax

Patching: 4) Add trampoline

* Add trampoline:

<arch_do_domctl1>:

55
48 89 e5
41 57

<arch_do_domctl1>:
E9 1A 97 EA FF

48 89 e0
48 25 00 80 ff ff

48 c7 45 b8 00 00 00 00

jmpq <arch_do_domct1>[NEW] 48 c7 45 cO0 00 00 00 00
48 c7 45 c8 00 00 00 00

mov %rsp,%rax 48 89 el

and $Oxffffffffffff8000,%rax 48 25 00 80 ff ff

ORACLE

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. |

push %rbp
mov %rsp,%rbp
push %rl5

movg $0x0,-0x48(%rbp)
movg $0x0,-0x40(%rbp)
movg $0x0,-0x38(%rbp)
mov %rsp,%rax

and $Oxffffffffffff8000,%rax

10

Patching: Conclusion

* For code just need to over-write start of function with:

E9 1A 97 EA FF jmpq <arch_do_domct1>[NEwW] ..

* For data it can be inline replacement (changing in .data values):

<opt_noreboot>: <opt_noreboot>:
00 00 00 01

—_—
7

ORACLE

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. |

That was easy, what is the fuss about?

* Relocation of symbols — data or functions:

8b 0d 53 80 fb ff mov -0x47fad(%rip) ,%ecx # ffff82d0802848c0 <pfn_pdx_hole_shift>

Need to compute of new code/data the offsets to other functions, data
structures, etc. (ELF dynamic linker).

* Correctness: Is the old code the same as what the hot-patch had been
based on?

* Stack checking: Cannot patch the function which is in use by another CPU!
* Reverting the hot-patch (updated XSA?).

* Dependency off one hot-patch on another.

ORACLE

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. |

Other runtime concerns:

* When to patch:
— Hypervisor has no threads. Only guests.
— Can at VMEXIT where the stack is empty — good deterministic point.
— Use Amazon’s global barrier with timeout at VMEXIT point with abort and retry?

— But what if only running PV guests? Need to be low enough in stack to have the
minimum amount of code on the stack — and there is no VMX code.

* Other CPUs

— Can use IPI for all the other CPUs and all of them can come together at about the
same point.

ORACLE

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. |

Component: build

Toolstack:
- build / construct ELF payload

- Xen-xsplice or xl

ELF payload file:
- What to patch, howto,
etc.

A 4

Hypervisor:

- Hypercalls to upload ELF payload

- Apply or revert hot-patch

- Code for patching, runtime accounting

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. |

ORACLE

Build-time concerns

* MUST use same gcc when preparing payloads.

* Can use linker build-id to create payloads specific to a built-hypervisor, or
can have the old code (or data) as part of the payload to compare against.

ORACLE

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. |

Build process:

* Source code, build artifacts (.o files) and unmodified hypervisor — baseline.
* Apply patch, build. New objects have a different name (.0.XSPLICE)
 Extract functions — compare and find changed ones.

* Which sections (.text, .data), and what offsets are different, how it should
be patched.

* Create an ELF payload with telemetry data, new code and data. Also
include build-id or old code (or data).

* Apply signature to payload so hypervisor can verify it.

ORACLE

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. |

Component: tools

Toolstack:
- build / construct ELF payload

- Xen-xsplice or x|

N

ELF payload file:
- What to patch, howto,
etc.

A 4

Hypervisor:

- Hypercalls to upload ELF payload

- Apply or revert hot-patch

- Code for patching, runtime accounting

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. |

ORACLE

Tool side functionality:

* Query what hot-patches have been loaded and their status (applied,
verified, reverted).

* Upload new hot-patches.

* Verify hot-patch — signature and build-id (off old code or data).
* Apply, revert, or unload hot-patch.

ORACLE

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. |

Screenshot of xen-xsplice:

-bash-4.1# xen-xsplice upload "XSA 131" xsal3l.xsplice
Uploading xsal3l.xsplice (253 bytes)

-bash-4.1# xen-xsplice list

ID | status

XSA 131 | LOADED

-bash-4.1# xen-xsplice check "XS5A 131"

XSA 131: State is O0x1, ok are 0x5. Commencing check:completed!
-bash-4.1# xen-xsplice apply "XSA 131"

XSA 131: State is Ox4, ok are 0x14. Commencing apply:completed!
-bash-4.1# xen-xsplice list

ID | status
__ e
XSA 131 | APPLIED
-bash-4.1#

ORACLE

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. |

Roadmap for tools:

* xen-xsplice is low-level (RFC). Integrate the code into xl.

