
Dynamic Scalable Distributed Face

Recognition System Security Framework

Konrad Rzeszutek

April 29, 2002

Abstract

Many of our daily interactions depend on being able to recognize one's face.

Modeling human recognition can be used in many �elds: surveillance systems,

security systems, autonomous navigation of vehicles and many more.

Current face recognition technologies are extremely computationally in-

tensive. To accommodate the load in near-real time, a multi component

scalable distributed framework is presented. This framework allows separat-

ing the functionality of recognition, noti�cation, and replay of camera-feed in

di�erent independent components. Furthermore the framework was designed

with RAS (reliability, availability and serviceability), adaptability to network

changes and easy path of adding (or replacing) of components in mind.

This paper describes the framework, detailed explanation of one of the

face recognition technologies used in the work, motion detection technology

used in capture system and future work.

Chapter 1

Dynamic Scalable Distributed

Face Recognition Security

System Framework

The current advances in computer technology has resulted in manufacturing

inexpensive, high-capacity, high-computationally-feasible systems. A cluster

of these systems is capable of outpacing some of the high-performance super-

computers at a fraction of cost. Face recognition, belonging to the family of

computationally intensive applications, requires high-performance systems to

perform its calculations. To solve the calculations in near real-time would re-

quire expensive high-performance supercomputers or clustering inexpensive

systems.

Therefore a scalable distributed multi-component framework system called

Apollo is proposed. This system would augment the computational inten-

sity requirments of face recognition matching on a large scale. Furthermore

Apollo was designed with reliability, availability, and serviceability (RAS)

in mind. The reliability lies in its dynamicity and adaptability traits in

changing network environment. The o�-site storage and redundancy ful�ll

the availability pro�le and the serviceability lies in its scalable feature and

option in replacing (or upgrading) components.

1.1 De�nition of terms

� Pool - The collection of machines in one of the components.

1

� Systems - A collection of computer systems.

� Services - A set of computer services (such as web server, lookup

server).

� Clients - Clients using the services (web browser).

� RMI API - Remote Method Invocation library (Java's portable answer

to RPC - Remote Procedure Call).

� Jini - From Jini Network Technology Datasheet [11]: Network API

enabling the spontaneous assembly and interaction of services on a

network.

� JMF - From JMF FAQ [9]: \Java Media Framework API speci�es a

simple, uni�ed architecture to synchronize and control audio, video and

other time-based data within Java applications and applets."

� RTP - From RTP speci�cation (RFC 1889) [4]: \RTP provides end-to-

end network transport functions suitable for applications transmitting

real-time data, such as audio, video or simulated data, over multicast

or unicast network services."

� O�-line storage - Storing of camera-feed on a redudant system for latter

replay if neccesary.

1.2 Components of Apollo

There are �ve components, which are:

� Hermes - the load balancer acting as police oÆcer directing traÆc to

the appropriate components capable of handling the required requests

and data.

� Ares - the thin client sending its camera feed to o�-site storage and

face recognition (Demeter and Nemesis respectively).

� Demeter - the o�-site storage component. Stores the camera feed for

future replay.

2

Demeter Hermes

Mors

Nemesis

Ares

Figure 1.1: Components of Apollo

3

� Nemesis - the number crunching component - processes the images in

an attempt to recognize a face.

� Mors - the logging / notifying component saving the trigger events (a

face is recognized).

1.3 Hermes

Hermes - the messenger of Gods, though in this scenario plays a role of the

\police oÆcer" directing traÆc (see Fig: 1.1). Hermes acts as dynamic cen-

tralized information portal. Since the system is distributed many systems can

exist in a Hermes pool and provide information to its clients. The informa-

tion is queried directly from the other three components: Demeter, Nemesis

and Mors at every prede�ned amount of time. This allows for near real-time

acquisition of load information, number of clients using the component, the

maximum number of connections allowed and of course the address of the

component.

To have such a highly dynamic system, capable of detecting changes in

such dynamic computing environment, Hermes must be quite adaptive. Fur-

thermore, Hermes by itself must be scalable too (its part of a distributed

system) - therefore there can be many systems in a Hermes component pool.

Each of them has the same information about the three other components,

though each retrieves the information by itself. To �nd other components

and to be found, it uses Jini technology, which is described in more details

in Chapter 4.

The main purpose of Hermes is to provide information for two compo-

nents: Ares and Nemesis. Ares requires information about Nemesis and

Demeter, while Nemesis requires information about Mors (see Fig: 1.5). Her-

mes provides this information - giving the client the least loaded requested

component, therefore eliminating bottlenecks and keeping a fairly level load

across the systems. When the load on the speci�c pool of components if

fairly high, the solution is to add a system of that component, and the load

balance will direct new traÆc to that system.

In summary Hermes' solely task is to provide the addresses of the desired

components with the least load.

4

Demeter

NemesisAres

Figure 1.2: Ares interacting with Demeter and Nemesis

1.4 Ares

Ares - the God of War - is responsible for capturing the data feed from the

camera and sending it to an o�-site storage and face recognition component

(Demeter and Nemesis respectively) (see Fig: 1.2). Since the system is dy-

namic, it has to be capable of �nding the required components dynamically.

