
Copyright © 2015, Oracle and/or its affiliates. All rights reserved. |

xSplice
Runtime patching hypervisor

Konrad Rzeszutek Wilk
Oracle
Software Development Director

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. |

Agenda:

•Why would you want this?

•Other known patching techniques.

•Patching!

•Tiny details.

•Roadmaps.

•Call to developers!

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. |

Why not migrate to another host?

• Local storage (SATA?),

• PCI pass-through (SR-IOV),

• NUMA locality,

• Giant guests (memory or CPU) and cannot fit on other hosts,

• Or system administrator simply does not want to reboot host.

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. |

Known patching techniques.

• On Linux:

– kGraft (SuSE).

– kPatch (Red Hat).

– kSplice (Oracle).

– Linux hot-patching (upstream) – merge of kGraft + kPatch.

• On Xen:

– Amazon’s hotpatching design:
• http://www.linuxplumbersconf.net/2014/ocw//system/presentations/2421/original/xen_hotpatchin

g-2014-10-16.pdf

– Oracle’s - borrowing ideas/concepts from kSplice git tree (pre acquisition):
• http://lists.xen.org/archives/html/xen-devel/2015-07/msg04951.html

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. |

Patching!

• At first blush this sounds like binary translation – we convert old code to
new code:

• XSA-132 “domctl/sysctl:
don’t leak hypervisor stack
to toolstack” – change inside arch_do_domctl.

• But nobody can translate the code for us. We NEED to change the code in
memory while the hypervisor is executing.

 mov %rsp,%rax

 and $0xffffffffffff8000,%rax
 movq $0x0,-0x48(%rbp)

 movq $0x0,-0x40(%rbp)

 movq $0x0,-0x38(%rbp)

 mov %rsp,%rax

 and $0xffffffffffff8000,%rax

Extra 18 bytes
of code.

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. |

Patching: inserting new code.

• But adding in code means moving other code as well:
arch_do_domctl:
 55 48 89 E5 48 89 FB 90

89 05 A4 9C 1E 00 8B 13
48 8D 05 83 71 12 00 8B
14 90 48 B8 00 00 00 80
D0 82 FF FF 48 8D 04 02
49 89 06 8B 03 83 C0 01
89 03 89 C0 48 89 05 7F

9C 1E 00 48 8D 3D D0 12
17 00 E8 E3 EC FF FF B8
48 89 E0 48 25 00 80 FF
FF 00 00 00 48 8B 1C 24
4C 8B 64 24 08 4C 8B 6C
24 10 4C 8B 74 24 18 C9

do_domctl:
55 48 89 E5 48 81 EC 70
01 00 00 48 89 5D D8 4C

…

55 48 89 E5 48 89 FB 90
89 05 A4 9C 1E 00 8B 13
48 8D 05 83 71 12 00 8B
14 90 48 B8 00 00 00 80
D0 82 FF FF 48 8D 04 02
49 89 06 8B 03 83 C0 01
89 03 89 C0 48 89 05 7F

9C 1E 00 48 8D 3D D0 12
17 00 E8 E3 EC FF FF B8
48 C7 45 B8 00 00 00 00
48 C7 45 B8 00 00 00 00
48 C7 45 B8 00 00 00 00
48 89 E0 48 25 00 80 FF
FF 00 00 00 48 8B 1C 24
4C 8B 64 24 08 4C 8B 6C
24 10 4C 8B 74 24 18 C9
C3 90 90 90 90 90 90 90
90 90 55 48 89 E5 48 81

• Otherwise we end up
executing nonsense code
at old location!

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. |

Patching: Jumping

• We could add padding in all the functions to deal with this. But what if the
amount of changes > padding?

• Jump!

– Allocate new memory.

– Copy new code in memory.

– Check that nobody is running old code.

– Compute offset from old code to new code.

– Add trampoline jump to new code.

