
ARM Developer Suite
Version 1.0.1

Debuggers Guide
Copyright © 1999, 2000 ARM Limited. All rights reserved.
ARM DUI 0066B

Copyright © 1999 and 2000 ARM Limited. All rights reserved.

Release Information

The following changes have been made to this document.

Proprietary Notice

ARM, the ARM Powered logo, Thumb, and StrongARM are registered trademarks of ARM Limited.

The ARM logo, AMBA, Angel, ARMulator, EmbeddedICE, ModelGen, Multi-ICE, PrimeCell,
ARM7TDMI, ARM7TDMI-S, ARM9TDMI, ARM9E-S, ETM7, ETM9, TDMI, STRONG, are trademarks
of ARM Limited.

All other products or services mentioned herein may be trademarks of their respective owners.

Neither the whole nor any part of the information contained in, or the product described in, this document
may be adapted or reproduced in any material form except with the prior written permission of the copyright
holder.

The product described in this document is subject to continuous developments and improvements. All
particulars of the product and its use contained in this document are given by ARM in good faith. However,
all warranties implied or expressed, including but not limited to implied warranties of merchantability, or
fitness for purpose, are excluded.

This document is intended only to assist the reader in the use of the product. ARM Limited shall not be liable
for any loss or damage arising from the use of any information in this document, or any error or omission in
such information, or any incorrect use of the product.

Change History

Date Issue Change

October 1999 A Release 1.0

February 2000 B Release 1.0.1
ii Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI 0066B

Contents
Debuggers Guide

Preface
About this book .. viii
Feedback .. xii

Part A

Chapter 1 About AXD
1.1 Debugger concepts ... 1-2
1.2 Interfacing with targets .. 1-5
1.3 Online help .. 1-9

Chapter 2 Getting Started in AXD
2.1 License-managed software ... 2-2
2.2 Starting and closing AXD .. 2-3
2.3 Debugger target .. 2-4
2.4 AXD displays ... 2-9
2.5 AXD menus ... 2-11
2.6 Tool icons, status bar, keys, and commands .. 2-13

Chapter 3 Working with AXD
3.1 Running a demonstration program .. 3-2
ARM DUI 0066B Copyright © 1999, 2000 ARM Limited. All rights reserved. iii

3.2 Setting a breakpoint .. 3-4
3.3 Examining the contents of variables ... 3-6
3.4 Examining the contents of registers ... 3-10
3.5 Examining the contents of memory .. 3-12
3.6 Locating and changing values and verifying changes 3-14
3.7 Creating a revised version of the program ... 3-16

Chapter 4 AXD Facilities
4.1 Stopping and stepping .. 4-2
4.2 Expressions .. 4-4
4.3 Viewing and editing .. 4-6
4.4 Profiling ... 4-12

Chapter 5 AXD Desktop
5.1 Menus, toolbars and status bar .. 5-2
5.2 File menu .. 5-5
5.3 Search menu .. 5-11
5.4 Processor Views menu ... 5-13
5.5 System Views menu ... 5-33
5.6 Execute menu ... 5-51
5.7 Options menu ... 5-55
5.8 Window menu ... 5-65
5.9 Help menu .. 5-67

Chapter 6 AXD Command-line Interface
6.1 Command Line Window ... 6-2
6.2 Parameters and prefixes .. 6-4
6.3 Commands with list support ... 6-5
6.4 Predefined command parameters .. 6-6
6.5 Definitions ... 6-8
6.6 Commands ... 6-11

Part B

Chapter 7 About ADW and ADU
7.1 About the ADW and ADU debuggers ... 7-2
7.2 Online help ... 7-4
7.3 Debugging an ARM application .. 7-5
7.4 Debugging systems .. 7-6
7.5 Debugger concepts .. 7-8

Chapter 8 Getting Started in ADW and ADU
8.1 The ADW and ADU desktop ... 8-2
8.2 Starting and closing ADW and ADU ... 8-4
8.3 Loading, reloading, and executing a program image 8-7
iv Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI 0066B

8.4 Examining and setting variables, registers, and memory 8-9
8.5 ADW and ADU desktop windows .. 8-11

Chapter 9 Working with ADW and ADU
9.1 Breakpoints, watchpoints, backtracing and stepping 9-2
9.2 ADW and ADU further details ... 9-11
9.3 Channel viewers ... 9-23
9.4 Configurations ... 9-25

Chapter 10 Using ADW and ADU with C++
10.1 About ADW and ADU for C++ ... 10-2
10.2 Using the C++ debugging tools ... 10-3

Part C

Chapter 11 About armsd
11.1 About armsd .. 11-2
11.2 Command syntax .. 11-3

Chapter 12 Getting Started in armsd
12.1 Specifying source-level objects ... 12-2
12.2 armsd variables ... 12-7
12.3 Low-level debugging ... 12-12
12.4 armsd commands for EmbeddedICE .. 12-15
12.5 Accessing the debug communications channel 12-17

Chapter 13 Working with armsd
13.1 Groups of armsd commands ... 13-2
13.2 Alphabetical list of armsd commands .. 13-6

Appendix A Debug Communications Channel
A.1 Introduction .. A-2
A.2 Command-line debugging commands ... A-3
A.3 Enabling comms channel viewing.. A-4
A.4 Target transfer of data ... A-5
A.5 Polled debug communications ... A-6
A.6 Interrupt-driven debug communications... A-12
A.7 Access from Thumb state .. A-13
A.8 Semihosting ... A-14
ARM DUI 0066B Copyright © 1999, 2000 ARM Limited. All rights reserved. v

vi Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI 0066B

Preface

This preface introduces the ARM debuggers and their documentation. It contains the
following sections:

• About this book on page Preface-viii

• Feedback on page Preface-xii.
ARM DUI 0066B Copyright © 1999, 2000 ARM Limited. All rights reserved. Preface-vii

Preface
About this book

This book has three main parts in which all the currently supported ARM debuggers are
described:

• Part A describes the graphical user interface components of ARM eXtended
Debugger (AXD), the most recent ARM debugger and part of the ARM
Developer Suite of software. Tutorial information is included to demonstrate the
main features of AXD. If AXD is the only debugger you use, you can safely
ignore Parts B and C, but you might need to refer to the Glossary and Index near
the end of the book.

• Part B describes the ARM Debugger for Windows (ADW) and the ARM Debugger
for UNIX (ADU). These earlier ARM debuggers continue to be fully supported.

• Part C describes the ARM Symbolic Debugger (armsd).

Intended audience

This book is written for developers who are using any of the currently supported ARM
debuggers under Window NT, 95, or 98, or UNIX. It assumes that you are an
experienced software developer, and that you are familiar with the ARM development
tools as described in Getting Started (see ARM publications on page Preface-xi).

Using this book

This book is organized into the following parts and chapters:

PART A Part A covers the use of AXD.

Chapter 1 About AXD
Chapter 1 explains some of the concepts of debugging and the
terminology used. It also describes the various ARM debuggers and how
this book is complemented by online help.

Chapter 2 Getting Started in AXD
Chapter 2 reminds you that you use ARM software under a license
agreement, and how software licensing is managed. It then explains how
to set up a debugger target, and gives an overview of the AXD desktop.

Chapter 3 Working with AXD
Chapter 3 provides some examples with step-by-step instructions to
demonstrate typical debugging sessions.
Preface-viii Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI 0066B

Preface
Chapter 4 AXD Facilities
Chapter 4 starts with an overview of the debugging facilities that you
need, and how they are provided by AXD. This is followed by
information about expressions, viewing and editing data, and profiling.

Chapter 5 AXD Desktop
Chapter 5 describes the menus, views, dialogs, and tool and status bars
provided by the AXD desktop.

Chapter 6 AXD Command-line Interface
Chapter 6 describes command-line operation of AXD.

PART B Part B covers the use of ADW and ADU.

Chapter 7 About ADW and ADU
Chapter 7 introduces the ARM ADW and ADU debuggers.

Chapter 8 Getting Started in ADW and ADU
Chapter 8 explains how to set up and start using ADW and ADU, and
describes some necessary debugging concepts.

Chapter 9 Working with ADW and ADU
Chapter 9 provides detailed descriptions of the features of ADW and
ADU, and instructions for their use.

Chapter 10 Using ADW and ADU with C++
Chapter 10 describes how ARM C++ affects ADW and ADU.

PART C Part C covers the use of armsd.

Chapter 11 About armsd
Chapter 11 introduces armsd, which is an interactive, command-line,
source-level debugger providing high-level debugging support for
languages such as C, and low-level support for assembly language.

Chapter 12 Getting Started in armsd
Chapter 12 explains how to set up and start using armsd, and describes
some necessary debugging concepts.

Chapter 13 Working with armsd
Chapter 13 provides detailed descriptions of the features of armsd, and
instructions for their use.
ARM DUI 0066B Copyright © 1999, 2000 ARM Limited. All rights reserved. Preface-ix

Preface
Appendix A Debug Communications Channel
This appendix explains how to use the ARM Debug Communications
Channel. You can use this feature from any ARM debugger.

Glossary An alphabetically arranged glossary defines the special terms used.

Index A comprehensive alphabetical index completes this book.

Typographical conventions

The following typographical conventions are used in this book:

typewriter Denotes text that may be entered at the keyboard, such as commands, file
and program names, and source code.

typewriter Denotes a permitted abbreviation for a command or option. The
underlined text may be entered instead of the full command or option
name.

typewriter italic
Denotes arguments to commands and functions where the argument is to
be replaced by a specific value.

italic Highlights important notes, introduces special terminology, denotes
internal cross-references, and citations.

bold Highlights interface elements, such as menu names and buttons. Also
used for terms in descriptive lists, where appropriate.

typewriter bold
Denotes language keywords when used outside example code and ARM
processor signal names.

Further reading

This section lists publications from ARM Limited that provide additional information
on developing code for the ARM family of processors.

ARM periodically provides updates and corrections to its documentation. See
http://www.arm.com/Documentation/Index.html for current information.

See also the ARM Frequently Asked Questions list at:
http://www.arm.com/DevSupp/Sales+Support/faq.html
Preface-x Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI 0066B

Preface
ARM publications

This book contains information that is specific to the ARM debuggers supplied with the
ARM Developer Suite (ADS). Refer to the following books in the ADS document suite
for information on other components of ADS:

• Getting Started (ARM DUI 0064A)

• ADS Tools Guide (ARM DUI 0067A)

• CodeWarrior IDE Guide (ARM DUI 0065)

• ADS Debug Target Guide (ARM DUI 0058A)

• ADS Developer Guide (ARM DUI 0056A).

The following additional documentation is provided with the ARM Developer Suite:

• ARM Architecture Reference Manual (ARM DUI 0100). This is supplied in
Dynatext format, and in PDF format in
install_directory\PDF\ARM-DDI0100B_armarm.pdf.

• ARM Applications Library Programmer’s Guide (ARM DUI 0081). This is
supplied in Dynatext format, and in PDF format on the CD.

• ARM ELF specification (SWS ESPC 0003). This is supplied in PDF format in
install_directory\PDF\specs\ARM ELFA08.pdf.

• TIS DWARF 2 specification. This is supplied in PDF format in
install_directory\PDF\specs\TIS-DWARF2.pdf.

• Angel Debug Protocol. This is supplied in PDF format in
install_directory\PDF\specs\ADP ARM-DUI0052C.pdf

• Angel Debug Protocol Messages. This is supplied in PDF format in
install_directory\PDF\specs\ADP ARM-DUI0053D.pdf

In addition, refer to the following documentation for specific information relating to
ARM products:

• ARM Reference Peripheral Specification (ARM DDI 0062)

• the ARM datasheet or technical reference manual for your hardware device.
ARM DUI 0066B Copyright © 1999, 2000 ARM Limited. All rights reserved. Preface-xi

Preface
Feedback

ARM Limited welcomes feedback on both the ARM Developer Suite, and its
documentation.

Feedback on the ARM Developer Suite

If you have any problems with the ARM Developer Suite, please contact your supplier.
To help us provide a rapid and useful response, please give:

• details of the release you are using

• details of the platform you are running on, such as the hardware platform,
operating system type and version

• a small stand-alone sample of code that reproduces the problem

• a clear explanation of what you expected to happen, and what actually happened

• the commands you used, including any command-line options

• sample output illustrating the problem

• the version number of the tool, including the version number and build number.

Feedback on this book

If you have any problems with this book, please send email to errata@arm.com
giving:

• the document title

• the document number

• the page number(s) to which you comments apply

• a concise explanation of your comments.

General suggestions for additions and improvements are also welcome.
Preface-xii Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI 0066B

Part A
AXD

Chapter 1
About AXD

This chapter explains some of the concepts of debugging and the terminology used. It
also describes the various ARM debuggers, and how this book is complemented by
online help.

This chapter contains the following sections:

• Debugger concepts on page 1-2

• Interfacing with targets on page 1-5

• Online help on page 1-9.
ARM DUI 0066B Copyright © 1999, 2000 ARM Limited. All rights reserved. 1-1

About AXD
1.1 Debugger concepts

This section introduces some of the concepts involved in debugging program images.

1.1.1 Debugger

A debugger is software that enables you to make use of a debug agent in order to
examine and control the execution of software running on a debug target. This part of
the book covers AXD, the ARM eXtended Debugger. Other parts of this book cover
earlier ARM debuggers that are still fully supported.

1.1.2 Debug target

At an early stage of product development there might be no hardware, the expected
behavior of the product being emulated by software. Even though you might run such
software on the same computer as the debugger, it is always helpful to think of the target
as being a separate piece of hardware.

An alternative prototype product might be built on a printed circuit board, and include
one or more processors, on which you can run and debug software.

You build the finished product only when you are satisfied with its performance, as
proved by hardware or software emulation.

The debugger issues instructions that can:

• load software into memory on the target

• start and stop execution of that software

• display the contents of memory, registers, and variables

• allow you to change stored values.

The form of the target is immaterial to the debugger as long as the target obeys such
instructions in exactly the same way as the final product.

1.1.3 Debug agent

A debug agent performs the actions requested by the debugger, such as:

• setting breakpoints

• reading from memory

• writing to memory.

The debug agent is not the program being debugged, or AXD itself.

Examples of debug agents include:

• Multi-ICE

• EmbeddedICE
1-2 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI 0066B

About AXD
• ARMulator

• BATS

• Angel.

Multi-ICE and EmbeddedICE are separate products. They are not supplied with ADS.

1.1.4 Remote debug interface

The Remote Debug Interface (RDI) is an open ARM standard procedural interface
between a debugger and the debug agent (see Figure 1-1 on page 1-5). The widest
possible adoption of this standard is encouraged.

RDI gives the debugger a uniform way to communicate with:

• a debug agent running on the host (for example, ARMulator)

• a debug monitor running on ARM-based hardware accessed through a
communication link (for example, Angel)

• a debug agent controlling an ARM processor through hardware debug support
(for example, Multi-ICE).

1.1.5 Single-processor hardware

In many cases, the target has only a single processor. All ARM debuggers can operate
successfully on single-processor targets.

1.1.6 Multi-processor hardware

There is a growing requirement for multi-processor hardware:

• Certain processors might be dedicated to particular tasks

• parallel processing might be appropriate and beneficial.

In these cases the debugger must allow you to examine and control the processes
happening simultaneously in a number of processors.