To do so, it locates Hermes - the load balancer - and queries for the desired

component. Upon receiving the addresses, it registers itself with these two

components and starts sending its camera feed (see Fig: 1.3). On a side

note it's worth noting that the camera feed is �rst processed through motion

detection plug-in to save on bandwidth and time-stamped with data and

location. Also the camera feed is stored locally, for redundancy reasons.

And that is the extent of the Ares functionality. It's rather a dull compo-

nent, more like an eye in a human - the eye by itself cannot do any processing,

but the brain does it.

The transportation mechanism used to transfer the camera feed is RTP

multicast. More information about RTP is found in the \RFC 1889" and

\JMF FAQ" [4, 9] and examples of how to work with in Java and JMF in

\Java(TM) Media Framework API Guide" [10].

It is also modular - if this piece fails, there are many other ones that can

take the job over, thought they might not be in the same physical place.

5

Ares
Nemesis

Demeter
RTP

RTP

RTP

Figure 1.3: Ares frames passing through the motion detection engine, han-

dled o� by RTP to be distributed to Nemesis (for face recognition) and

Demeter (for storage).

1.5 Demeter

Demeter - the goddess of harvest - is responsible for storing the camera

feed from Ares (see Fig: 1.4). It's a repository serving to collect in one

pool the camera feed from various Ares components. It's intended to allow

the generation of time-lapse movies from each individual Ares. This allows

for precise replaying the camera feed when a face was recognized from a

centralized location.

Since this component requires vast storage capacity, a pool of systems is

required. Therefore the Demeter's pool is scalable - as the need increases,

more systems are added into the pool. Also machines can be removed and

added dynamically (for hardware upgrades for example) from the pool.

In summary, Demeter is a modular piece of the distributed system. This

component stores the camera feed (which nota bene is also being done on

Ares) - and further provides another functionality: a centralized location to

replay the camera feed whenever required. The camera-feed is received using

RTP.

1.6 Nemesis

Nemesis - the Greek Goddess of vengeance who punished those who had

broken the moral code. This component contains the face-recognition engine.

It receives the camera feed from Ares and compares the image to the ones in

its database (see Fig: 1.5). Since the face recognition task on a large scale

6

Demeter

Ares

Figure 1.4: Demeter interaction with multiple systems in Ares

Mors

Nemesis

Ares

RTP RTP

?

Figure 1.5: Nemesis interaction with Ares and Mors

7

Figure 1.6: Event from Nemesis

of images is quite computationally intensive, this component requires a hefty

pool of high-performance machines (preferable). The images not processed

immediately are bu�ered. This allows for the later matching of faces. When

a match occurs, an event is sent to Mors along with the image from the

camera feed, the matching image, date, and location of match (see Fig: 1.6).

This event is also saved locally for redundancy purpose.

The under-laying face recognition technology is a quite computationally

intensive task. To accommodate high inow of camera feed among these

systems the high inow of data needs to be distributed across the pool. It is

also worth noting it is possible to have a number of face recognition engines in

the Nemesis component. This would allow for �nding a match that intersects

the results of the face recognition engines.

The mechanism for �nding Mors component is the same as in all other

components - by contacting Hermes, the load balancer and �nding the least

loaded Mors server. The transport mechanism to receive the camera feed is

the same as in Demeter - RTP.

In summary, Nemesis is the most important component of this framework

- it does the face recognition and noti�es other components about possibly

matches.

1.7 Mors

Mors - (aka Thanatos) - personi�cation of death - is the component that

receives face recognition events. This component is responsible for showing

the operator (the user) that a face-recognition match between an image in

8

the Nemesis face database and the camera feed from Ares occurred. The

location of the camera, along with date, the camera image and the matched

image is submitted to Mors.

In summary, Mors provides a centralized pool where events are recorded.

Having a single point (or many single points) where events are stored facilities

the instant comparison of the matches with the camera's feed. This allows

for humans to verify the result and act accordingly if there is a need.

1.8 How they work together

Each system is autonomous - in a component pool each machine is completely

independent of each other. However, not each pool is independent of each

other. Nemesis communicates with Hermes and Mors. Ares communicates

with Hermes, Nemesis and Demeter.

Hermes, being the \police oÆcer" is the most critical component. With-

out Hermes presence, Ares would be unable to �nd its required components

and newly started services would be unable to �nd their required services.

Thought components that already have found their services and are commu-

nicating are not a�ected (unless one of the components fails and its necessary

to �nd an replacement). It's worth noting that having multiple systems in

Hermes pool is not a problem. Each of these Hermes systems will have the

same information about the di�erent pools, albeit due to network latency,

information might be temporarily out of synchronization.

1.9 Primary operation of Apollo

There are many operations in this system. Each component by itself performs

internally many functions. Detailed explanation of face recognition will be

explained in Chapter 3, motion detection in Chapter 2 and Chapter 4 will

explain the dynamic aspects of the components.

This section rather focuses on the primary operations of a face recognition

system (see Fig: 1.7, which are:

� How a frame captured by the camera traverses through the system.