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. |

Patching: 1) Allocate + copy new code in

• New arch_do_domctl code at newly allocated memory space:

<arch_do_domctl>:

 55 push %rbp
 48 89 e5 mov %rsp,%rbp
 41 57 push %r15
…
48 c7 45 b8 00 00 00 00 movq $0x0,-0x48(%rbp)
48 c7 45 c0 00 00 00 00 movq $0x0,-0x40(%rbp)
48 c7 45 c8 00 00 00 00 movq $0x0,-0x38(%rbp)
48 89 e0 mov %rsp,%rax
48 25 00 80 ff ff and $0xffffffffffff8000,%rax

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. |

Patching: 2) Check code 3) Compute offset

<arch_do_domctl>:

 55 push %rbp
 48 89 e5 mov %rsp,%rbp
 41 57 push %r15
…
48 c7 45 b8 00 00 00 00 movq $0x0,-0x48(%rbp)
48 c7 45 c0 00 00 00 00 movq $0x0,-0x40(%rbp)
48 c7 45 c8 00 00 00 00 movq $0x0,-0x38(%rbp)
48 89 e0 mov %rsp,%rax
48 25 00 80 ff ff and $0xffffffffffff8000,%rax

<arch_do_domctl>:

 55 push %rbp
 48 89 e5 mov %rsp,%rbp
 41 57 push %r15
…
48 89 e0 mov %rsp,%rax
48 25 00 80 ff ff and $0xffffffffffff8000,%rax

• Check that arch_do_domctl is not being executed.

• Figure out offset from new to old code.

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. |

Patching: 4) Add trampoline

• Add trampoline:

10

<arch_do_domctl>:

 55 push %rbp
 48 89 e5 mov %rsp,%rbp
 41 57 push %r15
…
48 c7 45 b8 00 00 00 00 movq $0x0,-0x48(%rbp)
48 c7 45 c0 00 00 00 00 movq $0x0,-0x40(%rbp)
48 c7 45 c8 00 00 00 00 movq $0x0,-0x38(%rbp)
48 89 e0 mov %rsp,%rax
48 25 00 80 ff ff and $0xffffffffffff8000,%rax

<arch_do_domctl>:

 E9 1A 97 EA FF jmpq <arch_do_domctl>[NEW]
…
48 89 e0 mov %rsp,%rax
48 25 00 80 ff ff and $0xffffffffffff8000,%rax

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. |

Patching: Conclusion

• For code just need to over-write start of function with:

• For data it can be inline replacement (changing in .data values):

…
E9 1A 97 EA FF jmpq <arch_do_domctl>[NEW] …

<opt_noreboot>:
 00 00
 ...

<opt_noreboot>:
 00 01
 ...

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. |

That was easy, what is the fuss about?

• Relocation of symbols – data or functions:

Need to compute of new code/data the offsets to other functions, data
structures, etc. (ELF dynamic linker).

• Correctness: Is the old code the same as what the hot-patch had been
based on?

• Stack checking: Cannot patch the function which is in use by another CPU!

• Reverting the hot-patch (updated XSA?).

• Dependency off one hot-patch on another.

…
8b 0d 53 80 fb ff mov -0x47fad(%rip),%ecx # ffff82d0802848c0 <pfn_pdx_hole_shift>
…

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. |

Other runtime concerns:

• When to patch:

– Hypervisor has no threads. Only guests.

– Can at VMEXIT where the stack is empty – good deterministic point.

– Use Amazon’s global barrier with timeout at VMEXIT point with abort and retry?

– But what if only running PV guests? Need to be low enough in stack to have the
minimum amount of code on the stack – and there is no VMX code.

• Other CPUs

– Can use IPI for all the other CPUs and all of them can come together at about the
same point.

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. |

Component: build

ELF payload file:
 - What to patch, howto,
 etc.

Hypervisor:
- Hypercalls to upload ELF payload
- Apply or revert hot-patch
- Code for patching, runtime accounting

Toolstack:
- build / construct ELF payload
- xen-xsplice or xl

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. |

Build-time concerns

• MUST use same gcc when preparing payloads.

• Can use linker build-id to create payloads specific to a built-hypervisor, or
can have the old code (or data) as part of the payload to compare against.

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. |

Build process:

• Source code, build artifacts (.o files) and unmodified hypervisor – baseline.

• Apply patch, build. New objects have a different name (.o.XSPLICE)

• Extract functions – compare and find changed ones.