1.1.7 Contexts

Each processor in the target can have a process currently in execution. Each process
uses values stored in variables, registers, and other memory locations. These values can
change during the execution of the process.

The context of a process describes its current state, as defined principally by the call
stack that lists all the currently active calls. When a function is called, and again when
control is returned, the context changes.
ARM DUI 0066B Copyright © 1999, 2000 ARM Limited. All rights reserved. 1-3

About AXD
Because variables can have class, local, or global scope, the context determines which
variables are currently accessible.

Every process has its own context. When execution of a process stops, you can examine
and change values in its current context.

1.1.8 Scope

The scope of a variable is determined by the point within a program at which it is
defined. Variables can have values that are relevant within:

• a specific class only (class)

• a specific function only (local)

• the entire process (global).
1-4 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI 0066B

About AXD
1.2 Interfacing with targets

AXD enables you to run and debug your ARM-targeted image using any of the
debugging systems described in Debugging systems on page 1-6.

Refer to the documentation supplied with your target board for specific information on
setting up your system to work with the ARM Developer Suite, and Multi-ICE, Angel,
and so on.

Most of this part of the book applies to both the Windows and the UNIX version of
AXD. The term AXD refers to either version. If a section applies to one version only,
that is indicated in the text or in the section heading.

1.2.1 Debugging an ARM application

AXD works in conjunction with either a hardware or a software target system, as shown
in Figure 1-1:

 Figure 1-1 Debugger-target interface

An ARM Development Board, communicating through Multi-ICE, or Angel, is an
example of a hardware target system. ARMulator and BATS are examples of a software
target system.

You debug your application using a number of windows giving you various views on
the application you are debugging.
ARM DUI 0066B Copyright © 1999, 2000 ARM Limited. All rights reserved. 1-5

About AXD
To debug your application you must choose:

• a debugging system, which can be:

— hardware-based on an ARM core

— software that emulates an ARM core.

• a debugger, such as AXD, ADW, ADU, or armsd.

Figure 1-2 shows a typical debugging arrangement of hardware and software:

 Figure 1-2 A typical debugging set-up

1.2.2 Debugging systems

The following debugging systems are available for applications developed to run on an
ARM core:

• ARMulator on page 1-7

• Basic ARM Ten System (BATS) on page 1-7

• Multi-ICE and EmbeddedICE on page 1-7

• Angel debug monitor on page 1-8.
1-6 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI 0066B

About AXD
See Configure Target... on page 5-56 for information about the configuration of
debugger target systems.

ARMulator

ARMulator is a collection of programs that emulate the instruction sets and architecture
of various ARM processors. ARMulator:

• provides an environment for the development of ARM-targeted software on the
supported host systems

• enables benchmarking of ARM-targeted software.

ARMulator is instruction-accurate, meaning that it models the instruction set without
regard to the precise timing characteristics of the processor. It can report the number of
cycles the hardware would have taken. See the ADS Debug Target Guide for more
information about ARMulator.

Basic ARM Ten System (BATS)

For systems based on ARM10 processors, the Basic ARM Ten System (BATS) models
transactions which take place over buses connecting processors, coprocessors,
switches, and memory. You can select combinations of processors, coprocessors,
switches, and memory to model your proposed hardware. You can also write your own
modules, or copy and edit existing ones.

BATS models transactions in detail. You can investigate bus contention between
multiple bus masters, and measure benchmark timings accurately. See the ADS Debug
Target Guide for more information about BATS.

Multi-ICE and EmbeddedICE

Multi-ICE and EmbeddedICE are JTAG-based debugging systems for ARM
processors. Multi-ICE and EmbeddedICE provide the interface between a debugger and
an ARM core embedded within an ASIC. These systems provide:

• real-time address-dependent and data-dependent breakpoints

• single stepping

• full access to, and control of the ARM core

• full access to the ASIC system

• full memory access (read and write)

• full I/O system access (read and write).

Multi-ICE and EmbeddedICE also enable the embedded microprocessor to access
services of the host system, such as screen display, keyboard input, and disk drive
storage by means of semihosting.
ARM DUI 0066B Copyright © 1999, 2000 ARM Limited. All rights reserved. 1-7

About AXD
Multi-ICE can debug applications running in either ARM state or Thumb state on target
hardware. Refer to Multi-ICE documentation for detailed information on Multi-ICE.

Angel debug monitor

Angel is a debug monitor that allows rapid development and debugging of applications
running on ARM-based hardware. Angel can debug applications running in either ARM
state or Thumb state on target hardware. It runs alongside the application being
debugged on the target platform.

Angel also enables the embedded microprocessor to access services of the host system,
such as screen display, keyboard input, and disk drive storage by means of semihosting.

You can use Angel to debug an application on an ARM Development Board or on your
own custom hardware. See the ADS Debug Target Guide for more information.

1.2.3 Availability and compatibility

ARM products undergo continual development and improvement, and several
debuggers are currently available and fully supported.

The ARM Developer Suite (ADS) CD ROM includes the following ARM debuggers:

• AXD (both Windows and UNIX versions)

• ADW (ARM Debugger for Windows)

• ADU (ARM Debugger for UNIX)

• armsd (ARM Symbolic Debugger).

AXD, the latest ARM debugger, is recommended. However, if you have used the earlier
ARM Software Development Toolkit, then you might prefer to use the older ADW,
ADU, or armsd debuggers because they offer all the facilities you need in a way that is
familiar to you.

The earlier debuggers are included on the CD ROM so that during installation you can
replace the entire existing ARM Software Development Toolkit with the new ARM
Developer Suite and still have all the supported debuggers.

The principal improvements in AXD, compared to the earlier ARM debuggers, are:

• a completely redesigned graphical user interface offering multiple views

• a new command-line interface.

A C++ compiler is supplied as part of ADS, and is no longer an extra-cost option as was
the case in the past.
1-8 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI 0066B

About AXD
1.3 Online help

Online help is intended to complement the information contained in this guide.

Information about the ARM debuggers appears in this book and online with the
following differences:

• this book concentrates on overall concepts, tutorial material, and descriptions of
facilities

• online help complements the information provided in this book, and provides
finer details relating to such topics as individual data entry fields, check boxes,
and buttons.

When you are running AXD, use online help to obtain information about your current
situation. You can also navigate your way to any other pages of available online help.

1.3.1 Displaying online help

You can display online help in any of the following ways.

F1 key Press the F1 key on your keyboard to display online help on the currently
active window.

Help button
Many windows contain a Help button that you can click to display help
relevant to that window.

Help menu
The Help menu is shown in Figure 1-3.

 Figure 1-3 Help menu

Select Contents to display the first page of AXD online help. You can
navigate from there to any available topic.

Select Using Help to display a guide to the use of on-screen help.

Select Online Books to start running browser software that allows you to
display online copies of the printed manuals that you received with AXD.
If this option is not yet available, you can select Start → Programs →
ARM Developer Suite v1.0 → Online Books.

Select About AXD... to display details of the version of AXD that you
are running.
ARM DUI 0066B Copyright © 1999, 2000 ARM Limited. All rights reserved. 1-9

About AXD
Query tools Click on the ? tool in the Help toolbar as an alternative to selecting
Contents from the Help menu.

Click on the ?/arrow tool in the Help toolbar to change the mouse pointer
into a query and arrow, then click again on any item on the screen for
which you want help.

Hypertext links
Most pages of online help include highlighted text that you click on to
display related online help:

• highlighted plain text displays a pop-up box

• highlighted underscored text causes a jump to another page of help.

Related topics button
Many pages of online help include a Related topics button that you can
click to display a new window containing links to related online help.

Browse buttons
Most pages of online help include a pair of browse buttons allowing you
to display a sequence of related help pages.
1-10 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI 0066B

Chapter 2
Getting Started in AXD

This chapter describes how to start running AXD, set up your debugger target, and
operate the AXD desktop. It contains the following sections:

• License-managed software on page 2-2

• Starting and closing AXD on page 2-3

• Debugger target on page 2-4

• AXD displays on page 2-9

• AXD menus on page 2-11

• Tool icons, status bar, keys, and commands on page 2-13.
ARM DUI 0066B Copyright © 1999, 2000 ARM Limited. All rights reserved. 2-1

Getting Started in AXD
2.1 License-managed software

Some software is locked, preventing you from running it, until you have been granted
a license to use it. If you need a license you can usually obtain it quickly by applying
for it by email or fax.

You can use certain license-managed software without a license, for evaluation
purposes. When this is allowed, either a restriction is imposed on functionality or a time
limit is placed on your use of the software.

Details of license-managed software, how licensing works, and how to apply for a
license are explained in the Getting Started book.
2-2 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI 0066B

Getting Started in AXD
2.2 Starting and closing AXD

This section describes how to start and close AXD.

2.2.1 Starting AXD

Start AXD in any of the following ways:

• if you are running Windows, double-click on the AXD Debugger icon or select
Start → Programs → ARM Developer Suite v1.0 → AXD Debugger

• if you are working in the CodeWarrior IDE, refer to the CodeWarrior IDE Guide
for more information on starting AXD

• if you are running under UNIX, either:

— from any directory type the full path and name of the debugger, for
example, /opt/arm/axd

— change to the directory containing the debugger and type its name, for
example, ./axd

• launch AXD from DOS, optionally with arguments (see AXD arguments).

2.2.2 AXD arguments

The possible arguments (which must be in lower case) for AXD are:

-debug ImageName

Load ImageName for debugging.

-exec ImageName

Load and run ImageName.

-logo Show splash screen (this is the default).

-nologo Suppress splash screen.

-script ScriptName

Obey the ScriptName on startup. This is the equivalent of typing obey
ScriptName as soon as the debugger starts up.

For example, to launch AXD and load sorts.axf for debugging, type:

axd -debug sorts.axf

Where an AXD command line includes an image name any options following the image
name will be taken as command line options for the image being loaded, not AXD.

2.2.3 Closing AXD

To close down AXD, select Exit from the File menu or click the X button at the far right
of the AXD title bar.
ARM DUI 0066B Copyright © 1999, 2000 ARM Limited. All rights reserved. 2-3

Getting Started in AXD
2.3 Debugger target

This section explains how to set up the target hardware, or emulator, on which to run
the software to be debugged, using:

• ARMulator

• BATS on page 2-5

• Multi-ICE unit and target board on page 2-5

• Angel or EmbeddedICE on page 2-6.

The first time you run AXD, ARMulator is selected by default as the target, with default
settings taken from a configuration file. Subsequently, AXD starts up with the last used
target configuration still effective.

2.3.1 ARMulator

If you install ADS and run AXD, an ARMulator debugging session starts by default,
with ARMulator configured by settings held in a default configuration file.

To reconfigure ARMulator, or to return to ARMulator after using another debugger:

1. In AXD, select Configure Target... from the Options menu. You are prompted
to choose a target, in a dialog similar to that shown in Figure 2-1.

 Figure 2-1 Selecting a target

2. Select the ARMUL target. If ARMUL is not in the list of available target
environments, click Add, locate and select armulate.dll, click Open, and
ARMUL is added to the list and selected.

3. To examine or change the ARMulator configuration settings, click the Configure
button. The resulting dialog is described in Configure Target... on page 5-56.
2-4 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI 0066B

Getting Started in AXD
4. When you have selected ARMUL as the target, and configured it if necessary,
click OK. You can now load an image onto the target and control its execution.

2.3.2 BATS

To start a BATS debugging session:

1. In AXD, select Configure Target... from the Options menu. You are prompted
to choose a target, in a dialog similar to that shown in Figure 2-1 on page 2-4.

2. Select the BATS target. If BATS is not yet in the list of available target
environments, click Add, locate and select bats.dll, click Open, and BATS is
added to the list and selected.

3. If this is the first time you have used this target, or the target configuration has
changed since your last debugging session, click the Configure button. The
resulting dialog is described in Configure Target... on page 5-56.

4. When you have selected BATS as the target, and configured it if necessary, click
OK. You can now load an image onto the target and control its execution.

2.3.3 Multi-ICE unit and target board

To set up a hardware target of this kind for the first time, refer to the ARM Multi-ICE
User Guide. When the hardware is correctly connected and configured, start a
debugging session as follows:

1. Connect Multi-ICE to your target board with the JTAG connector. Switch on the
power supply to your target board (for example, an ARM development board).
Multi-ICE is usually configured to get its power from the target board.

2. Run the Multi-ICE server software on the computer that has the Multi-ICE
hardware unit connected to its parallel port.

3. Select Auto-configure from the File menu, and check that the software detects
the processors that you expect to find on the target board.

4. In AXD, select Configure Target... from the Options menu. You are prompted
to choose a target, in a dialog similar to that shown in Figure 2-1 on page 2-4.

5. In the Choose Target dialog select Multi-ICE. If Multi-ICE is not yet in the list
of available target environments, click Add, locate and select Multi-ICE.dll,
click Open, and Multi-ICE is added to the list and selected.

6. If this is the first time you have used this target, or the target configuration has
changed since your last debugging session, click the Configure button. The
resulting dialog is described in Configure Target... on page 5-56.

7. When you have selected Multi-ICE as the target, and configured it if necessary,
click OK. You can now load an image onto the target and control its execution.
ARM DUI 0066B Copyright © 1999, 2000 ARM Limited. All rights reserved. 2-5

Getting Started in AXD
2.3.4 Angel or EmbeddedICE

To start an Angel or EmbeddedICE debugging session:

1. Ensure your target board (for example, an ARM development board) is correctly
configured and connected to your computer, then switch on its power supply.

2. In AXD, select Configure Target... from the Options menu. You are prompted
to choose a target, in a dialog similar to that shown in Figure 2-1 on page 2-4.

3. Select the Angel Debug Protocol (ADP) target. If ADP is not yet in the list of
available target environments, click Add, locate and select remote_a.dll click
Open, and ADP is added to the list and selected.

4. If this is the first time you have used this target, or the target configuration has
changed since your last debugging session, click the Configure button. The
resulting dialog is described in Configure Target... on page 5-56.

5. When you have selected ADP as the target, and configured it if necessary, click
OK. You can now load an image onto the target and control its execution.

2.3.5 Gateway DLL

To target the Gateway DLL:

1. In AXD, select Configure Target... from the Options menu. You are prompted
to choose a target, in a dialog similar to that shown in Figure 2-1 on page 2-4.

2. Click Add…. A standard file dialog is displayed (Figure 2)

3. Select gateway.dll and click Open.

4. Click Configure… in the Choose Target screen. The Gateway Remote
Configuration panel is displayed (Figure 2-2 on page 2-7).
2-6 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI 0066B

Getting Started in AXD
 Figure 2-2 Gateway Remote Configuration panel

5. Click Set to set connection details for your probe. A Set Connection Details panel
is displayed (Figure 2-3 on page 2-7).

 Figure 2-3 Set Connection Details panel

6. Enter the IP address for your probe in the Ethernet field. See your HP
documentation for more information on setting the IP address.
ARM DUI 0066B Copyright © 1999, 2000 ARM Limited. All rights reserved. 2-7

Getting Started in AXD
7. Press the Tab key, or click in the Supported field. The Debugger establishes a
connection with probe and displays a list of supported targets in the Supported
field.

8. Select the target type you want in the Supported field.

9. Select the JTAG base clock speed you require from the JTAG Timing drop-down
menu. This sets the frequency at which the probe clocks data across the target
JTAG port. Higher frequencies give improved performance, especially for
JTAG-intensive operations such as downloading.