� What happens to it when it matches to the internal database of images?

� How is the camera feed saved on an o�-line storage?

9

Demeter
Ares

RTP

Mors

RTP

Nemesis

RTP

?

Figure 1.7: Primary operation of Apollo

The camera feed is handled by one component - Ares, Ares receives the

camera feed and based on motion detection engine either passes the frames

on or drops them. If the frame passed the check, the frame is sent to the

next two components - Demeter and Nemesis. When Demeter and Nemesis

received it, they saved it locally. It's assumed that Ares has already obtained

the address of Nemesis and Demeter from Hermes.

Demeter stores the frames until a prede�ned amount of time has elapsed

(usually twenty four hours) and at which point it generates a movie from the

stored frames and deletes them.

Nemesis bu�ers the received frames and at some prede�ned period of time

tries to match the frames to its internal database of pictures. If there is no

match the frame is expunged. Otherwise an event (see Fig: 1.6) is generated

which is saved locally and propagated to Mors. Mors upon receiving the

message saves it locally and displays the event to the operator.

1.10 Other work related in this �eld

The author has not found any distributed computation solution to the face

recognition technology. Only autonomous systems with the training images

and the camera feed locally have implemented.

This work presents a di�erent paradigm of matching faces in a near real-

time time scale. It also provides further expandability - such as replacing the

face recognition technology or augmenting it.

10

1.11 Motivation

The idea arose after the September 11th attack on United States by Al Qaeda

terrorist network. The author found that the current technologies used in

screening passengers are completely useless and only o�er to calm the general

population in believing that random searches of young good-looking women

will reveal the terrorist.

Therefore the idea a non-intrusive passive surveillance system capable of

processing the information against a large database in a distributed scalable

system was envisioned. The current face recognition technologies are compu-

tationally intensive and if the system were to use a number of face recognition

technologies the tool would be quite overpowering for autonomous system.

While in a distributed scalable system this could work. This thesis shows

how such could be designed, its inner details and a working example.

1.12 Summary

With this dynamic distributed modular component system, where each com-

ponent has a speci�c prede�ned function, upgrading and replacing compo-

nents is a simple task. Therefore upgrading the face recognition component

for a better one is quite simple. Also the components can be removed - the

o�-site storage component and event logger do not have necessarily have to

be present. They o�er only o�er redundancy and a centralized pool to receive

communication. Furthermore the distributed approach allows for computa-

tionally demanding face recognition computations. With thin clients serving

as "eyes", distributed systems processing the image and others storing the

image it resembles the way a human brain processes images and remembers

some of them.

11

Chapter 2

Motion Detection

The motion detection engine is used in the thin client (Ares). The engine

processes each frame from the camera feed and passes it to the next stage

(determined by Ares) if it has enough motion in it. The enough deferential is

a threshold function. But before the threshold function can be applied, the

incoming frame must be processed for camera artifacts. The frame at that

point is evaluated for motion and depending on the result is either discarded

or accepted as having enough motion.

2.1 Implementation

The implementation was written in Java and plugged into the Java Media

Framework (JMF) API through easy codec registration routines as explained

in Java(TM) Media Framework API Guide [10].

The engine upon receiving the frame follows this sequence of steps:

� Calculate the reference intensity of input-image.

� Normalize the intensity values of the input-image.

� Mark intensity values (pixels) that changed based on the reference im-

age.

� Count the blob count - the number of pixels that are composite con-

joined clusters (3� 3 matrix) of marked pixels.

12

Figure 2.1: Vector representation of images; The image on the left is the

original image with points A,B,C. The image on the right represents the

distribution of those points in a vector.

� Apply the threshold function to the blob count and determine if the

image has \enough" motion.

� Update the frame intensity and reference image.

There are some assumptions made regarding the implementation details

and its syntax:

� The codec process the input frame in RGB format - Each intensity

value is represented by a 3-tuple of bytes, �rst byte representing red

color value, second - green color value, and the last - blue color value.

Therefore a pure green intensity value is [0, 255, 0]. For more informa-

tion about RGB format, consult Foley [2]

� Each image-frame is represented as vector. Its dimensions are 1 � N ,

where N = width � height of the image (see Fig: 2.1).

� Frame-image is the frame from the camera feed being currently pro-

cessed.

� Reference image is the previous frame processed.

2.2 Calculating the intensity value

The intensity of the image is the cumulative intensity value of each pixel

divided by the number of pixels. We assume I to be the intensity value, P

13

be a pixel value, and n the is the length of the vector:

I =
1

n

nX
k=1

P (i)

and implemented in apollo.ares.MotionDetectionE�ect.java;276-281:

for (ip = 0; ip < width * height; ip++) {

avg += (int) (inData[ip] & 0xFF);

}

avg_img_intensity = avg / outputDataLength;

Note that \inData" is the array containing the pixel values. It's worth

noting that Java lacks the unsigned byte. Therefore any casting from byte

type into any other type requires masking the signed bit.

2.3 Normalizing the input frame

The next step is to normalize the intensity of the frame-image. This is done

to remove artifacts that the electronics in the camera might introduce. The

algorithm has two stages.