* From Build slide: “Which sections (.text, .data), and what offsets are
different, how it should be patched.”
— Difficult problem.
— Objdump and objcopy magic.

— kSplice tools used as aspiration:
 http://repo.or.cz/w/ksplice.git

ORACLE

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. |

http://repo.or.cz/w/ksplice.git

Roadmap for tools — regression tools.

* For vl —tools for
creating hot-patches to
patch xen_extra:

(Disclaimer:
Doctored image).

ORACLE

-bash-4.1# x1 info | grep xen extra

Xen extra
-bash-4.1# xen-xsplice

Uploading ./regression-

-bash-4.1# xen-xsplice
regression-test: State
-bash-4.1# xen-xsplice
regression-test: State

-unstable
upload regression-test ./regression-test.ksplice
test.ksplice (1171 bytes)
check regression-test
is 0x1, ok are 0x5. Commencing check:completed!
apply regression-test
is Ox4, ok are 0x14. Commencing apply:completed!

-bash-4.1# x1 info | grep xen extra

Xen extra
-bash-4.1# []

-Hello World

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. |

Components: hypervisor and ELF payload.

Toolstack:
- build / construct ELF payload

- Xen-xsplice or xl

ELF payload file:
- What to patch, howto,
etc.

A 4

Hypervisor:

- Hypercalls to upload ELF payload

- Apply or revert hot-patch

- Code for patching, runtime accounting

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. |

ORACLE

Roadmap — design (and prototype code) on hypervisor level
and ELF payload.

* RFC v3.1 posted: http://lists.xen.org/archives/html/xen-devel/2015-
07/msg04951.html

— ELF payload structures (what section to patch, how to patch, safety data).

— Signature verification.
— State diagrams for hot-patch life-cycle.
— Hypercall APl —four new hypercalls: UPLOAD, LIST, GET, and ACTION.

— Tons of implementation gotchas.
— RFC hypercall code include (no patching, just accounting).

* Birds of Feather discussion (BoF 2) August 18 @11:30 — 12:20 to nail down
some questions raised on xen-devel mailing list.

ORACLE

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. |

http://lists.xen.org/archives/html/xen-devel/2015-07/msg04951.html
http://lists.xen.org/archives/html/xen-devel/2015-07/msg04951.html
http://lists.xen.org/archives/html/xen-devel/2015-07/msg04951.html
http://lists.xen.org/archives/html/xen-devel/2015-07/msg04951.html
http://lists.xen.org/archives/html/xen-devel/2015-07/msg04951.html
http://lists.xen.org/archives/html/xen-devel/2015-07/msg04951.html

Roadmap — Further work in hypervisor:

* Need in hypervisor ‘dl_sym’ functionality (dynamic ELF linker).
* Computing offset — symbol table calculation.

* Exception table growth.

* Patching and reverting code (and data): inline and trampoline.
* Signature verification code.

* VMEXIT resume call to patching code.

* Other issues as development continues along.

ORACLE

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. |

Call to action!
http://wiki.xen.org/wiki/XSplice sign up for what you would be interested in helping with!

for xSplice
development!

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. |

ORACLE

http://wiki.xen.org/wiki/XSplice

Questions and Answer

ORACLE

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. |

ELF payload:

* .xsplice_* sections which map to structures.

* .text, .bss, .symtab — included if the .xsplice_* refer to them.

xsplice_reloc__howto:
_— flag, type, isns_added

xsplice_reloc:
xsplice: Howto™ — |
- Version - : -Symbols ——
_ Name XSp“Ce_COdV > Kksplice_symbol:
i /—Fszelti_cs /—name, label
-o€eclions —— xsplice _section:
-] — _
new -Patches N -symbol /
-addr _. [Hypervisor:

- .text or .data

xsplice _patch

. content —>l|.text (or .data) of payload:

Binary data

ORACLE

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. |

Signature verification:

* The signature is to be appended at the end of the ELF payload prefixed with
the string: “Module signature appended~\n

* Signature header afterwards matches Linux’s one.

ORACLE

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. |