You are recommended to select the highest frequency supported by your target
hardware. Hardware constraints such as stacking several devices together, or
using long cables between the probe and the target, might require you to use lower
JTAG frequencies.

10. Click OK to confirm your settings and close the Set Connection Details panel.

11. Click OK in the Gateway Remote Configuration panel.

12. Click OK in the Debugger Configuration screen to restart the debugger with a
connection to the probe.
2-8 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI 0066B

Getting Started in AXD
2.4 AXD displays

This section describes the various kinds of displays that you see when using AXD:

• Views

• Multi-document interface

• Docked and floating windows

• Tabbed pages on page 2-10

• Dialogs on page 2-10.

2.4.1 Views

A variety of views allow you to examine and control the processes you are debugging.

In the main menu bar, two menus contain items that display views:

• The items in the Processor Views menu display views that apply to the current
processor only, and are described in Processor Views menu on page 5-13.

• The items in the System Views menu display views that apply to the entire,
possibly multiprocessor, target system and are described in System Views menu on
page 5-33.

2.4.2 Multi-document interface

AXD uses the Windows Multi-Document Interface (MDI) so that you can display
several windows at the same time. You typically display several processor views and
system views. You can arrange your windows in various ways so that, for example,
some are docked, some are free-floating, and the remainder are cascaded or tiled.

2.4.3 Docked and floating windows

Source and disassembly views appear as floating windows, but most views that you
display appear first as docked windows. Right-click anywhere within a window to
display its pop-up menu. The pop-up menu of every view that you can dock has an
Allow docking item, which is initially checked showing that it is selected.

A docked window is attached to one edge of the main window, with a width and height
dependent upon any other docked windows that are sharing the same screen edge.

If you click the Allow docking item of the pop-up menu so that it is unchecked, the
window floats. Another pop-up menu item, Float within main window, allows you to
specify whether a floating window is restricted to the main window or can float
anywhere on the screen.

Windows that are floating within the main window are the only ones that you can
reposition and resize by selecting Cascade or Tile from the Window menu.
ARM DUI 0066B Copyright © 1999, 2000 ARM Limited. All rights reserved. 2-9

Getting Started in AXD
2.4.4 Tabbed pages

Several AXD dialogs and property sheets make use of tabbed pages. These allow
displays that contain a large number of data entry fields, control buttons, check boxes,
and radio buttons to be presented in parts.

Although you view only one page at a time, the tabs of all the pages are visible. Click
on any tab to bring its page to the front of the display. You can switch between tabbed
pages as often as you need while making settings or entering data.

Any changes you make become effective only when you click the OK button (or its
equivalent). Click the Cancel button (or its equivalent) to abandon any changes made
on all tabbed pages in the display.

You should consider all the tabbed pages in a display to be parts of a single large display.

2.4.5 Dialogs

AXD uses dialogs frequently. A dialog is a convenient way of grouping together a
number of fields, lists, check boxes, and buttons, allowing you to make changes to
several related fields or values at the same time.

When you select a menu item that operates in this way, a suitable dialog appears. Enter
values, select from lists, select and deselect check boxes until you are satisfied with all
the settings. The new settings become effective only when you click the OK button (or
its equivalent). You can click the Cancel button (or its equivalent) to abandon any
changes you have made and leave all settings unchanged. The dialog disappears
automatically when you finish using it.

The AXD dialogs are shown and described in Chapter 5 AXD Desktop.
2-10 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI 0066B

Getting Started in AXD
2.5 AXD menus

To invoke the main features of AXD, you select menu items in one of the following
ways:

• use the mouse to pull down a menu from the main menu bar near the top of the
screen and highlight the required item, then click to select the item

• press the Alt key, use the arrow keys to select the required menu and highlight the
required item, then press the Return or Enter key to select the item

• hold down the Alt key while you press the key of the underlined character in the
required menu name, then press the key of the underlined character of the
required item to select it.

Other menus are the pop-up menus associated with each view, as described in Pop-up
menus on page 2-11.

2.5.1 Menu bar menus

The menus available from the menu bar are:

File Allows you to transfer data between the target system and disk files, or to
exit from AXD.

Search Allows you to search for a specified character string, either in the
memory of a process or in a specified disk file.

Processor Views
Allows you to select a view to open on the currently selected processor.

System Views
Allows you to select a system-wide view to open.

Execute Allows you to set or edit breakpoints and watchpoints, and control
execution of a program image.

Options Allows you to set the disassembly mode, configure both the target system
and the debugger user interface, and enable or disable the display of the
status bar and the collection of profiling information.

Window Allows you to control how MDI windows and icons are displayed.

Help Allows you to display online help on the use of AXD, or identify the
version of AXD that you are running.

Each of these main menus is described in detail in Chapter 5 AXD Desktop.

2.5.2 Pop-up menus

In addition to the menus listed in the main menu bar, each view has its own pop-up
menu offering further items depending on circumstances.
ARM DUI 0066B Copyright © 1999, 2000 ARM Limited. All rights reserved. 2-11

Getting Started in AXD
You generally display pop-up menus by right-clicking anywhere within a view.
However, the pop-up menu items that are enabled can depend on the window item
currently selected, if any, or on the position of the mouse pointer when you right-click.

Each pop-up menu is described and shown in Chapter 5 AXD Desktop as part of the
description of each view. Online help gives further information.
2-12 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI 0066B

Getting Started in AXD
2.6 Tool icons, status bar, keys, and commands

This section introduces the various toolbars, the status bar, keyboard shortcuts, in-place
editing, and the command-line interface.

2.6.1 Toolbars

Most of the main menus have corresponding toolbars with icons representing most of
their items. To choose which menus are duplicated as toolbars, or to hide toolbars:

1. Select Configure Interface from the Options menu.

2. Click the check boxes under Toolbars so that the toolbars you want are checked.

3. Click the OK button.

To alter the order in which the toolbars are displayed, or reposition them on the screen,
place the mouse pointer in a toolbar but not on an icon, then drag it to its new position.

When a toolbar is docked at one of the edges of the screen, it is only one icon high (or
wide), but when it is floating and you change its shape, its icons automatically regroup.

2.6.2 Tooltips

If you leave the mouse pointer positioned on a toolbar icon for a few seconds without
clicking, a tooltip appears informing you of the purpose of the icon.

2.6.3 Status bar

The status bar is a single line in which AXD can display several items of relevant
information at the bottom of the debugger screen when appropriate (see Status bar on
page 5-4).

You can display or hide the status bar (see Status Bar on page 5-63).

2.6.4 Keyboard shortcuts

Several kinds of keyboard shortcuts are described in AXD menus on page 2-11.

In addition, most items in three main menus (Processor Views, System Views, and
Execute), and many items in pop-up menus, also show keys or key combinations that
allow you to select that item directly, without first pulling down the menu. For example:

• Ctrl+R displays a Registers processor view

• Alt+O displays an Output system view

• F9 toggles a breakpoint on or off.

Look at the menus to see all the available keyboard shortcuts.
ARM DUI 0066B Copyright © 1999, 2000 ARM Limited. All rights reserved. 2-13

Getting Started in AXD
2.6.5 In-place editing

In-place editing allows you to see most clearly what you are doing when you change a
stored value. It is used whenever possible.

For example, when you are displaying the contents of memory or registers, and want to
change a stored value:

1. Double-click on the value you want to change and it is enclosed in a box with the
characters highlighted to show they are selected.

2. Either enter data to overwrite the highlighted data, or press the left or right arrow
keys to deselect the existing data and position the insertion point where you want
to amend the existing data.

3. Press Enter or Return to store the new value in the selected location.

If you press Escape or move the focus elsewhere instead of pressing Enter or Return,
then any changes you made in the highlighted field are ignored.

In-place editing is not appropriate for:

• editing complex data where some prompting is helpful

• editing groups of related items

• selecting values from predefined lists.

In these cases an appropriate dialog is displayed.

2.6.6 Command-line interface

The Command Line Interface (CLI) window is an alternative to the graphical user
interface. In the CLI window you can:

• enter commands in response to prompts

• view data that you have requested

• submit a file in which you have set up a sequence of commands.

See Chapter 6 AXD Command-line Interface for details.
2-14 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI 0066B

Chapter 3
Working with AXD

This chapter gives step-by-step instructions to perform a variety of debugging tasks.
Chapter 5 AXD Desktop gives further details of specific features.

The examples given in this chapter have all been tested and shown to work as described.
You may find it useful to follow all the instructions, as a tutorial. Your hardware and
software may not be the same as those used for testing these examples, so it is possible
that certain addresses or values may vary slightly from those shown, and some of the
examples might not apply to you. In these cases you might need to modify the
instructions to suit your own circumstances.

This chapter contains the following sections:

• Running a demonstration program on page 3-2

• Setting a breakpoint on page 3-4

• Examining the contents of variables on page 3-6

• Examining the contents of registers on page 3-10

• Examining the contents of memory on page 3-12

• Locating and changing values and verifying changes on page 3-14

• Creating a revised version of the program on page 3-16.
ARM DUI 0066B Copyright © 1999, 2000 ARM Limited. All rights reserved. 3-1

Working with AXD
3.1 Running a demonstration program

Various demonstration projects are supplied, with programs in the form of C or C++
source code files. These projects are stored in subdirectories of Examples in the ARM
Developer Suite installation directory.

You are likely to be using software such as ARMulator to emulate a debugger target.
Alternatively, your target might consist of a Multi-ICE hardware unit and an ARM
development board. If so, you should have set up the hardware and the software as
described in Multi-ICE unit and target board on page 2-5. In any case, you must have
selected the target you intend to use and configured it, as described in Configure
Target... on page 5-56.

The following instructions show you how to build, load and execute a demonstration
program that runs the Dhrystone test software:

1. Create an executable image by compiling the source code files in the Dhry
subdirectory and linking the resulting objects with the libraries that they use. If
you are running under Windows you can use the CodeWarrior IDE project file
dhry.mcp supplied. This organizes your work into projects and largely
automates the tasks of creating and maintaining various versions of a program.

2. Run AXD, by selecting Debug from the Project menu of the CodeWarrior IDE
if that is how you built the image file dhry.axf. This invokes the AXD debugger
with the image loaded.

Alternatively, run AXD separately, select Load Image... from the File menu to
display the Load Image dialog, navigate to the directory of the dhry.axf image
file, select the file and click Open. The image loads into memory on the target, so
the selected processor can execute it.

A Disassembly processor view of the image is displayed as shown in Figure 3-1.

A blue arrow indicates the current execution point.
3-2 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI 0066B

Working with AXD
 Figure 3-1 AXD with Disassembly processor view

3. Select Go from the Execute menu (or press F5) to begin execution on the target
processor. Execution stops at the first executable line of source code in function
main(), where a breakpoint is set by default. A red disc indicates the line where
a breakpoint is set,

A Source processor view of the relevant few lines of the relevant file is displayed.
Again, a red disc indicates the line where a breakpoint is set, and a blue arrow
indicates the current execution point.

4. Select Go from the Execute menu (or press F5) again to continue execution. You
are prompted, in the Console processor view, for the number of runs through the
benchmark that you want performed. Enter 8000. The program runs for a few
seconds, displays some diagnostic messages, and shows the test results.

5. To repeat the execution of the program, select Reload Current Image from the
File menu, then repeat Steps 3 and 4.

6. For details of the program, refer to the readme.txt file and the various source
files in the Dhry subdirectory.
ARM DUI 0066B Copyright © 1999, 2000 ARM Limited. All rights reserved. 3-3

Working with AXD
3.2 Setting a breakpoint

This example runs the same program again, this time with a breakpoint which stops
execution a few times. You can examine values when execution stops.

1. Select Reload Current Image from the File menu.

2. Select Go from the Execute menu (or press F5) to reach the first breakpoint, set
by default at the first executable line of source code in function main() and
indicated by a red disc on that line. You can see the source file dhry_1.c with a
breakpoint and the current position indicated at line number 91.

3. Scroll down through the source file until line number 150 is visible. This is a call
of Proc_4(), and is inside the loop to be executed the number of times you
specify.

4. Right-click on line 150 to position the cursor there and display the pop-up menu,
and select Toggle Breakpoint (or left-click on the line and press F9). Another red
disc indicates that you have set a second breakpoint, as shown in Figure 3-2.

 Figure 3-2 Breakpoint set inside loop

5. To edit the details of the new breakpoint, select Watch/Breakpoints... from the
Execute menu.

Click on the line describing the new breakpoint to select it, and its details appear
in the Type, Position, and Conditions boxes. In the Conditions box, enter 749 in
the Times to skip before action field, as shown in Figure 3-3.

Click Modify to update the breakpoint details, then click Close.
3-4 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI 0066B

Working with AXD
 Figure 3-3 Setting breakpoint details

6. Press F5 to resume execution, and again enter the number 8000 when prompted.
Execution stops the 750th time your new breakpoint is reached.

7. Select Variables from the Processor Views menu to check progress. Reposition
or resize the window if necessary. Click the Local tab and look for the
Run_Index variable. Its value is shown as 2EE (hexadecimal). Right-click on the
variable so that it is selected and a pop-up menu appears. Select Formats → Dec
and the value is now displayed as 750 (decimal).

8. Press F5 to resume execution, and the value of the Run_Index local variable
changes to 1500. It is now colored to show that its value has changed since the
previous display.

9. Press F5 repeatedly until the value of Run_Index reaches 7500, then once more
to allow the program to complete execution. (This time the Dhrystone test results
are meaningless, because of the interruptions to the timing measurements, but the
use of a breakpoint has been demonstrated.)
ARM DUI 0066B Copyright © 1999, 2000 ARM Limited. All rights reserved. 3-5

Working with AXD
3.3 Examining the contents of variables

Two methods are described. The first is simpler and shows the contents of specified
variables. The second shows the addresses of the variables as well as their contents.

3.3.1 Contents of variables

To examine the contents of variables as simply as possible, use the Variables processor
view. In this example you start by reloading and starting the current program, then
stopping it:

1. Select Reload Current Image from the File menu.

2. Select Go from the Execute menu (or press F5) to reach the first breakpoint, set
by default at the first executable line of source code in function main().

3. Select Variables from the Processor Views menu and reposition or resize the
window if necessary.

On the Local tabbed page look for the Run_Index variable. Other variables that
you can see include Enum_Loc, Int_1_Loc, Int_2_Loc, and Int_3_Loc.

Right-click in the window, and select Properties... from the pop-up menu. Select
the Decimal format option and click OK.

4. Press F5 again, enter a number not much greater than 750 this time for the number
of runs required, say 770. The program performs the first 750 executions of the
Dhrystone test and stops at the breakpoint you defined in Setting a breakpoint on
page 3-4. The value of Run_Index is displayed in color because it has changed
(see Figure 3-4).

 Figure 3-4 Examining the contents of variables

5. Press F10. This is equivalent to selecting Step from the Execute menu. The
program executes a single instruction and stops. Any values that have changed in
the Variables processor view are displayed in color.
3-6 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI 0066B

Working with AXD
6. Press F10 repeatedly. As you execute the program, one instruction at a time, the
values of several of the variables change. After you have allowed approximately
30 program instructions to execute, the value of Run_Index increases by 1. The
program has now completed one further execution of the Dhrystone test.

7. Explore the various display options available from the pop-up menu. Try settings
in both the Format submenu and the Default Display Options dialog displayed
when you select Properties....