1. Calculate the color correction value, which is the di�erence between the

reference image intensity and the frame-image intensity (or vice-versa).

2. The di�erence from the reference image and the new image (for each

pixel) is examined against the color correction value.

2.3.1 Color correction value

The color correction value is easily obtained from the intensity value.

The Iimg is the intensity obtained from the current processed frame, while

the Iref is the reference intensity.

correction =

Iimg � Iref ifIref < Iimg

Iref � Iimg ifIimg � Iref

!

Where each pixel consists of a three-tuple value of colors: P (i) = [color(i�

3); color(i � 3 + 1); color(i � 3 + 2)]

14

color(i) =

0
BBB@

colorref(i)� colorimg(i) if(colorref(i) > colorimg(i)) < correction

colorimg(i)� colorref(i) if(colorref(i) � colorimg(i)) < correction

correction if(colorref(i) > colorimg(i)) � correction

correction if(colorref(i) � colorimg(i)) � correction

1
CCCA

The code snippets demonstrates how this was accomplished using Java

(apollo.ares.MotionDetectionE�ect;292-310):

for (int ii=0; ii< outputDataLength/pixStrideIn; ii++) {

refDataInt = (int) refData[ip] & 0xFF;

inDataInt = (int) inData[ip++] & 0xFF;

r= (refDataInt > inDataInt) ? refDataInt - inDataInt:

inDataInt - refDataInt;

refDataInt = (int) refData[ip] & 0xFF;

inDataInt = (int) inData[ip++] & 0xFF;

g= (refDataInt > inDataInt) ? refDataInt - inDataInt:

inDataInt - refDataInt;

refDataInt = (int) refData[ip] & 0xFF;

inDataInt = (int) inData[ip++] & 0xFF;

b= (refDataInt > inDataInt) ? refDataInt - inDataInt:

inDataInt - refDataInt;

// intensity normalization

r -= (r < correction) ? r : correction;

g -= (g < correction) ? g : correction;

b -= (b < correction) ? b : correction;

...

2.4 Marking

The next part is to use the normalized color component values determined

in the previous section to determine if the pixel changed in respect to the

reference image. The root mean square of the three-color components - red,

green, and blue are computed to check against the threshold value.

Q(i) =
nX
i=0

q
colors(i � 3)2 + colors(i � 3 + 1)2 + colors(i � 3 + 2)2

15

If the result is greater than the threshold value then the pixel is marked

as moved (in our case by marking the pixel with the highest intensity value).

The code snippets shows how it was accomplished (continuation of the

loop):

...

result = (byte)(java.lang.Math.sqrt((double)

((r*r) + (g*g) + (b*b)) / 3.0));

if (result > (byte)threshold) {

bwData[op++] = (byte)255;

bwData[op++] = (byte)255;

bwData[op++] = (byte)255;

} else {

bwData[op++] = (byte)result;

bwData[op++] = (byte)result;

bwData[op++] = (byte)result;

}

}

2.5 Threshold function

The next stage is the cluster-threshold function. We count the amount of

clusters (3 � 3 area �led with moved pixels) and determine if the count is

greater than the blob threshold value. If so the frame is considered to have

enough motion (see Figure2.2). Otherwise the frame is discarded.

The method to determine if the 3�3 matrix has a cluster of moved pixels

is to check each pixel in that area to see if they were marked as having moved

(see Fig 2.3).

Code snippet (from apollo.ares.MotionDetectionE�ect.java;328-343):

for (op = lineStrideIn + 3; op < outputDataLength - lineStrideIn-3;

op+=3) {

for (int i=0; i<1; i++) {

if (((int)bwData[op+2] & 0xFF) < 255) break;

if (((int)bwData[op+2-lineStrideIn] & 0xFF) < 255) break;

if (((int)bwData[op+2+lineStrideIn] & 0xFF) < 255) break;

if (((int)bwData[op+2-3] & 0xFF) < 255) break;

if (((int)bwData[op+2+3] & 0xFF) < 255) break;

16

Figure 2.2: The red clusters signify the \moved" pixels

M M M
M M M
M M M

?
=P

Figure 2.3: Comparison between the current tested pixel (and its surrounding

pixels) against a full \motion" matrix.

17

if (((int)bwData[op+2-lineStrideIn + 3] & 0xFF) < 255) break;

if (((int)bwData[op+2-lineStrideIn - 3] & 0xFF) < 255) break;

if (((int)bwData[op+2+lineStrideIn - 3] & 0xFF) < 255) break;

if (((int)bwData[op+2+lineStrideIn + 3] & 0xFF) < 255) break;

bwData[op] = (byte)0;

bwData[op+1] = (byte)0;

blob_cnt ++;

}

}

2.6 Reference intensity

The �nal step is to prepare for the next round of processing. Make the

reference intensity be the frame intensity and make the reference image be

the frame image.

2.7 Summary

The algorithm for motion detection serves to save the bandwidth usage and

purge frames during inactivity periods. The implementation applies a two-

stage threshold function along with intensity normalization for camera arti-

facts.