• Which sections (.text, .data), and what offsets are different, how it should
be patched.

• Create an ELF payload with telemetry data, new code and data. Also
include build-id or old code (or data).

• Apply signature to payload so hypervisor can verify it.

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. |

Component: tools

ELF payload file:
 - What to patch, howto,
 etc.

Hypervisor:
- Hypercalls to upload ELF payload
- Apply or revert hot-patch
- Code for patching, runtime accounting

Toolstack:
- build / construct ELF payload
- xen-xsplice or xl

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. |

Tool side functionality:

• Query what hot-patches have been loaded and their status (applied,
verified, reverted).

• Upload new hot-patches.

• Verify hot-patch – signature and build-id (off old code or data).

• Apply, revert, or unload hot-patch.

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. |

Screenshot of xen-xsplice:

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. |

Roadmap for tools:

• xen-xsplice is low-level (RFC). Integrate the code into xl.

• From Build slide: “Which sections (.text, .data), and what offsets are
different, how it should be patched.”

– Difficult problem.

– Objdump and objcopy magic.

– kSplice tools used as aspiration:
• http://repo.or.cz/w/ksplice.git

http://repo.or.cz/w/ksplice.git

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. |

Roadmap for tools – regression tools.

• For v1 – tools for
creating hot-patches to
patch xen_extra:

(Disclaimer:
Doctored image).

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. |

Components: hypervisor and ELF payload.

ELF payload file:
 - What to patch, howto,
 etc.

Hypervisor:
- Hypercalls to upload ELF payload
- Apply or revert hot-patch
- Code for patching, runtime accounting

Toolstack:
- build / construct ELF payload
- xen-xsplice or xl

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. |

Roadmap – design (and prototype code) on hypervisor level
and ELF payload.

• RFC v3.1 posted: http://lists.xen.org/archives/html/xen-devel/2015-
07/msg04951.html

– ELF payload structures (what section to patch, how to patch, safety data).

– Signature verification.

– State diagrams for hot-patch life-cycle.

– Hypercall API – four new hypercalls: UPLOAD, LIST, GET, and ACTION.

– Tons of implementation gotchas.

– RFC hypercall code include (no patching, just accounting).

• Birds of Feather discussion (BoF 2) August 18 @11:30 – 12:20 to nail down
some questions raised on xen-devel mailing list.

http://lists.xen.org/archives/html/xen-devel/2015-07/msg04951.html
http://lists.xen.org/archives/html/xen-devel/2015-07/msg04951.html
http://lists.xen.org/archives/html/xen-devel/2015-07/msg04951.html
http://lists.xen.org/archives/html/xen-devel/2015-07/msg04951.html
http://lists.xen.org/archives/html/xen-devel/2015-07/msg04951.html
http://lists.xen.org/archives/html/xen-devel/2015-07/msg04951.html

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. |

Roadmap – Further work in hypervisor:

• Need in hypervisor ‘dl_sym’ functionality (dynamic ELF linker).

• Computing offset – symbol table calculation.

• Exception table growth.

• Patching and reverting code (and data): inline and trampoline.

• Signature verification code.

• VMEXIT resume call to patching code.

• Other issues as development continues along.

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. |

Call to action!
http://wiki.xen.org/wiki/XSplice sign up for what you would be interested in helping with!

http://wiki.xen.org/wiki/XSplice

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. |

Questions and Answer

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. |

ELF payload:

• .xsplice_* sections which map to structures.

• .text, .bss, .symtab – included if the .xsplice_* refer to them.

 xsplice:
- version
- Name
- id
- new

xsplice_code:
-Relocs
-Sections
-Patches

xsplice_reloc:
-Howto
-Symbols

xsplice_reloc_howto:
-flag, type, isns_added

xsplice_symbol:
-name, label

xsplice_section:
-symbol
-addr

xsplice_patch
- content

Hypervisor:
 - .text or .data

.text (or .data) of payload:
Binary data

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. |

Signature verification:

• The signature is to be appended at the end of the ELF payload prefixed with
the string: ~Module signature appended~\n

• Signature header afterwards matches Linux’s one.