Any settings you change from Properties... can apply to some or all of the
displayed items, depending on what is currently selected.

3.3.2 Addresses and contents of variables

An alternative method of examining a variable is to use a Watch processor view. This
allows you to see the memory address of the variable as well as its value. In this example
you start by reloading and starting the current program, then stopping it:

1. Select Reload Current Image from the File menu.

2. Select Go from the Execute menu (or press F5) to reach the first breakpoint, set
by default at the first executable line of source code in function main().

3. Select Watch from the Processor Views menu and reposition or resize the
window if necessary. You can specify items to watch on several tabbed pages. In
this example you examine a few variables using the first tabbed page only.

4. Right-click in the window, and select Add Watch from the pop-up menu. A
Watch dialog appears, prompting you to enter an expression. For this example
enter a valid variable name preceded by an ampersand (&). See Figure 3-5.

 Figure 3-5 Specifying variables to watch
ARM DUI 0066B Copyright © 1999, 2000 ARM Limited. All rights reserved. 3-7

Working with AXD
Enter the first expression by typing:

&Enum_Loc

then either press the Return key or click on the Evaluate button.

The expression you entered appears in the Expression column, and its value,
being the address of the variable, appears in the Value column.

Click on the + symbol to expand the display, and another line appears showing
the contents of the variable in the Value column.

Enter, in a similar way:

&Int_1_Loc
&Int_3_Loc
Run_Index

and expand their lines also.

The Run_Index variable name is not preceded by an ampersand because, in this
program, the variable is stored in a hardware register. Having no memory address,
it is inappropriate to ask for it to be displayed. Specifying the variable name
without the ampersand shows its contents but not its address.

5. Select all the lines you have entered, as shown in Figure 3-5, ensure that Proc is
the selected View and Tab1 the selected Tab, then click the Add To View button
and the Close button.

6. The variables you have specified are now displayed in the Watch processor view,
and if you expand the lines you can see both the addresses and the contents of the
variables.

Point to the value displayed for the Run_Index variable and right-click to display
the pop-up menu. Select Formats → Dec so that the value of Run_Index is
displayed as a decimal number.

7. Press F5 again, to continue program execution, and enter a number not much
greater than 750 this time for the number of runs required, say 770. The program
performs the first 750 executions of the Dhrystone test and stops at the breakpoint
you defined in Setting a breakpoint on page 3-4.

8. Press F10. This is equivalent to selecting Step from the Execute menu. The
program executes a single instruction and stops. Any values that have changed in
the Watch processor view are displayed in color.

9. Press F10 repeatedly. As you execute the program, one instruction at a time, the
values of several of the variables change. After you have allowed approximately
30 program instructions to execute, the value of Run_Index increases by 1. The
program has now completed one further execution of the Dhrystone test.
3-8 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI 0066B

Working with AXD
10. Explore the various display options available from the pop-up menu. Try settings
in both the Format submenu and the Default Display Options dialog displayed
when you select Properties....

Any settings you change from Properties... can apply to some or all of the
displayed items, depending on what is currently selected.
ARM DUI 0066B Copyright © 1999, 2000 ARM Limited. All rights reserved. 3-9

Working with AXD
3.4 Examining the contents of registers

To examine the contents of registers used by the currently loaded program:

1. Select Reload Current Image from the File menu.

2. Select Go from the Execute menu (or press F5) to reach the first breakpoint, set
by default at the first executable line of source code in function main().

3. Select Registers from the Processor Views menu and reposition or resize the
window if necessary.

The registers are arranged in groups, with only the group names visible at first.
Click on the + symbol of any group name to see the registers of that group
displayed, as shown in Figure 3-6.

 Figure 3-6 Examining contents of registers

4. Press F10. This is equivalent to selecting Step from the Execute menu. The
program executes a single instruction and stops. Any values that have changed in
the Registers processor view are displayed in color.

5. Press F10 a few more times. As you execute the program, one instruction at a
time, you can see the values of several of the registers change.

You soon reach the point at which you are prompted, in the Console processor
view, for the number of runs to perform. You need enter only a very small number
this time.
3-10 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI 0066B

Working with AXD
6. Explore the format options available from the Registers processor view pop-up
menu.

If you position the mouse pointer on a selectable line when you right-click, the
line is selected. You can change the display format of selected lines only.

You can select multiple lines by holding down the Shift or Ctrl keys while you
click on the relevant lines, in the usual way.

If you select Add to System from the pop-up menu, the currently selected register
is added to those that are displayed in the Registers system view. This is of
particular value when your target has multiple processors and you want to
examine the contents of some registers of each processor. Collecting the registers
of interest into a single Registers system view avoids having to display many
separate processor views.

You can also select Add Register from the pop-up menu of the Registers system
view. This allows you to select registers from any processor to add to those being
displayed in the Registers system view.
ARM DUI 0066B Copyright © 1999, 2000 ARM Limited. All rights reserved. 3-11

Working with AXD
3.5 Examining the contents of memory

To examine the contents of memory used by the currently loaded program:

1. Select Reload Current Image from the File menu.

2. Select Go from the Execute menu (or press F5) to reach the first breakpoint, set
by default at the first executable line of source code in function main().

3. Select Memory from the Processor Views menu and reposition or resize the
window if necessary. Figure 3-7 shows a typical memory processor view.

 Figure 3-7 Examining contents of memory

You saw in Addresses and contents of variables on page 3-7 that memory
addresses of interest were in the region of 0x7fffffd0, so set the Start address
value to, say, 0x7ffffe00.

4. Press F10. This is equivalent to selecting Step from the Execute menu. The
program executes a single instruction and stops. Any values that have changed in
the Memory processor view are displayed in color.
3-12 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI 0066B

Working with AXD
5. Press F10 a few more times. As you execute the program, one instruction at a
time, you can see the values stored in several of the memory addresses change.

You soon reach the point at which you are prompted, in the Console processor
view, for the number of runs to perform. You need enter only a very small number
this time.

6. Explore the format options available from the Memory processor view pop-up
menu. The Size and Format settings appear both as items on the pop-up menu and
as radio buttons in the dialog displayed when you select Properties... from the
pop-up menu. More information about these options is given in Chapter 5 AXD
Desktop.
ARM DUI 0066B Copyright © 1999, 2000 ARM Limited. All rights reserved. 3-13

Working with AXD
3.6 Locating and changing values and verifying changes

To locate a value (of a variable or string, for example) in memory, change it, and
continue execution in order to verify the effects of the change:

1. Select Reload Current Image from the File menu.

2. Select Go from the Execute menu (or press F5) to reach the first breakpoint, set
by default at the first executable line of source code in function main().

3. Select Memory from the Search menu, enter 2’ND in the Search for field, set
the In range addresses to 0x0 and 0xffff, select ASCII for the Search string
type, and click the Find button, as shown in Figure 3-8.

 Figure 3-8 Searching for a string in memory

A Memory processor view opens if necessary, and shows the contents of an area
of memory, with the string you specified highlighted. Reposition and resize the
window if necessary, to see a display similar to that in Figure 3-9.

 Figure 3-9 Changing contents of memory

You might need to right-click in the window to display the pop-up menu and set
Size to 8 bit and Format to Hex.

4. The four hexadecimal values highlighted are 32 27 4E 44.

Double-click on the value 32, type 4E and press Return.
3-14 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI 0066B

Working with AXD
Double-click on the value 27, type 4F and press Return.

Double-click on the value 4E, type 2E and press Return.

Double-click on the value 44, type 32 and press Return.

5. Press F5 to continue execution, and enter a value of, say, 100 when you are
prompted in the Console processor view for the number of runs to perform.

When the program displays its messages after completing its tests you can see that
one of the lines that in earlier examples included the text 2’ND STRING now has
NO.2 STRING instead because of the change you made.

In this example, the change you made was not permanent, because you did not alter the
source code or the executable image stored in a disk file. You altered only the temporary
copy of the image in the target memory.
ARM DUI 0066B Copyright © 1999, 2000 ARM Limited. All rights reserved. 3-15

Working with AXD
3.7 Creating a revised version of the program

In the previous example, you tested a temporary change to your program. When
developing a program you might make the same kind of temporary change and find that
it is successful and should be included permanently.

How to do that is beyond the scope of this book. It usually involves changes to the
source code of your program, followed by recompiling and relinking. It could involve
changes not to your program but to data received by your program.

In the simple case of the previous example, the change required to the source code is
obvious. If, however, you corrected an error in execution by, say, altering the value of a
variable, then the changes required in the source code might be far from obvious.

The CodeWarior IDE enables you to make changes to source code, automate the
compiling and linking processes, maintain various versions of files, and so on.

To test a new version of your program in AXD, select Debug from the Project menu of
the CodeWarrior IDE.

For more information about the CodeWarrior IDE, refer to its online help or to the
CodeWarrior IDE Guide.
3-16 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI 0066B

Chapter 4
AXD Facilities

This chapter gives a brief overview of the debugging facilities that AXD provides and
contains references to sources of further information. It contains the following sections:

• Stopping and stepping on page 4-2

• Expressions on page 4-4

• Viewing and editing on page 4-6

• Profiling on page 4-12.
ARM DUI 0066B Copyright © 1999, 2000 ARM Limited. All rights reserved. 4-1

AXD Facilities
4.1 Stopping and stepping

Ease of debugging depends on your ability to stop execution of a program at a specified
point, or when specific conditions are encountered. You must then be able to examine
the contents of memory, registers, or variables, possibly continue execution one
instruction at a time, or specify other actions.

This section contains an overview of:

• stopping execution at a breakpoint

• stopping execution at a watchpoint

• stepping through a program.

Detailed descriptions of how to use these facilities are given in Execute menu on
page 5-49, and in the online help.

4.1.1 Breakpoint

Setting a breakpoint is the simplest way to interrupt normal execution of a program at
a specific point. A breakpoint is always related to a particular memory address,
regardless of what might be stored there. You set a breakpoint by specifying:

• a memory address

• a line in a listing of the executable image

• a line in the program source code that generated a program instruction

• an object, such as a low-level symbol, that indirectly specifies an address.

When execution reaches the breakpoint, normal execution stops before any instruction
stored there is performed. You can then choose to examine the contents of memory,
registers, or variables, or you might have specified other actions to be taken before
execution resumes. In addition, any existing displays are updated to reflect the current
state of the processor.

Breakpoint setting is described in Watch/Breakpoints... on page 5-50, and toggling
(switching on and off) in Toggle Breakpoint on page 5-51.

4.1.2 Watchpoint

A watchpoint is similar to a breakpoint, but it is the content of a watchpoint that is
tested, not its address. You specify a register or a memory address to identify a location
that is to have its contents tested. Watchpoints are sometimes known as data
breakpoints, emphasizing that they are data dependent.
4-2 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI 0066B

AXD Facilities
Normal execution stops if the value stored in a watchpoint changes. You might then
choose to examine the contents of memory, registers, or variables, or you can specify
other actions to be taken before execution resumes. In addition, any existing displays
are updated to reflect the current state of the processor.

Watchpoint setting is described in Watch/Breakpoints... on page 5-50.

4.1.3 Stepping through a program

Once execution has stopped at a breakpoint or watchpoint, and you have completed
your examination, you can:

• continue to the next breakpoint or watchpoint

• continue to a specific address indicated by the position of the cursor in a listing
of the program image

• execute a single instruction.

If you are continuing from a call to a function, you can stop next at one of the following:

• the first executable instruction of that function

• the instruction in the calling program at which control returns from the function.

The various stepping options are described in Execute menu on page 5-49.
ARM DUI 0066B Copyright © 1999, 2000 ARM Limited. All rights reserved. 4-3

AXD Facilities
4.2 Expressions

This section describes:

• Using expressions

• Expression rules

• Expression examples on page 4-5.

4.2.1 Using expressions

You use expressions when you define watches in a Watch processor view or a Watch
system view. Such an expression might be simply the name of a variable, but could, for
example, involve the calculation of a memory address from the contents of various
registers or variables.

Expressions are also accepted in commands you enter in the Command Line Interface
view.

4.2.2 Expression rules

Expressions are combinations of symbols, values, unary and binary operators, and
parentheses. There is a strict order of precedence in their evaluation:

1. Expressions in parentheses are evaluated first.

2. Operators are applied in precedence order.

3. Adjacent unary operators are evaluated from right to left.

4. Binary operators of equal precedence are evaluated from left to right.

AXD includes an extensive set of operators for use in expressions. Many of the
operators resemble their counterparts in high-level languages such as C. There are,
however, restrictions on the use of certain C++ constructions in AXD expressions.

Expression guidelines

The following rules apply to expression evaluation in AXD:

• Member functions of C++ classes cannot be used in expressions.

• Overloaded functions cannot be used in expressions.

• Only C operators can be used in constructing expressions. Any operators defined
in a C++ class that also have a meaning in C (such as []) will not work correctly
because AXD uses the C operator instead. Specific C++ operators, such as the
scope operator ::, are not recognized.
4-4 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI 0066B

AXD Facilities
• Base classes cannot be accessed in standard C++ notation, for example:

class Base
{

char *name;
char *A;

};
class Derived : public class Base
{

char *name;
char *B;
void do_sth();

};

If you are in method do_sth() you can access the member variables A, name,
and B through the this pointer. For example, this->name returns the name
defined in class Derived.

To access name in class Base, the standard C++ notation is:

void Derived::do_sth()
{

Base::name="value"; // sets name in the base class
// to "value"

}

However, expression evaluation does not accept this->Base::name because
AXD does not understand the scope operator. You can access this value with:

this->::Base.name

• Though it is possible to call member functions in the form
Class::Member(...), this will give undefined results.

• private, public, and protected attributes are not recognized in AXD
expression evaluation. This means that private and protected member variables
can be used during expression evaluation because AXD treats them as public.

4.2.3 Expression examples

Examples of expressions that would be valid in a Watch view are:

• r3

• Run_Index

• r3 + 2 * Ch_Index

• Run_Index - 3 * r4
ARM DUI 0066B Copyright © 1999, 2000 ARM Limited. All rights reserved. 4-5

AXD Facilities
4.3 Viewing and editing

When execution stops, typically at a breakpoint or watchpoint, you can view, and in
some cases edit, the following types of data:

• Control

• Source files

• Disassembled code on page 4-7

• Registers on page 4-7

• Watch on page 4-8

• Variables on page 4-8

• Memory on page 4-9

• Remote debug information on page 4-9

• High-level and low-level symbols on page 4-9

• Debugger internals on page 4-10

• Backtrace on page 4-10

• Communications channel on page 4-10

• Semihosting on page 4-11.

The data values to be displayed are compared with the corresponding values displayed
at the previous interruption of execution. Any values that have changed are displayed
in color.

You can view, and possibly edit, the following types of data:

4.3.1 Control

The main Control view provides you with information about all the objects in the
current debugging session and how they interrelate. You have access to all these objects.
There are four tabbed pages:

• Target

• Image

• Files

• Class.

For further information, see Control system view on page 5-33.

4.3.2 Source files

To display the source code that gave rise to the executable code in a program image:

1. Select the Files tab of the Control view.
4-6 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI 0066B

AXD Facilities
2. Expand the display of the executable image details in order to see the names of
the source files.

3. Right-click on the file that you want to view, to display the pop-up menu.

4. Select Open File.

5. Right-click in the resulting view of the source file to display another pop-up menu
which includes the ability to interleave disassembled code in the listing of the
source file.