The algorithm is used extensively on the thin client - Ares. The algorithm

was implemented in Java.

It's also worth noting that the motion engine saves substantial amount

of bandwidth and storage. A typical one-day hour camera-feed (320 � 200

resolution, 15fps using medium JPEG compression) takes 151MB of space.

With motion detection the space usage is about 34MB on typical busy day.

18

Chapter 3

Face Recognition using

Eigenfaces

Face recognition technology is the integral part of Nemesis component. The

face recognition technique used in Nemesis is based on Eigenfaces, described

by Matthew A. Turk and Alex P. Pentland in their paper titled "Face Recog-

nition Using Eigenfaces." [14]

The Eigenface technique belongs to template matching family. As such it

computes a set of hash values for each image. The hash value of the image we

wish to match is then compared to the hash values of images in the database

encoded similarly. The authors in their paper explain that much of the previ-

ous work in face recognition has ignored the issue of what aspects of face are

important for identi�cation. Therefore encoding and decoding face images

using local and global features of our face in which features, such as nose,

eyes, ears may or may not be related to face recognition. A simple approach

to extract the information is to capture the variation in a collection of face

images, independent of any judgment of features. In mathematical terms,

the authors say, the algorithm �nds the principal components of distribution

of faces, or the eigenvectors of the covariance matrix of the set of face images.

These eigenvectors can be thought of as a set of features that together char-

acterize the variation between face images. Each image location contributes

more or less to each eigenvector as a sort of ghostly face that they call an

eigenface (see Fig: 3.1).

Furthermore the authors mention that also the face images can be recon-

structed by weighted sums of a small collection of characteristic faces. From

which an eÆcient way to learn and recognize faces might be to build the

19

Figure 3.1: Eigenface

characteristic features from known face images and to recognize particular

faces by comparing the feature weights needed (approximately) to reconstruct

them with weights associated with the known individuals.

This is exactly what was implemented in the scalable distributed face

recognition framework.

There are three steps in using this algorithm:

� Initialization of the training images, calculate \eigenfaces" and their

respective weights.

� Compare the given image.

� Determine if the given image is suÆciently close to a face in the face

space.

3.1 Initialization

There are eight steps in constructing face-space:

� Construct a face vector with the training images.

20

� Calculate the average face.

� Normalize the training images.

� Compute eigenvector and eigenvalues.

� Extract the MAGICNR (which is some number, in the implementation

it's eleven) most signi�cant eigenvalues (and their respective eigenvec-

tors).

� Project the eigenvectors onto the face vector, result being the face-

space.

� Normalize the face vector.

� Calculate the set of weights associated with each training image.

There are certain assumptions made in the algorithm:

� Every image's dimensions are the same.

� Each image is represented as a vector component. The vector dimen-

sions are 1�N , where we assume N = width � height (see Fig: 2.1).

3.1.1 Training images

The paramount step is constructing a face vector that consist of sixteen

training models (images). A matrix of dimension 16�N is constructed (N is

the width � height of the image), and each row is an image and each column

is an intensity value of the image (see Fig: 3.2).

And the code snippet (from apollo.nemesis.FaceFaceCreator.java:277-280)

demonstrates how the image (which nativly is represented in a vector format)

is copied to the 16�N array.

double[][] face_v = new double[16][width*height];

for (i = 0; i < files.length; i++) {

face_v[i] = files[i].getDouble();

}

Where \�les" is a JPGFile (or PPMFile) object and \getDouble()" re-

turns the representation of the image in RGB format as a vector.

21

Figure 3.2: How images are constructed in a face vector

3.1.2 Average Face

The average face is computed, which is a vector where each column deter-

mines the average intensity across the sixteen (M) images.

Where M is sixteen, I is one of the M's images and A is the average face

vector.

A(j) =
1

M

MX
i=0

Ii(j)

Demonstrated by the code (from apollo.nemesis.EigenFaceComputation.java:

85-96):

double[] avgF = new double[length];

for (pix = 0; pix < length; pix++) {

temp = 0;

for (image = 0; image < nrfaces; image++) {

temp += face_v[image][pix];

}

avgF[pix] = temp / nrfaces;

}

22

Where \length" is the N (the width � height of the image). \nrfaces" is

N .

3.1.3 Normalization

The average face is subtracted from the face-vector (M �N dimension, with

M images) to normalize the images using:

Ii(j) = Ii(j)� A(j)

where:

0 � j < N ; 0 � i < M

Demonstrated by this code snippet (from apollo.nemesis.EigenFaceComputation.java:104-

109):

for (image = 0; image < nrfaces; image++) {

for (pix = 0; pix < length; pix++) {

face_v[image][pix] = face_v[image][pix] - avgF[pix];

}

}

3.1.4 Eigenvalues and eigenvectors

The next step is to compute the hash values, so called eigenvector and eigen-

values. The eigenvalues and eigenvectors are characteristics values of a ma-

trix. From the Castleman \Digital Image Processing" [1]:

Each eigenvalue can be thought of as an amount which, when

subtracted from each diagonal element, makes the matrix singu-

lar... Eigenvectors are characteristic vectors of the matrix. Each

[eigenvector] corresponds to one of the eigenvalues.