For further details see Source... processor view on page 5-29.

4.3.3 Disassembled code

To display disassembled code that represents a part of an executable image:

1. Select either the Target or the Image tab of the Control view.

2. Expand the display (because an image can be loaded on multiple processors), and
right-click on the processor you want to examine.

3. Select Disassembly from the Views submenu of the pop-up menu.

4. Scroll to the area of code you want to examine if it is close, otherwise right-click
in the Disassembly view, select Goto... from the pop-up menu, and specify an
address in the required area.

For further details see Disassembly processor view on page 5-27.

4.3.4 Registers

To examine the registers of the current processor, select Registers from the Processor
Views menu on the main menu bar.

To examine the registers in any of the target processors:

1. Select the Target tab of the Control view.

2. Right-click on the processor that you want to view, to display the pop-up menu.

3. Select Registers from the Views submenu.

To display a separate Registers view for each target processor, see Registers processor
view on page 5-14. To select registers from various Registers processor views to
display together in a single Registers system view, see Registers system view on
page 5-39.

To change the value stored in any register that is displayed, double-click on its current
value. In-place editing allows you to update the value.
ARM DUI 0066B Copyright © 1999, 2000 ARM Limited. All rights reserved. 4-7

AXD Facilities
4.3.5 Watch

To examine the values of specific variables or expressions related to the current
processor, select Watch from the Processor Views menu on the main menu bar.

To examine the values of specific variables or expressions related to any of the target
processors:

1. Select the Target tab of the Control view.

2. Right-click on the processor that you want to view, to display the pop-up menu.

3. Select Watch from the Views submenu.

You can display a separate Watch view for each available processor.

A Watch view allows you to specify expressions based on variables (from a single
process) that you want to examine whenever program execution stops. This differs from
a Variables view, in which only the context variables of a process are displayed.

Each Watch view has four tabbed pages on which you can display expressions and their
values.

Because a Watch view displays only what you have specified, the first time you open
a Watch view it is empty. Right-click to display the pop-up menu, and select Add
Watch. In the resulting Watch dialog, shown in both Watch processor view on
page 5-16 and Watch system view on page 5-40, you choose which tabbed page to use
and whether you are adding the new watch to a Watch processor view or a Watch
system view.

Although you can specify expressions to be watched, a variable name alone is often
sufficient.

4.3.6 Variables

To examine the context variables of the current processor, select Variables from the
Processor Views menu on the main menu bar.

To examine the variables in any of the available target processors:

1. Select the Target tab of the Control view.

2. Right-click on the processor that you want to view, to display the pop-up menu.

3. Select Variables from the Views submenu.

You can display a separate Variables view for each available processor.

Variables are defined in the executable image that you load into the memory of a target
so that it can be executed by a processor. You must load an image, specifying a
processor, before you can examine variables.
4-8 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI 0066B

AXD Facilities
To change the value stored in any variable that is being displayed, double-click on its
current value. In-place editing allows you to update the value.

For further details, see Variables processor view on page 5-18.

4.3.7 Memory

To examine the memory of the current processor, select Memory from the Processor
Views menu on the main menu bar.

To examine the memory in any of the available target processors:

1. Select the Target tab of the Control view.

2. Right-click on the processor that you want to view, to display the pop-up menu.

3. Select Memory from the Views submenu.

You can display multiple Memory views.

The four tabbed screens allow you to specify up to four areas of memory in each view.
Click on a tab to bring its area of memory to the front of the display.

To change the value stored in a memory address that is being displayed, double-click
on its current value. In-place editing allows you to update the value.

For further details, see Memory processor view on page 5-21.

4.3.8 Remote debug information

To view low-level communication messages between the debugger and the target
processor, use the RDI tabbed page of the Output system view.

For further information, see Output system view on page 5-42.

4.3.9 High-level and low-level symbols

A high-level symbol for a procedure refers to the address of the first instruction that has
been generated within the procedure, and is denoted by a function name. To see all the
function names contained in an executable image, select the Class tab in the Control
view, and expand the Globals list under the required image. Functions are marked with
a colored square, variables with a colored disc.

A low-level symbol for a procedure refers to the address that is the target for a branch
instruction when execution of the procedure is required.
ARM DUI 0066B Copyright © 1999, 2000 ARM Limited. All rights reserved. 4-9

AXD Facilities
The low-level and high-level symbols can refer to the same address. Any code between
the addresses referred to by the low-level and high-level symbols generally concerns the
stack backtrace structure in procedures that conform to the appropriate variants of the
ARM/Thumb Procedure Call Standard (ATPCS), or argument lists in other procedures.
For information on ATPCS, see ADS Tools Guide. To display a list of the low-level
symbols in your program, use the Low Level Symbols processor view.

In a regular expression, indicate high-level and low-level symbols as follows:

• precede the symbol with @ to indicate a low-level symbol

• precede the symbol with ^ to indicate a high-level symbol.

For further information, see Low Level Symbols processor view on page 5-23.

4.3.10 Debugger internals

Various internal variables contain information relevant to the current debugging
session. Also, when you target the ARMulator, statistics are accumulated during
execution of the program being debugged. You can examine these statistics and
information in the Debugger internals system view which has two tabbed screens:

• Internal Variables

• Statistics (available when using an emulated target only).

For further information, see Debugger Internals system view on page 5-45.

4.3.11 Backtrace

A call stack is maintained for each processor in the target, and the Backtrace processor
view allows you to examine the current state of any call stack. This shows you the path
that leads from the main entry point to the currently executing function.

All called functions are added to the stack, but those that complete execution and return
control normally are removed. The stack therefore contains details of all functions that
have been called but have not yet completed execution.

For further information, see Backtrace processor view on page 5-19.

4.3.12 Communications channel

The Comms Channel processor view provides you with the facility to communicate
with a processor through its Debug Communications Channel (DCC). DCC is
implemented in ARM cores containing EmbeddedICE logic. This allows low-level
input and output of 32-bit words to the target.

There is also a facility to read input from a file and log output to a file.
4-10 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI 0066B

AXD Facilities
You cannot use the Comms Channel view if DCC semihosting is being used.

For further information, see Comms Channel processor view on page 5-25.

4.3.13 Semihosting

The Console view allows you to enter data from your keyboard to the program being
debugged, when it might normally receive data from some other device, and to display
on your screen output that might normally be sent elsewhere.

For further information, see Console processor view on page 5-26.
ARM DUI 0066B Copyright © 1999, 2000 ARM Limited. All rights reserved. 4-11

AXD Facilities
4.4 Profiling

Profiling involves sampling the program counter at specific time intervals. The
resulting information is used to build up a picture of the percentage of time spent in each
procedure. By using the armprof command-line tool on the data generated by AXD,
you can see how to make the program more efficient.

Note

Profiling is supported by ARMulator and Angel, but not by EmbeddedICE or
Multi-ICE.

To collect profiling information when executing an image, you must make certain
settings when you load the image (see Load Image... on page 5-5) or before reloading
the image (see Figure 5-55 on page 5-37).

To collect profiling information:

1. Load your image file, having made the appropriate profiling settings.

2. Select Options → Profiling → Toggle Profiling if necessary to ensure that
Toggle Profiling is checked in the Profiling submenu of the Options menu.

3. Execute your program.

4. When the image terminates, select Options → Profiling → Write to File.

5. A Save dialog appears. Enter a file name and a directory as necessary.

6. Click the Save button.

Note

You cannot display profiling information in AXD. Use the Profiling functions on the
Options menu to capture profiling information, then use the armprof command-line
tool, described in the ADS Tools Guide, to analyze it.

To collect information on just a part of the execution:

1. Load (or reload) the program with profiling enabled.

2. Set a breakpoint at the beginning of the region of interest, and another at the end.

3. Execute the program as far as the beginning of the region of interest.

4. Clear any profiling information already collected by selecting Options →
Profiling → Clear Collected, and ensure that Toggle Profiling is checked.

5. Execute the program as far as the breakpoint at the end of the region of interest.

6. Select Options → Profiling → Write to File and specify the name of a file in
which to save the profiling information.
4-12 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI 0066B

Chapter 5
AXD Desktop

This chapter describes the menus, views, dialogs, tool and status bars that the AXD
desktop provides. In Chapter 2 Getting Started in AXD you learnt how to use some of
these facilities. This chapter systematically describes all the available facilities. It
contains the following sections:

• Menus, toolbars and status bar on page 5-2

• File menu on page 5-5

• Search menu on page 5-11

• Processor Views menu on page 5-13

• System Views menu on page 5-33

• Execute menu on page 5-51

• Options menu on page 5-55

• Window menu on page 5-65

• Help menu on page 5-67.
ARM DUI 0066B Copyright © 1999, 2000 ARM Limited. All rights reserved. 5-1

AXD Desktop
5.1 Menus, toolbars and status bar

This section introduces the AXD menus, and describes the available toolbars and the
status bar. Other sections of this chapter describe each main menu in more detail.

The first screen you see when you start running AXD is similar to the screen shown in
Figure 5-1.

 Figure 5-1 AXD opening screen

5.1.1 Menus

You can pull down the main menus from the menu bar near the top of the screen. Each
menu in the menu bar is described in a separate section of this chapter.

Other menus, called pop-up menus, are also available when you have views displayed.
Some items are duplicated in menu bar menus and pop-up menus. Some pop-up menus
offer additional items. The descriptions of views in Processor Views menu on page 5-13
and System Views menu on page 5-33 include details of pop-up menus.

5.1.2 Toolbars

Toolbars are available that correspond to most menus in the menu bar. You can display
none, any, or all of these toolbars (see Configure Interface... on page 5-55). Clicking on
an icon in a toolbar is equivalent to selecting a menu item.
5-2 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI 0066B

AXD Desktop
File toolbar

File toolbar icons correspond to most File menu items, as shown in Figure 5-2.

 Figure 5-2 File toolbar

These tools are described as menu items in File menu on page 5-5.

Search toolbar

Search toolbar icons correspond to most Search menu items, as shown in Figure 5-3.

 Figure 5-3 Search toolbar

These tools are described as menu items in Search menu on page 5-11.

Processor Views toolbar

Processor Views toolbar icons correspond to most Processor Views menu items, as
shown in Figure 5-4.

 Figure 5-4 Processor Views toolbar

These tools are described as menu items in Processor Views menu on page 5-13.

System Views toolbar

System Views toolbar icons correspond to most System Views menu items, as shown
in Figure 5-5.

 Figure 5-5 System Views toolbar

These tools are described as menu items in System Views menu on page 5-33.
ARM DUI 0066B Copyright © 1999, 2000 ARM Limited. All rights reserved. 5-3

AXD Desktop
Execute toolbar

Execute toolbar icons correspond to most Execute menu items, as shown in
Figure 5-6.

 Figure 5-6 Execute toolbar

These tools are described as menu items in Execute menu on page 5-51.

Help toolbar

Help toolbar icons provide two ways of accessing AXD online help items, as shown in
Figure 5-7.

 Figure 5-7 Help toolbar

These tools are described in Help menu on page 5-67.

5.1.3 Status bar

If you choose to display the status bar (see page 5-63) it appears at the bottom of the
AXD screen, as shown in Figure 5-8.

 Figure 5-8 Status bar

Help text is displayed at the left end of the status bar. This either reminds you how to
display information relevant to your current situation or, when you pull down a menu
from the menu bar and point to an item on it, explains the purpose of that menu item.

The remainder of the status bar shows the current debug agent, current processor, and
current image. Also, when a source or disassembly view has the focus, it shows the
current cursor position in line and column format.
5-4 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI 0066B

AXD Desktop
5.2 File menu

File menu items, described in the following subsections, allow you to transfer data
between the debugger and various disk files, and to close down the debugger. Figure 5-9
shows the File menu.

 Figure 5-9 File menu

5.2.1 Load Image...

To select a file containing an image that you want to load into the target memory, select
Load Image... from the File menu. The resulting dialog is shown in Figure 5-10.

 Figure 5-10 Selecting an image file to load

Navigate to the directory in which the file is stored. You can specify that only files with
a particular filename extension should be offered for selection.
ARM DUI 0066B Copyright © 1999, 2000 ARM Limited. All rights reserved. 5-5

AXD Desktop
The directory that you specify in this dialog becomes the current directory.

Your target might have more than one processor. The Processors list in the dialog
identifies them and allows you to select those onto which you want to load the image.

Leave the Profile check box unchecked if you do not intend to collect any profiling
information from this image. If you do want to perform profiling, then you must check
the Profile box and make any other profiling settings you want in this dialog before you
load the image:

• Flat profiling, with a large number of microseconds between samples, imposes
the least overhead on execution time, but might not give accurate enough results.

• Call-graph profiling, at short intervals, gives the most comprehensive and
accurate information, but at greater cost in execution time.

When you enable profiling at load time, you are then able to start and stop the collection
of profiling information during execution of the image (see Profiling on page 4-12).

An image loaded from the Load Image dialog or by a CLI command has a breakpoint
set by default at main().

5.2.2 Load Debug Symbols...

To load only the symbols of an image onto one or more processors, select Load Debug
Symbols... from the File menu. The resulting dialog is shown in Figure 5-11.

 Figure 5-11 Load Debug Symbols dialog

Use this if the debug information is separate from the image, for example after using
Load Image From File to load an image or if you are debugging an image in ROM.
5-6 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI 0066B

AXD Desktop
5.2.3 Reload Current Image

Having finished executing an image, the simplest way of preparing it for re-execution
is to reload it.

To reload the current image file, select Reload Current Image from the File menu.

You can change the profiling settings for the next execution from the Image Properties
dialog (see Figure 5-55 on page 5-38).

5.2.4 Open File...

To examine the contents of a source file, select Open File... from the File menu. The
resulting dialog is shown in Figure 5-12.

 Figure 5-12 Selecting a source file to open

Navigate to the directory in which the file is stored. You can specify that only files with
a particular filename extension should be offered for selection.

You can examine any source file by this means, but it does not form part of the current
debugging context. Access permission is read-only, so you cannot change the contents
of a source file.

5.2.5 Load Memory From File...

To load the contents of a file into memory, select Load Memory From File... from the
File menu. The resulting dialog is similar to the one shown in Figure 5-13.
ARM DUI 0066B Copyright © 1999, 2000 ARM Limited. All rights reserved. 5-7

AXD Desktop
 Figure 5-13 Loading memory from file

Specify in the Address field the memory address at which to start loading the contents
of the selected file.

5.2.6 Save Memory To File...

To save the contents of an area of memory to a disk file, select Save Memory To File...
from the File menu. The resulting dialog is shown in Figure 5-14 on page 5-9. This
dialog allows you to specify the:

• starting address of the area of memory to save

• number of bytes of memory to save

• name of a file in which to save it.

If more than one processor is available the Processors list identifies them and allows
you to select which one is to have part of its memory saved.

Select the directory in which you want to store the file containing the saved data. You
can either select an existing filename or specify a new one. You also select a file type,
which determines the filename extension given to any new file. If you select an existing
file, the data you save overwrites the current contents of the file.
5-8 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI 0066B

AXD Desktop
 Figure 5-14 Saving memory contents in a file

No data conversion or formatting takes place. The file contains an exact copy of the
contents of the specified memory range.

5.2.7 Flash Download...

To write an image to the Flash memory chip on an ARM Development Board or other
suitably equipped hardware:

1. Select Flash Download from the File menu. The resulting dialog is shown in
Figure 5-15.

 Figure 5-15 Flash Download dialog

2. In the Processor field, select the processor that has the Flash memory into which
you want to load an image.

3. In the Action box you choose either to set an Ethernet address or to download an
image. Select Download to make a copy in Flash memory of an image stored in
a file.
ARM DUI 0066B Copyright © 1999, 2000 ARM Limited. All rights reserved. 5-9

AXD Desktop
4. Specify in the Image To Load data entry box the file that holds the image. You
can use the Browse button to select an image file.

5. In the Loader Options field, you can specify command-line options for the
loader program.

6. When you are satisfied with all the settings, click OK to start the download.

If you are using Angel with Ethernet support, you can also set its Ethernet address. After
writing an image to Flash memory, select Set Ethernet Address, click OK, and you are
prompted for the IP address and netmask, for example 193.145.156.78. You do not need
to do this if you have built your own Angel port with a fixed Ethernet address.

Refer to the ADS Tools Guide for more information on Flash downloading.

5.2.8 Recent Files

If you have opened any files by selecting Open File... from the File menu and using the
resulting browse dialog, you can open any of those files again more easily by pointing
to Recent Files.

A submenu lists the files you have already opened and you can click on any filename in
the list to open that file again.

5.2.9 Recent Images

If you have loaded any images from disk files, using the Load Image dialog, then the
filenames most recently used are available to you.

To display a list of recently loaded image files, point to Recent Images. A submenu lists
the filenames and you can click on any filename in the list to load that image again.

If your target has multiple processors, a dialog is displayed allowing you to select one
or more processors on which you want to load the image.

5.2.10 Exit

To close all files and stop execution of AXD, select Exit from the File menu.
5-10 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI 0066B

AXD Desktop
5.3 Search menu

The Search menu, shown in Figure 5-16, allows you to search for specific contents,
either in a source file related to a current process or in memory.

 Figure 5-16 Search menu

5.3.1 Source...

To search for a given character string in a source file, select Source... from the Search
menu. A dialog, shown in Figure 5-17, allows you to specify the target character string,
and the file to be searched.

 Figure 5-17 Searching for a string in a source file

You can search upwards or downwards, and specify case sensitivity, and whether whole
words only and wrapped strings should be considered.

When you start the search, a listing of the source file shows the lines surrounding the
first occurrence of the target string, with the characters highlighted. The Find Next
button allows you to search for the next occurrence.

5.3.2 Memory...

To search for a given value in memory, select Memory... from the Search menu. A
dialog, shown in Figure 5-18, allows you to specify what to search for and where to
search.
ARM DUI 0066B Copyright © 1999, 2000 ARM Limited. All rights reserved. 5-11

AXD Desktop
 Figure 5-18 Searching for a value in memory

Specify the processor associated with the memory you want to search in the Processor
field. The drop-down list identifies all the processors on the target and you select the
one you want. Specify the first and last addresses of the area of memory you want to
search in the In Range and to fields, using hexadecimal notation.

Specify the target value you are searching for in the Search For field. You can search
for any string of up to 200 characters, using either ASCII or hexadecimal notation. Be
sure to select the correct Search string type radio button to indicate which format you
are using. The drop-down selection list contains recent search strings, making it easy
for you to search again for a string you have already specified.

When you start the search, a display of the contents of memory shows the area
surrounding the first occurrence of the target string, with that string highlighted. The
Find Next button allows you to search for the next occurrence.

The value searched for is the string of bytes that you specify, in either ASCII or
hexadecimal notation, and can be of any number of bytes in length. The contents of
consecutive bytes of memory are compared with the target string.

Note

The byte order that you set (by selecting Properties... from the pop-up menu) can affect
the order in which bytes are displayed. This means that bytes can be displayed in a
different order from that in which they are stored.
5-12 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI 0066B

AXD Desktop
5.4 Processor Views menu

The Processor Views menu, shown in Figure 5-19, allows you to examine and change
information relating to specific processors.

 Figure 5-19 Processor Views menu

All data you display and any changes you make are on the processor currently selected
in the Control system view (see Control system view on page 5-33). The title bar of
each processor view identifies the processor being viewed.

When you select a Processor Views menu item, a new processor view opens on the
currently selected processor. If you select a processor view that is already open and
displayed, it does not change. If you select a processor view that is already open and
hidden, it is displayed.

You can examine one processor with any number of the available processor views. You
can open a particular processor view as many times as necessary to examine all
available processors. A separate viewing window appears on the screen for each view
of each processor.

If you are displaying a number of processor views of the same type, with each one
related to a different processor, you should consider using a corresponding system view
instead (see System Views menu on page 5-33).

Descriptions follow of all the Processor Views menu items.

You can display a pop-up menu by right-clicking when the mouse pointer is inside any
processor view. If the mouse pointer is on a selectable item in the view when you
right-click, then that item is selected. Certain pop-up menu items are enabled only when
a view item is selected, and apply to that item only.

The description that follows of each processor view includes a reproduction of its
pop-up menu. Online help gives further details.
ARM DUI 0066B Copyright © 1999, 2000 ARM Limited. All rights reserved. 5-13

AXD Desktop
5.4.1 Registers processor view

The Registers processor view allows you to examine and change the value of any of the
registers in a specific processor.

Ensure that the required processor is selected in the Control processor view before you
display a Registers processor view. Each Registers processor view shows its processor
name near the top left corner.

A typical Registers processor view is shown in Figure 5-20.

 Figure 5-20 Registers processor view

The registers are shown in named groups, to reflect the typical grouping of registers into
banks. Click on the + or – boxes to expand or collapse each level of the displayed tree
structure.

Double-click on the value of any register that you want to change. In-place editing is
invoked whenever possible, otherwise a dialog is displayed. Double-clicking on the
value of a program status register (PSR), for example, causes the display of the dialog
shown in Figure 5-21.

 Figure 5-21 Program Status Register dialog

The ARM9E processor has an extra bit in its PSR, not visible in the Registers processor
view shown in Figure 5-20 or in the PSR dialog shown in Figure 5-21.
5-14 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI 0066B

AXD Desktop
If you are using an ARM9E processor, refer to Registers processor view pop-up menu
to find how to change the format for displaying the PSR to Enhanced PSR (E-PSR). The
extra bit (Q, signifying saturation) is now visible in the Registers processor view and,
if you edit the value of that register, the dialog in Figure 5-22 is displayed.

 Figure 5-22 Enhanced Program Status Register dialog

Registers processor view pop-up menu

To display the Registers pop-up menu, shown in Figure 5-23, right-click within the
Registers processor view.

 Figure 5-23 Registers processor view pop-up menu

The Add To System and Format menu items are enabled only when you right-click on
a selectable item in the processor view, and then they apply to the selected item only.

Select Format to see a list of all the available formats in which you can display the item
currently selected in the Registers processor view, as shown in Figure 5-24.

 Figure 5-24 Formats available for displaying registers

Refer to AXD online help for details of all the Registers pop-up menu items.
ARM DUI 0066B Copyright © 1999, 2000 ARM Limited. All rights reserved. 5-15

AXD Desktop
To add one of the registers displayed in a Registers processor view to the Registers
system view (see Registers system view on page 5-40), right-click on the required
register to select it and display the pop-up menu, then select Add to System.

If you hide a Registers processor view then later select it again, it reappears in the state
it was in when you hid it.

If you close a Registers processor view then later select it again, it is displayed as
though you are selecting it for the first time.

5.4.2 Watch processor view

The Watch processor view allows you to examine the value of variables, or of
expressions dependent on variables, in an image being executed by a specific processor.

Select the required processor in the Control system view before you display a Watch
processor view. Each Watch processor view shows its processor name near the top left
corner. The menu item is disabled if the processor has no associated image.

A Watch processor view is initially empty. You choose what is to be listed and have its
value shown. To add a line to this view, select Add Watch from the pop-up menu (see
Figure 5-26 on page 5-17). Your specification of what is to be watched is shown in the
first column, and its value is evaluated and shown in the second column each time
program execution in the relevant processor stops.

To define what is to be watched, you enter an expression. An expression can be simply
the name of a variable, and that is often all you need. More complex expressions are
allowed, however, and might include logical and arithmetic operators, as well as a
number of variables and constants.

A typical Watch processor view is shown in Figure 5-25.

 Figure 5-25 Watch processor view

The four tabbed pages allow you to define up to four lists of expressions to watch in any
one processor. Click on the tab of whichever page you want to view.
5-16 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI 0066B

AXD Desktop
Watch processor view pop-up menu

To display the Watch pop-up menu, shown in Figure 5-26, right-click within the Watch
processor view.

 Figure 5-26 Watch processor view pop-up menu

Refer to AXD online help for full details.

If you hide a Watch processor view then later select it again, it reappears in the state it
was in when you hid it.

If you close a Watch processor view then later select it again, it is displayed empty, as
though you are selecting it for the first time.

To define a new watch, select Add Watch from the pop-up menu. The resulting dialog
is shown in Figure 5-27.

 Figure 5-27 Watch dialog

Enter a new expression to watch. Specify the processor, whether the new watch should
be added to the Watch processor view or system view (see Watch system view on
page 5-41), and on which tabbed page it should appear.
ARM DUI 0066B Copyright © 1999, 2000 ARM Limited. All rights reserved. 5-17

AXD Desktop
To display the dialog shown in Figure 5-28, select Properties... from the pop-up menu:

 Figure 5-28 Default Display Options dialog

5.4.3 Variables processor view

The Variables processor view allows you to examine and change the value of any of
the listed variables.

Click on the appropriate tab to display:

• Local variables, being those with scope within the current function

• Global variables, being those with scope over all parts of the program

• Class variables, being those with scope within the current class only.

A typical Variables processor view is shown in Figure 5-29, with its Global tab
selected.

 Figure 5-29 Variables processor view

Click on the + or – boxes to expand or collapse each level of the displayed tree structure.

Double-click on the value of any variable that you want to change. In-place editing is
invoked whenever possible, otherwise a dialog is displayed.
5-18 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI 0066B

AXD Desktop
If you hide a Variables processor view then later select it again, it reappears if possible
with the same tab selected and the same levels expanded as when you hid it. The content
depends on the current execution context (the address stored in the program counter).

If you close a Variables processor view then later select it again, it is displayed as
though you are selecting it for the first time.

Variables processor view pop-up menu

To display the Variables pop-up menu, shown in Figure 5-30, right-click within the
Variables processor view.

 Figure 5-30 Variables processor view pop-up menu

If the mouse pointer is on a selectable line when you right-click, then that line is
selected. The items in the top group of the pop-up menu apply to the selected line only.
If no line is selected, those items are disabled.

Refer to AXD online help for details of the pop-up menu items.

To display the dialog shown in Figure 5-28, select Properties... from the pop-up menu.

5.4.4 Backtrace processor view

The Backtrace processor view allows you to examine the call stack of the current
image in a specific processor.

Select the required processor in the Control system view before you display a
Backtrace processor view. Each Backtrace processor view shows its processor name
near the top left corner.

A typical Backtrace processor view is shown in Figure 5-31.
ARM DUI 0066B Copyright © 1999, 2000 ARM Limited. All rights reserved. 5-19

AXD Desktop
 Figure 5-31 Backtrace processor view

Each entry in the displayed list shows the function context of a single stack frame. The
entries are ordered with the current stack frame at the top. An entry contains the address
or the name of a function, and the types of the parameters with which it was called.

Backtrace processor view pop-up menu

To display the Backtrace pop-up menu, shown in Figure 5-32, right-click within the
Backtrace processor view.

 Figure 5-32 Backtrace processor view pop-up menu

If the mouse pointer is on a selectable line when you right-click, then the line is selected.
The items in the top group of the pop-up menu apply to the selected line only. If no line
is selected, those items are disabled (except Watch/Breakpoints... which remains
enabled).

Refer to AXD online help for details of the pop-up menu items.

To display the dialog shown in Figure 5-33, select Properties... from the pop-up menu.
5-20 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI 0066B

AXD Desktop
 Figure 5-33 Backtrace Properties dialog

5.4.5 Memory processor view

The Memory processor view allows you to examine and change the contents of specific
memory addresses.

Memory is made available to you in pages. The default size of a page is 1024 bytes, but
you can change this value, by selecting Properties... from the Memory pop-up menu.

The area of memory visible depends on the size that you make the processor view
window. If less than one page of memory is visible, scroll bars allow you to view other
parts of the current page. A typical view of an area of memory is shown in Figure 5-34.

 Figure 5-34 Memory processor view
ARM DUI 0066B Copyright © 1999, 2000 ARM Limited. All rights reserved. 5-21

AXD Desktop
Generally, each line represents 16 bytes of memory. The address of the first byte is
shown at the left. Using Properties... from the Memory pop-up menu, you can set this
to be either the absolute address or the zero-based offset from the beginning of the
current page. The contents of the 16 bytes of memory occupy most of each line. You
can display these as four 32-bit words, eight 16-bit half-words, or sixteen 8-bit bytes. In
the latter case, the ASCII characters corresponding to the 16 bytes are shown at the right
of the line.

Alternatively, again using Properties... from the Memory pop-up menu, you can
display the memory contents as disassembled code in ARM, Thumb, or mixed format.
In these formats each line of the display shows the contents of a 32-bit or 16-bit word.

The four tabbed views allow you to define up to four memory areas of interest and to
switch easily from one to another. The memory area covered by each tabbed view is one
page long, and starts at the address you specify in the Start Address box near the top
of the view. The areas you define can overlap, or be contiguous, or be separate.

The size of the displayed words and their display format are among the settings you can
change using the Memory pop-up menu. You can use different settings on each of the
four tabbed pages of the view.

You can open multiple memory views, even on a single processor, if you need more than
four tabbed pages.

Memory processor view pop-up menu

To display the Memory pop-up menu, shown in Figure 5-35, right-click within the
Memory processor view.

 Figure 5-35 Memory processor view pop-up menu
5-22 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI 0066B

AXD Desktop
Toggle Breakpoint
This toggles a breakpoint at the address defined by the current cursor
position. If a breakpoint already exists at this address it is deleted. If no
breakpoint exists at this address a default breakpoint is created here.

Set Watchpoint
This sets a watchpoint at the address defined by the current cursor
position. If a watchpoint already exists at this address it is replaced. If no
watchpoint exists at this address a default watchpoint is created here.

Watch/Breakpoints...
This displays a dialog allowing you to create, edit, or delete a watchpoint
or breakpoint.

Refer to AXD online help for details of the other Memory pop-up menu items, including
the Memory Properties dialog, shown in Figure 5-36.

 Figure 5-36 Memory Properties dialog

Data width for memory reads and writes

The Target Access group of radio buttons in the Memory Properties dialog allows you
to specify the width of data read from or written to memory. Unless you have a
particular requirement, use the Def setting to indicate that you want the debug engine
to decide.

5.4.6 Low Level Symbols processor view

The Low Level Symbols processor view allows you to examine the low-level symbols
of the current image in a specific processor.
ARM DUI 0066B Copyright © 1999, 2000 ARM Limited. All rights reserved. 5-23

AXD Desktop
Select the required processor in the Control system view before you display a Low
Level Symbols processor view. Each Low Level Symbols processor view shows its
processor name near the top left corner.