Therefore, we are looking for the v (eigenvectors) and � (eigenvalues)

de�ned as:

Av = �v

For example, suppose:

A =

1 2

2 1

!

23

Figure 3.3: Covariance matrix

A

1

�1

!
=

1 2

2 1

!
1

1

!
=

3

3

!
= 3

1

1

!

Therefore, 3 is the eigenvalue of this A matrix with

1

1

!
being the

eigenvector.

Computing these values is an extremely intensive task for typical im-

ages sizes. Fortunately we can determine the eigenvalues and eigenvectors

by solving a much smaller M �M matrix problem and the take the linear

combination of the result. More details of why we can do this is explained

in Castleman [1], et al. We use the covariance matrix to compute the eigen-

values and eigenvectors using Jacobian transformation or Singular Value De-

composition depending on the properties of the covariance matrix [3, 5, 7, 6].

Discussing the details of these techniques is beyond the scope of this thesis.

The implementation of eigenvalue and eigenvector decomposition is detailed

explained in \Numerical Recipies in C: The art of scienti�c computing" by

Press et. al. [5].

C = ATA

or see Figure 3.3:

Our eigenvalues after the calculations are in random distribution. To �nd

the MAGICNR most extreme values we need to sort the eigenvalues and its

24

corresponding eigenvectors. This is done using a modi�ed quick sort method

and repositioning the eigenvectors in their appropriate columns (depending

on the sorted eigenvalues).

As illustrated by this code snippet (from apollo.nemesis.EigenFaceComputation.java:145-

171):

int[] index = new int[nrfaces];

double[][] tempVector = new double[nrfaces][nrfaces];

/* Temporary new eigVector */

for (i = 0; i <nrfaces; i++) /* Enumerate all the entries */

index[i] = i;

doubleQuickSort(eigValue, index,0,nrfaces-1);

// Put the index in inverse

int[] tempV = new int[nrfaces];

for (j = 0; j < nrfaces; j++)

tempV[nrfaces-1-j] = index[j];

index = tempV;

/*

* Put the sorted eigenvalues in the appropiate columns.

*/

for (col = nrfaces-1; col >= 0; col --) {

for (rows = 0; rows < nrfaces; rows++){

tempVector[rows][col] = eigVector[rows][index[col]];

}

}

eigVector = tempVector;

3.1.5 Projection on to face space

Multiplying the sorted eigenvector with our face vector results in getting the

face-space vector. This gives us the same result as if we had performed the

eigenface computations on the face vector itself and not on the covariance

matrix. Details of why we can do this is explained in [13].

25

3.1.6 Normalize

Normalizing the face-space is a simple procedure. The maximum of the face-

space is divided by each pixel of the face-space.

Q(i) =
P (i)

max(P)

and demonstrated by the code snippet (from apollo.nemesis.EigenFaceComputation.java:

182-193):

Matrix eigVectorM = new Matrix(eigVector, nrfaces,nrfaces);

double[][] faceSpace = eigVectorM.times(faceM).getArray();

eigVector = null;

for (image = 0; image < nrfaces; image++) {

temp = max(faceSpace[image]); // Our max

for (pix = 0; pix < faceSpace[0].length; pix++)

faceSpace[image][pix] = Math.abs(faceSpace[image][pix] / temp);

}

3.1.7 Weights

The �nal step is to calculate the set of weights associated with the face space.

Each weight is a vector o� dimension 1�MAGICNR. The weights are the

result of multiplying the transpose of each row from face-space vector with

the normalized training images.

The implementation calculates M weights: each training image has an as-

sociated weight vector of length MAGICNR with each other image. There-

fore each training image weight vector represents a MAGICNR-dimension

(in the implementation its 11t-dimension) vector. Each value in the weight

vector represents the \similarity" to the other M training images.

This simple computation is done (from apollo.nemesis.EigenFaceComputation.java:

204-217):

double[][] wk = new double[nrfaces][MAGIC_NR]; // M rows, 11 columns

for (image = 0; image < nrfaces; image++) {

for (j = 0; j < MAGIC_NR; j++) {

temp = 0.0;

for (pix=0; pix< length; pix++)

26

temp += faceSpace[j][pix] * faces[image][pix];

wk[image][j] = Math.abs(temp);

}

}

This completes the �nal stage of initializing the face recognition models.

3.1.8 Summary

The calculations to obtain the weights, face-space are computationally in-

tensive. Therefore this task is only done once for the set of images. In

the implementation the results are cached so the computation steps can be

skipped the next time Nemesis is started.

3.2 Recognition

Recognition of an image is rather a simple task compared to the �rst stage.

There are three steps in recognition:

� Transform the input image into eigenface components (project it onto

the face-space).

� Calculate the input image weights.

� Determine the Euclidian distance of the input image weights to the

weights of the set of images from the face-space.

� Determine (based on the Euclidian distance and on the threshold value)

if the input image is matched against the database of images.