A typical Low Level Symbols processor view is shown in Figure 5-37.

 Figure 5-37 Low Level Symbols processor view

The left column shows addresses and the right column shows symbol strings. Use the
pop-up menu to change the list between address order and symbol name order.

If you hide a Low Level Symbols processor view then later select it again, it reappears
in the state it was in when you hid it.

If you close a Low Level Symbols processor view then later select it again, it is
displayed as though you are selecting it for the first time.

Low Level symbols processor view pop-up menu

To display the Low Level Symbols pop-up menu, shown in Figure 5-38, right-click
within the Low Level Symbols processor view.

 Figure 5-38 Low Level Symbols processor view pop-up menu

If the mouse pointer is on a selectable line when you right-click, then that line is
selected. The items in the top group of the pop-up menu apply to the selected line only.
If no line is selected, those items are disabled.
5-24 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI 0066B

AXD Desktop
Refer to AXD online help for more details of these menu items.

5.4.7 Comms Channel processor view

The Comms Channel processor view allows you to examine data that passes to and
from the debugger target along the communication channels, and to send data of your
own. A channel viewer is supplied (ThumbCV.dll).

To select a channel viewer from those available, see Multi-ICE configuration on
page 5-58 or Remote_A configuration on page 5-61.

The Comms Channel processor view enables you to use your selected channel viewer.
A typical Comms Channel Viewer dialog is shown in Figure 5-39.

 Figure 5-39 Comms Channel Viewer dialog

Use the Send area of this window to send information down the channel. Type
information in the edit box and click the Send button to store the information in a buffer.
The information is sent when requested by the target, in ASCII character codes. The
Left to send counter displays the number of bytes that are left in the buffer.

Information received by the channel viewer is converted into ASCII character codes
and displayed in the Receive window, if the channel viewer is active. However, if
0xffffffff is received, the following word is treated and displayed as a number.

Comms Channel Viewer pop-up menu

To display the Comms Channel pop-up menu, shown in Figure 5-40, right-click within
the Comms Channel processor view.
ARM DUI 0066B Copyright © 1999, 2000 ARM Limited. All rights reserved. 5-25

AXD Desktop
 Figure 5-40 Comms Channel Viewer pop-up menu

Refer to AXD online help for more details of these menu items.

5.4.8 Console processor view

You might want to debug an image that is intended to receive input from or write output
to devices that are not yet available. The Console processor view provides the
semihosting facility that allows you to do so.

Output from an executing image is displayed, and you can respond by entering data
from your keyboard or from a file to provide input for the image.

A typical Console processor view is shown in Figure 5-41.

 Figure 5-41 Console processor view

Console processor view pop-up menu

To display the Console pop-up menu, shown in Figure 5-42, right-click within the
Console processor view.
5-26 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI 0066B

AXD Desktop
 Figure 5-42 Console processor view pop-up menu

Refer to AXD online help for more details of these menu items.

5.4.9 Disassembly processor view

The Disassembly processor view displays not only the contents of regions of memory
but also the assembler code instructions that correspond to those contents.

A typical Disassembly processor view is shown in Figure 5-43. This is the display
format you see if you have both Show margin and Show addresses selected on the
Properties dialog obtained from the pop-up menu (see Figure 5-45 on page 5-29).

 Figure 5-43 Disassembly processor view

Disassembly processor view pop-up menu

To display the Disassembly pop-up menu, shown in Figure 5-44, right-click within the
Disassembly processor view.
ARM DUI 0066B Copyright © 1999, 2000 ARM Limited. All rights reserved. 5-27

AXD Desktop
 Figure 5-44 Disassembly processor view pop-up menu

To display a submenu duplicating the items you are most likely to need from the
Execute main menu, point to Execute on the pop-up menu. See Execute menu on
page 5-51 for details of all but one of these items.

Set Next Statement is the item that appears on the Execute submenu and not in the
Execute main menu. To resume execution at a specific statement, without executing
any intervening statements, right-click on the required statement in the Disassembly
processor view, point to Execute in the pop-up menu, and select Set Next Statement.

To display a submenu allowing you to change the setting of the stepping mode, point to
Stepping Mode on the pop-up menu. The stepping modes available are:

• Disassembly, to step always in disassembly instructions

• Strong source, to step always in source code statements

• Weak source, to step in source code statements if available, otherwise in
disassembly instructions (this is the default setting).

To display a submenu allowing you to change the setting of the code used for
disassembly, point to Disassemble Mode on the pop-up menu.

To activate or deactivate a breakpoint at the current cursor position, select Toggle
Breakpoint from the pop-up menu. To set or replace a watchpoint on a currently
selected value, select Set Watchpoint from the pop-up menu.

To create, edit, or delete a watchpoint or breakpoint, select Watch/Breakpoints... from
the pop-up menu.

To reset the program counter so that the instruction at the current cursor position will be
the next instruction to be executed, select Set PC from the pop-up menu.

To display the dialog shown in Figure 5-45, select Properties... from the pop-up menu.

Refer to AXD online help for more details of all the items on this pop-up menu.
5-28 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI 0066B

AXD Desktop
 Figure 5-45 Disassembly Properties dialog

5.4.10 Source... processor view

The Source... processor view first displays a file selection dialog, similar to that shown
in Figure 5-46.

 Figure 5-46 Source file selection

This lists all the source files that have contributed debug information to the current
image and allows you to select one to examine. (The list does not necessarily include
all the source files used to build the image.) Select a filename and click the OK button
to display the file, as shown in Figure 5-47.
ARM DUI 0066B Copyright © 1999, 2000 ARM Limited. All rights reserved. 5-29

AXD Desktop
 Figure 5-47 Source... processor view

Figure 5-47 shows the kind of source file listing you see if you select Interleave
disassembly from the pop-up menu.

Source... processor view pop-up menu

To display the Source pop-up menu, shown in Figure 5-48, right-click within the
Source... processor view.
5-30 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI 0066B

AXD Desktop
 Figure 5-48 Source... processor view pop-up menu

To display a submenu duplicating the items you are most likely to need from the
Execute main menu, point to Execute on the pop-up menu. See Execute menu on
page 5-51 for details of all but one of these items.

Set Next Statement is the item that appears on the Execute submenu and not in the
Execute main menu. To resume execution at a specific statement, without executing
any intervening statements, right-click on the required statement in the Source...
processor view, point to Execute in the pop-up menu, and select Set Next Statement.

To display a submenu allowing you to change the setting of the stepping mode, point to
Stepping Mode on the pop-up menu. The stepping modes available are:

• Disassembly Always step in disassembly instructions.

• Strong source Always step in source code statements.

• Weak source Step in source code statements if available, otherwise in
disassembly instructions (this is the default setting).

To activate or deactivate a breakpoint at the current cursor position, select Toggle
Breakpoint from the pop-up menu. To set or replace a watchpoint on a currently
selected item, select Set Watchpoint from the pop-up menu. To display the dialog
shown in Figure 5-49, select Properties... from the pop-up menu.

Refer to AXD online help for more details of all the items on this pop-up menu.
ARM DUI 0066B Copyright © 1999, 2000 ARM Limited. All rights reserved. 5-31

AXD Desktop
 Figure 5-49 Source View properties dialog
5-32 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI 0066B

AXD Desktop
5.5 System Views menu

System views are not specific to any processor. Some system views show information
about the whole system. Others help you reduce the number of views you need to
display at one time.

A Registers system view, for example, can show registers that are associated with
several processors. This means you can examine in a single system view registers that
would otherwise require multiple processor views. In a system view, the processor to
which each line is related is identified in the display.

Selecting a System Views menu item generally toggles that view. That is, the selected
system view is opened if it is currently closed, or closed if it is currently open. System
views that are open are checked on the menu. Figure 5-50 shows an example of a
System Views menu.

 Figure 5-50 System Views menu

Each system view has a pop-up menu you can display by right-clicking when the mouse
pointer is inside the system view. If the mouse pointer is on a selectable line in the
system view when you right-click, then that line is selected. Certain pop-up menu items
are enabled only when a line is selected, and apply to that line only.

The System Views menu items are described in the following subsections, which
include reproductions of the pop-up menus. AXD online help gives further details.

5.5.1 Control system view

The Control system view shows details of all current processors, and allows you to
examine this information in a number of ways. Tabbed pages available are:

• Target
• Image
• Files
• Class.

Figure 5-51 shows a Control system view with its Files tab selected.
ARM DUI 0066B Copyright © 1999, 2000 ARM Limited. All rights reserved. 5-33

AXD Desktop
 Figure 5-51 Control system view

Expand or collapse each level of the displayed tree structure by clicking on the + or –
boxes.

The tabbed pages contain the following information:

Target Lists the processors on the target. Any processor with a coprocessor has
its coprocessor shown as a child.

One processor can be designated the current processor. If so, it is
indicated by an arrow in the display. Commands you issue apply by
default to the current processor. For example, when you select an item
from a menu in the main menu bar it applies to the current processor.

One processor can be designated the selected processor. If so it is
indicated by being highlighted in the display. You select a processor by
clicking on its name. When you select a menu item from a pop-up menu
it applies to the selected processor.

Whenever possible, the current processor is the selected processor.

Image Lists the images loaded in the memory of the target. Expand an image
node to show the processor with which the image is associated.

Files Lists the files associated with all the images on the target. Expand an
image node to show the files associated with that image.

Class Lists the classes associated with all the images on the target. Expand an
image node to show a globals node, and a class node if the image contains
any class information. Expand the globals node to show a list of global
functions and global variables. Expand a class node to show a list of
classes contained in the image. Expand a class to show a list of member
functions and member variables.

Control system view pop-up menus

When you right-click in a Control system view, the pop-up menu that appears depends
on which tabbed page is currently selected and which item on that page is currently
selected.
5-34 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI 0066B

AXD Desktop
The items you can select on each tabbed page are as follows:

• on the Target tabbed page, you can select a processor

• on the Image tabbed page, you can select an image or a processor

• on the Files tabbed page, you can select an image or a file

• on the Class tabbed page, you can select an image, a function, or a variable.

If the mouse pointer is on a selectable line when you right-click, then that line is
selected. Any pop-up menu items that do not apply to the selected line are disabled.
Some of the pop-up menu items are equivalent to menu items from the menu bar.

Brief details follow of the Control pop-up menus. AXD online help gives more details.

Processor pop-up menu

With a processor selected, the pop-up menu is as shown in Figure 5-52.

 Figure 5-52 Pop-up menu when a processor is selected

Select Properties... from this pop-up menu to display the dialog shown in Figure 5-53.

 Figure 5-53 Processor Properties dialog
ARM DUI 0066B Copyright © 1999, 2000 ARM Limited. All rights reserved. 5-35

AXD Desktop
The Vector Catch box allows you to select the exceptions that are intercepted, causing
control to pass back to the debugger. The settings are stored in the debugger internal
variable $vector_catch which has the default value of %RUsPDAifE. An uppercase
letter indicates an exception is intercepted. The exceptions controlled in this way are:

R Reset

U Undefined Instruction

S SWI

P Prefetch Abort

D Data Abort

A Address (applied to 26-bit mode, so now never occurs)

I normal interrupt request (IRQ)

F fast interrupt request (FIQ)

E Reserved (do not use).

Each check box in the Vector Catch box indicates whether a particular exception is
intercepted (checked) or ignored (blank) for the specified processor. Any changes you
make become effective when you click the OK button.

The Comms Channel and Semihosting Mode selections, the Semihosting Mode
settings, and the Semihosting SWIs settings can interact with one another. These are
governed, to some extent, by the target configuration.

Settings are disabled when it is inappropriate for you to change them. You can, however,
view the current settings.

You can switch semihosting on or off using the Semihosting check box. When it is
switched on, you can set the semihosting mode to Standard or DCC (Debug Comms
Channel). If you select the DCC semihosting mode, then the Comms Channel check box
becomes disabled because the options are mutually exclusive.

When you select a semihosting mode you must specify a vector. This is the position
where the address is stored to which the program jumps following a semihosting
Software Interrupt (SWI).

Under Semihosting SWIs, you specify an integer number identifying which ARM SWI
and/or Thumb SWI is used for semihosting.

Image pop-up menu

With an image selected, the pop-up menu is as shown in Figure 5-54.
5-36 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI 0066B

AXD Desktop
 Figure 5-54 Pop-up menu when an image is selected

If you select Properties... from this pop-up menu, the dialog shown in Figure 5-55 is
displayed.

 Figure 5-55 Image Properties dialog

The Image Properties dialog enables you to specify Command-line arguments.
These are the arguments you would supply if you started execution of the image by
entering a command at a command-line prompt. They are supplied to the program when
you load (or reload) and execute it in AXD.

The Image Properties dialog also shows the Profiling settings that will become
effective the next time you load or reload an image. You can change these settings to be
as you want them when the next image execution begins. The settings shown are not
necessarily those currently in force, because you may have changed them since the last
load or reload operation.

File pop-up menu

With a file selected, the pop-up menu is as shown in Figure 5-56.

 Figure 5-56 Pop-up menu when a file is selected

If you select Source from this pop-up menu, a Source processor view opens showing
the source code associated with the selected file.

Function pop-up menu

With a function selected, the pop-up menu is as shown in Figure 5-57.
ARM DUI 0066B Copyright © 1999, 2000 ARM Limited. All rights reserved. 5-37

AXD Desktop
 Figure 5-57 Pop-up menu when a function is selected

If you select Properties... from this pop-up menu, the dialog shown in Figure 5-58 is
displayed.

 Figure 5-58 Function Properties dialog

The Function Properties dialog shows the name and type of the function, and the
parameters that it takes.

Variable pop-up menu

With a variable selected, the pop-up menu is as shown in Figure 5-59.

 Figure 5-59 Pop-up menu when a variable is selected

If you select Properties... from this pop-up menu, the dialog shown in Figure 5-60 is
displayed.

 Figure 5-60 Variable Properties dialog

The Variable Properties dialog shows the name and type of the variable.
5-38 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI 0066B

AXD Desktop
5.5.2 Registers system view

The Registers system view can display registers from more than one processor, and
allows you to change their values.

If you are interested in seeing the values of a few registers in various processors change
as your program executes, you can display the registers in a single Registers system
view. This can avoid the need to display a number of Registers processor views.

The registers are displayed in groups, under processor names and register bank names.
Click on the + or – boxes to expand or collapse each level of the displayed tree structure.

Figure 5-61 shows a typical Registers system view:

 Figure 5-61 Registers system view

Double-click on the value of any register that you want to change. In-place editing is
invoked whenever possible, otherwise a dialog is displayed.

Registers system view pop-up menu

To display the Registers pop-up menu, shown in Figure 5-62, right-click within the
Registers system view.

 Figure 5-62 Registers system view pop-up menu

If you right-click on a register line, it is selected. The Format menu item is enabled
when a register line is selected, and applies to the selected line only.

Refer to AXD online help for details of the Registers pop-up menu items.
ARM DUI 0066B Copyright © 1999, 2000 ARM Limited. All rights reserved. 5-39

AXD Desktop
To add a register from any processor to those displayed in a Registers system view,
select Add Register from the pop-up menu.

If you hide a Registers system view then select it, it reappears in the state it was in when
you hid it.

If you close a Registers system view then select it, it is displayed empty, as though you
are selecting it for the first time.

5.5.3 Watch system view

The Watch system view allows you to examine the value of variables, or of expressions
depending on variables, in the images associated with various processors.