3.2.1 Transform

Projecting the input image onto the face space means:

1. Subtract the average face from the input face (to normalize the image).

2. Project the normalized image onto the face space.

27

Normalizing the input face is a simple technique. We use the given average

face vector (computed earlier) to subtract each intensity value from the given

image:

I(j) = I(j)� A(j)

where:

0 � j < N

Project the normalized image onto the face space consist of multiply-

ing the given image from the face-space with the normalized input image.

Fortunately this is also the step where we determine the weight of the image.

This computation is illustrated by the code snippet (from apollo.nemesis.FaceBundle.java:

213-223):

double[] input_wk = new double[MAGIC_NR];

double temp = 0;

for (j = 0; j < MAGIC_NR; j++) {

temp = 0.0;

for (pix=0; pix <length; pix++)

temp += faceSpace[j][pix] * inputFace[pix];

input_wk[j] = Math.abs(temp);

}

Where the \inputFace" is the vector representing the image.

3.2.2 Euclidian distance

Euclidian distance is the cumulative di�erence of each index in a vector.

In our case we calculate the distance on the input image weights and our

training-image-weights.

The code snippet belows illustrates the computation (from apollo.nemesis.FaceBundle.java:

229-246):

double[] distance = new double[MAGIC_NR];

double[] minDistance = new double[MAGIC_NR];

idx = 0;

for (image = 0; image < nrfaces; image++) {

for (j = 0; j < MAGIC_NR; j++) {

28

distance[j] = Math.abs(input_wk[j] - wk[image][j]);

}

....

3.2.3 Thresholding

The �nal step is to determine if the normalized distance is less than the

threshold value. The image is considered recognized if the distance value is

less then the threshold value.

.....

if (image == 0)

System.arraycopy(distance,0,minDistance,0,MAGIC_NR);

if (sum(minDistance) > sum(distance)) {

this.idx = image;

System.arraycopy(distance,0,minDistance,0,MAGIC_NR);

}

}

if (max(minDistance) > 0.0)

divide(minDistance, max(minDistance));

minD = sum(minDistance);

Based on the minD and the global threshold value its determined if the

input image is matched against the set of training images.

3.3 Summary

The face recognition technique used in this work is based on Eigenface tech-

nique described by Turk and Pentland in their work. It was implemented in

Java for portability purpose and easy of reading. The recognition technique is

paramount in the Nemesis component which carries out the face-recognition

task on the camera feed provided by Ares.

29

Chapter 4

Dynamic aspects

The agility and adaptability is a requirement for a scalar distributed system.

The system must be exible and capable of addressing various problems:

network loss connectivity, power outage, demand for more components, noti-

�cation of new services and switching new load onto them, and many more.

All of this must be handled in a reliable distributed system. These are a

must for a true distributed system.

4.1 Interactions of a distributed system

The most essential interactions in this distributed system are:

� Noti�cation and registration of new components.

� Querying the components for its load and availability.

� Finding components with the least load.

� Discontinuing the use of deceased components and using new ones.

� Work dynamically.

4.2 Noti�cation and registration of new com-

ponents

Each component, except Aries, whenever they are started noti�es the other

components about its presence. The only component that takes notice of it

30

this is Hermes. Hermes, being the load balancer needs to know the whole set

of network components.

The method by which the components �nd out about each other presence

is by using Jini technology - mainly leveraging the multicast request protocol

as described in Jini(TM) Architecture Speci�cations [12]. The method by

which a component announces its presence is by locating the lookup services

(which are native to Jini), download code to control the lookup service,

use that code to register itself (and also upload its own code) and then

periodically renew the registration. The code that is uploaded includes simple

information that can be modi�ed and queried - mainly the count of users,

the maximum amount of users that can be handled, and the address of the

system. This information is used in �nding the load and availability of the

system, which is explained in the next section.

All of these components: Hermes, Mors, Nemesis and Demeter are ser-

vices (in Jini terminology), while Ares is the client. All the services are using

Jini to announce their presence and �nd, if needed, the other components

(Nemesis looks for Mors using Hermes' knowledge). Ares on the other hand,

being a client doesn't announce its presence - it searches for the services it

requires.

4.3 Querying the components for its load and

availability

After the service components have been registered with the lookup server,

Hermes queries each new found components for its information (see Fig 4.1).

It does that every prede�ned amount of time. This allows for retrieval of

near-real time statistical information on the load of each service. It also

allows for discovering if the service has been disconnected or is no longer

operational and accordingly purge information about the service.

Only Hermes queries for these information. All other components just

provide the pertinent information and change their information accordingly

to their status.

31

Mors

Nemesis

RTP

?

Hermes

Figure 4.1: Information querying by Hermes

4.4 Finding components with the least load

Ares and Nemesis are two of the components that require access to the other

components. Ares requires Demeter and Nemesis, while Nemesis requires

Mors. Each of these clients needs to �nd the appropriate service.

The requesting client queries Hermes, which knows the least populated

service in the desired pool. Hermes provides the address to the least loaded

service and the requesting client uses that address to talk to the service

directly. If the requested component is not available, no address is returned.

It is assumed to that the components can and will stop working at some

point. Therefore the connection between the components can break at any

time and should be re-established. If there are no desired components at

the current time then the service should continue asking Hermes for that

component repeatedly until its found.

When the required component is found it's address is cached and period-

ically checked. This makes it possible to discover dead services and request

new ones from Hermes. Vice-versa - if the connection is ok, there is no need

query Hermes for a least loaded service in the pool

32

4.5 Work dynamically

With the idea of noti�cation, registration, checking the components its fea-

sible to adjust to changing network conditions. New services can be taken

advantage of and other nodes in a pool can be shutdown for maintenance.

All these features allows for exible rollover o� services. In turn making the

whole system capable of working truly dynamic scalable distributed fashion.

4.6 Summary

All of the requirements demanded by a scalable distributed framework have

been implemented in the work. The underlying technology used to discover,

notify, and register components used was Jini. Remote Method Invocation

(RMI [8]) was used to check the load and availability of each of the services,

along for exchanging speci�c information with components.

33

Bibliography

[1] N.M. Allinson, A.W. Ellis, B.M. Flude, and A.J Luckman. A connec-

tionist model of familiar face recognition. In IEE Colloquium on Ma-

chine Storage and Recognition of Faces, pages 1{10, 1992. Digest No:

1992/017.

[2] R. Brunelli and T. Poggio. Caricatural e�ects in automated face per-

ception.

[3] R. Brunelli and T. Poggio. Face recognition through geometrical fea-

tures.

[4] R. Brunelli and T. Poggio. Hyberbf networks for gender classi�cation.

[5] R. Brunelli and T. Poggio. Hyperbf networks for real object recognition.

In Proc. of the 12th IJCAI, pages 1278{1284, Sidney, Australia, 1991.

[6] Kenneth R. Castleman. Digital Image Processing. Prentice-Hall, Inc.,

1996.

[7] Ross Cutler. Face recognition using infrared images and eigenfaces. April

1996.

[8] James D. Foley, Andries van Dam, Steven K. Feiner, and John F.

Hughes. Computer Graphics Principle and Practice. Addison-Wesley,

Inc., 1997.

[9] Francis Galton. Personal Identi�cation And Description. June 1888.

[10] Gaston Gonnet. Singular value decomposition and eigenvalue decompo-

sition. November 2001.

34

[11] Audio-Video Transport Working Group, H. Schulzrinne, GMD Fokus,

S. Casner, Precept Software Inc., R. Frederick, Xerox Palo Alto Research

Center, V. Jacobson, and Lawrence Berkeley National Laboratory. Rtp:

A transport protocol for real-time applications. January 1996.

[12] William H., Teukolsky Saul A., Vetterling William T., and Brian P.

Flannery. Numerical Recipes in C: The Art of Scienti�c Computing.

Cambridge University Press, 1992.

[13] L.D. Harmon, M.K. Khan, R. Lasch, and P.F. Ramig. Machine identi-

�cation of human faces. Pattern Recognition, 1981.

[14] Jim He�eron. Linear Algebra.

[15] T. Kanade. Computer recognition of human faces. Interdisciplinary

Systems Research, 1977. Birkhauser Verlag.

[16] Mohamed Amine Khamsi. Eigenvalues and eigenvectors technique.

[17] T. Kohonen. Self-organization and associative memory. Springer-Verlag,

1988. 2nd Edition.

[18] Sun Microsystem. Java(TM) Remote Method Invocation Speci�cation.

1998.

[19] Sun Microsystems. JMF Frequently Asked Questions.

[20] Sun Microsystems. Java(TM) Media Framework API Guide. November

1999.

[21] Sun Microsystems. Jini Network Technology Datasheet. May 2001.

[22] Sun microsystems. Jini(TM) Architecture Speci�cation. Sun Microsys-

tems, 2001.

[23] L. Najman, R. Vaillan, and E. Pernot. Face from sideview to identi�-

cation. In G. Vernazza, A.N. Venetsanopouls, and C. Braccini, editors,

Image Processing: Theory and Applications. Elsevier Science Publishers,

1993.

[24] O. Nakamura, S. Mathur, and T. Minami. Identi�cation of human faces

based on isodensity maps. Pattern Recognition, pages 263{272, 1991.

35

[25] Alexander Pentland and Terrence Sejnowski. Neural networks and eigen-

faces for �nding an analyzing faces.

[26] A. Samal and P.A. Lyengar. Automatic recognition and analysis of

human faces and facial expressions: A survey. Pattern Recognition,

1992.

[27] M. Turk and A. Pentland. Eigenfaces for recognition. In Journal of

Cognitive Neuroscience, March 1991.

[28] Matthew A. Turk and Alex P. Pentland. Face recognition using eigen-

faces. May 1991.

[29] K.H. Wong, H.H.M. Law, and P.W.M. Tsang. A system for recognising

human faces. In Proceedings of the Internation Conference on Acoustics,

Speech and Signal Processing, pages 1638{1642, 1989.

[30] C.J. Wu and J.S. Huang. Human face pro�le recognition by computer.

Pattern Recognition, pages 255{259, 1990.

36