A Watch system view is initially empty. You specify expressions. These expressions
are evaluated each time program execution stops, and the values displayed. To add a
line to this view, select Add Watch from the pop-up menu (see Watch dialog on
page 5-42).

An expression can be simply the name of a variable. Expressions can also include
logical and arithmetic operators as well as variable names and constants.

A typical Watch system view is shown in Figure 5-63.

 Figure 5-63 Watch system view

You can define lists of expressions to watch on up to four tabbed pages. Click the tab of
a page to display it.

If you hide a Watch system view then select it, it reappears in the state it was in when
you hid it.

If you close a Watch system view then select it, it is displayed empty, as though you are
selecting it for the first time.
5-40 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI 0066B

AXD Desktop
Watch system view pop-up menu

To display the Watch pop-up menu, shown in Figure 5-64, right-click within the Watch
system view.

 Figure 5-64 Watch system view pop-up menu

Refer to AXD online help for full details.

To display the dialog shown in Figure 5-65, select Add Watch from the pop-up menu.

 Figure 5-65 Watch dialog

Enter a new expression to watch. Specify the processor, whether the new watch should
be added to the Watch processor view or system view, and on which tabbed page it
should appear. The example shows Tab 1 of the System view as the chosen destination.
Select an expression and click the Evaluate button to see the result of its evaluation.

To add the selected expression to the chosen view, click the Add To View button.

To display the dialog shown in Figure 5-66, select Properties... from the pop-up menu.
ARM DUI 0066B Copyright © 1999, 2000 ARM Limited. All rights reserved. 5-41

AXD Desktop
 Figure 5-66 Default Display Options dialog

5.5.4 Output system view

The Output system view enables you to examine both a list of function calls made to
the Remote Debug Interface (RDI) and a list of log messages. These can help you
determine which program statements have and have not been executed.

Select Output from the System Views menu to display a window, shown in
Figure 5-67, containing two tabbed pages, labeled RDI Log and Debug Log.

 Figure 5-67 Output system view

Click RDI Log to see the page that contains a list of function calls made to the RDI.

Click Debug Log to see a list of messages recorded when execution passed through any
trace points in the program (execution does not stop at an action point if you specify a
trace message to be logged). The messages displayed are those specified when you
defined each trace point (see Watch/Breakpoints... on page 5-52). The debug log also
contains any other general debugger output such as error messages.

Output system view pop-up menu

To display the Output pop-up menu, shown in Figure 5-68, right-click on either the RDI
Log page or the Trace page.
5-42 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI 0066B

AXD Desktop
 Figure 5-68 Output system view pop-up menu

To specify a file in which to store the lines that appear in the Output view, select Log
to file. You can select an existing file, or specify a new file. If you do save this
information in a file, the name of the file is shown in the Output system view.

Select Clear to remove any lines currently displayed in the Output view.

5.5.5 Command Line Interface system view

The Command Line Interface (CLI) system view provides you with an alternative
method of issuing commands and viewing data. Everything you can do with the menus
and dialogs of the graphical user interface you can also do by entering commands in
response to CLI prompts, as shown in Figure 5-69. Any data that you request is
displayed in the CLI system view.

 Figure 5-69 Command Line Interface system view

Details of all the commands you can issue and data you can display are given in Chapter
6 AXD Command-line Interface.
ARM DUI 0066B Copyright © 1999, 2000 ARM Limited. All rights reserved. 5-43

AXD Desktop
Command Line Interface system view pop-up menu

To display the CLI system view pop-up menu, shown in Figure 5-70, right-click within
the Command Line Interface system view.

 Figure 5-70 CLI system view pop-up menu

Log Output enables you to start or stop recording in a disk file everything that appears
in the CLI system view.

Record Input enables you to start or stop recording in a disk file every command that
you enter in the CLI system view.

Clear enables you to clear the current contents of the CLI system view.

To display the dialog shown in Figure 5-71, select Properties... from the pop-up menu.

 Figure 5-71 Command Line Interface Properties dialog

Refer to AXD online help for more details of all the items on this pop-up menu.
5-44 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI 0066B

AXD Desktop
5.5.6 Debugger Internals system view

The Debugger Internals system view has two tabbed pages:

• Internal Variables

• Statistics on page 5-48.

Internal Variables

The first tabbed page of the Debugger Internals system view shows Internal Variables,
as shown in Figure 5-72.

 Figure 5-72 Debugger Internals - Internal Variables

The debugger, like most programs, uses variables. The following are made available to
you on the Internal Variables tabbed page of the Debugger Internals system view:

$statistics This is a group of internal variables that you can examine more clearly on
the Statistics tabbed page.

$rdi_log The two least significant bits have the following meanings:

Bit 0 RDI (0 = off, 1 = on)

Bit 1 Device Driver Logging (0 = off, 1 = on).

$clock This variable applies to ARMulator only and contains the number of
microseconds that have elapsed since the application program began
execution. The value is based on the ARMulator clock speed setting, and
is unavailable if that speed is set to 0.00 (see also Configure Target... on
page 5-56). This variable is read-only.

$target_fpu
This variable controls the way that floating-point values are interpreted
by the debugger. It is important for correct display of float and double
values in memory that this variable is set to a value that is appropriate for
the target in use.

If you attempt to change this value, a validity test ensures that the only
settings allowed are those that are compatible with the representation of
floating-point values in the current image. Valid settings and their
meanings are:
ARM DUI 0066B Copyright © 1999, 2000 ARM Limited. All rights reserved. 5-45

AXD Desktop
0 specifies that no floating-point code is to be used (none)

1 selects software floating-point library with pure-endian
doubles (softVFP), and is the default setting for images built
with ADS tools

2 selects software floating-point library with mixed-endian
doubles (softFPA)

3 selects hardware Vector Floating-Point unit (VFP)

4 selects hardware Floating-Point Accelerator (FPA).

SoftVFP and SoftFPA images run correctly on a target whether or not
hardware floating point is present, but VFP and FPA images must be run
on the appropriate hardware.

You can examine the contents of these variables, and change the values stored in some
of them.

Internal Variables pop-up menu

Right-click inside the Debugger Internals system view with the Internal Variables page
selected to display the pop-up menu shown in Figure 5-73.

 Figure 5-73 Internal Variables pop-up menu

Use this pop-up menu to set properties and to select a display format. Refer to AXD
online help for details.

Statistics

The second tabbed page of the Debugger Internals system view shows statistics, as
shown in Figure 5-74.

 Figure 5-74 Debugger Internals - Statistics
5-46 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI 0066B

AXD Desktop
A group of debugger internal variables contains statistics relating to your current
debugging session. These variables are displayed more clearly on the Statistics tabbed
page than on the Internal Variables tabbed page. Drag the column divider lines to the
left or right to alter the column widths if necessary.

The first line of statistics shows values accumulated from the beginning of execution of
the program you are debugging, and is labelled $statistics.

You can add more lines of statistics, accumulated from later interruptions of program
execution. When execution has stopped, to start accumulating a new line of statistics,
right-click in the Statistics tabbed page of the Debugger Internals system view, and
select Add New Reference Point.

The following information is displayed:

Reference Point
The name you specify to identify each line of statistics that you add.

Instructions
The number of program instructions executed.

S-Cycles Sequential cycles. The CPU requests transfer to or from the same
address, or an address a word or halfword after the preceding address.

N-Cycles Nonsequential cycles. The CPU requests transfer to or from an address
that is unrelated to the address used in the preceding cycle.

I-Cycles Internal cycles. The CPU does not require a transfer because it is
performing an internal function (or running from cache).

C-Cycles Coprocessor cycles.

Total The sum of the counts of S-cycles, N-cycles, I-cycles and C-cycles.

Note

When emulating Harvard architecture cores such as ARM9TDMI and StrongARM,
different statistics are accumulated. In these cases, the meanings are:

N-Cycles Cycles in which an instruction was fetched and no data was fetched.

S-Cycles Cycles in which an instruction was fetched and data was fetched.

I-Cycles Cycles in which no instruction was fetched and no data was fetched.

C-Cycles Cycles in which no instruction was fetched and data was fetched.
ARM DUI 0066B Copyright © 1999, 2000 ARM Limited. All rights reserved. 5-47

AXD Desktop
Statistics pop-up menu

Right-click inside the Debugger Internals system view with the Statistics page selected
to display the pop-up menu shown in Figure 5-75.

 Figure 5-75 Statistics pop-up menu

Use this pop-up menu to add a new line of statistics to the displayed table, or to delete
the currently selected line. Refer to AXD online help for details.
5-48 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI 0066B

AXD Desktop
5.6 Execute menu

The Execute menu (see Figure 5-76), lets you control how execution continues from
the current point.

 Figure 5-76 Execute menu

The Execute menu items are described in the subsections that follow.

5.6.1 Go

This begins execution. If you have loaded an image but not yet run it, execution starts
from the first executable instruction. If execution is currently stopped, at a breakpoint
for example, then it resumes from the point at which it stopped.

5.6.2 Stop

This menu item is enabled only when the program is executing. It stops execution as
soon as the program can be interrupted.

5.6.3 Step

This executes the current instruction and stops. If the current instruction is a call to a
function, then it executes the function and stops when control returns to the caller.

A C++ program might contain many calls to library functions that the compiler replaces
with inline code if you choose to compile for high speed rather than small size. This
prevents the Step command from behaving as expected. A C++ compiler option is
available to force calls to library functions to be compiled as calls in such cases. For
further information refer to the ADS Tools Guide.

5.6.4 Step In

This executes the current instruction and stops. If the current instruction is a call to a
function, then it stops at the first executable instruction in that function.
ARM DUI 0066B Copyright © 1999, 2000 ARM Limited. All rights reserved. 5-49

AXD Desktop
5.6.5 Step Out

this completes execution of the current function and stops when control returns to the
caller.

5.6.6 Run To Cursor

This continues execution but stops when the next instruction to be executed is the one
where you have positioned the cursor.

5.6.7 Show Execution Context

This selects Show Execution Context when you are viewing either the source code or
the disassembled code related to a halted process. The area of code displayed changes
so that the visible lines of code are replaced by the lines surrounding the current
execution position.

5.6.8 Watch/Breakpoints...

This selects Watch/Breakpoints... from the Execute menu to set, modify, or remove
breakpoints or watchpoints. The resulting dialog is shown in Figure 5-77.

 Figure 5-77 Watch/Breakpoints dialog

The Watch/Breakpoints dialog is normally displayed without the Breakpoint Size and
Action boxes. These are seldom needed. If you do need these boxes, click the
Advanced>> button to enlarge the dialog and display them as shown.
5-50 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI 0066B

AXD Desktop
The main box of the display shows details of any breakpoints or watchpoints that are
currently set. You can select one of these to modify, or to delete, or you can delete all
the listed breakpoints and watchpoints, by clicking buttons at the right of the dialog.

To add a new breakpoint or watchpoint, enter the details in the Type, Position, and
Conditions boxes. In the Conditions box you can enter n in the Times to skip before
action field to execute normally while the breakpoint is reached (or the watchpoint
value changes) n times, and stop on the (n+1)th time. You can also enter in the When
field an expression that must evaluate to true before program execution stops. When
you are satisfied with all the settings, click the Add button.

To modify an existing breakpoint or watchpoint, select it in the display. Its details
appear in the Type, Position and Conditions boxes. Change the settings in those boxes
as required, then click on the Modify button.

To delete a breakpoint or watchpoint, select it in the display then click the Delete button.

To delete all the listed breakpoints and watchpoints, click the Delete All button.

To disable an existing breakpoint or watchpoint, click the red disk at the left of its line.
The centre of the disk becomes grey. Click the disk again to restore normal operation.

In some cases the debugger might not be able to determine whether it is debugging
ARM code or Thumb code. For example:

• the project was built without debugging information (-g)

• you are debugging a ROM image.

If you need to specify the type of code in use, the Breakpoint Size buttons are enabled.

The setting in the Action box is normally Break, to stop execution when the specified
conditions are met. The alternative, Log, adds a record in a log of events. If you select
Log, whatever you enter in the Text field is added to the log each time the conditions
are met. To examine the log of events, select Output from the System Views menu (see
Output system view on page 5-43). The pop-up menu of the Output system view allows
you to save subsequent records in a disk file and to clear the current entries from the log.

5.6.9 Toggle Breakpoint

When you are viewing a source file or a disassembly, you can set or remove a
breakpoint at the current cursor position by selecting Toggle Breakpoint from the
Execute menu.

You can also set or remove a breakpoint by double-clicking in the margin of the required
line in a source or disassembly view, or by right-clicking on the line and selecting
Toggle Breakpoint from the pop-up menu.
ARM DUI 0066B Copyright © 1999, 2000 ARM Limited. All rights reserved. 5-51

AXD Desktop
5.6.10 Set Watchpoint

When you are viewing a source file or a disassembly, you can set or replace a
watchpoint on the currently selected item by selecting Set Watchpoint from the
Execute menu.

You can also set or replace a watchpoint by selecting an item in a source file or
disassembly view, right-clicking, and selecting Set Watchpoint from the pop-up menu.

5.6.11 Delete All Breakpoints

To delete all currently set breakpoints, select Delete All Breakpoints from the Execute
menu.
5-52 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI 0066B

AXD Desktop
5.7 Options menu

The Options menu, shown in Figure 5-78, allows you to examine and change a variety
of settings, including some that affect the appearance of the debugger screen. This menu
also allows you to start and stop profiling.

 Figure 5-78 Options menu

The Options menu items are described in the subsections that follow.

5.7.1 Disassembly Mode

To specify the type of disassembly you require, select Disassembly Mode from the
Options menu. A submenu appears, enabling you to select ARM/Thumb Mixed, ARM,
or Thumb. One of the these is checked, indicating the current disassembly mode.

In ARM/Thumb mixed mode, the debugger uses information read while loading the
image to set the appropriate mode. This is possible only when debugging information
is present, so cannot be done if, for example, the image is in ROM. The default setting
then used may not always be correct.

5.7.2 Configure Interface...

To configure the AXD user interface, select Configure Interface... from the Options
menu. The resulting dialog is similar to that shown in Figure 5-79.
ARM DUI 0066B Copyright © 1999, 2000 ARM Limited. All rights reserved. 5-53

AXD Desktop
 Figure 5-79 Configure Interface dialog

The Default view properties you set in this dialog are used, when applicable, for each
view you display. You can also change these settings in any displayed view.

The Toolbars check boxes control the display of the named toolbars. When a toolbar
name is checked in this dialog, that toolbar is displayed on the main AXD screen. These
toolbars are shown in Toolbars on page 5-2.

The General check boxes control the types of messages recorded in the Debug Log
page of the Output system view (see Output system view on page 5-43).

5.7.3 Configure Target...

You can select and configure a debug target when you start up AXD (see Starting and
closing AXD on page 2-3). The Configure Target... item on the Options menu allows
you to change the debug target and its configuration during a debug session.

The appearance of the dialog depends on the target you select. Examples follow
showing:

• ARMulator configuration

• Multi-ICE configuration on page 5-58

• BATS configuration on page 5-60

• Remote_A configuration on page 5-61.

ARMulator configuration

If you need to add ARMulator to the list of available targets in the Choose Target dialog,
click Add and in the resulting browse dialog locate and select the armulate.dll file.

To simulate the ARM966E-S core, you need a different version of ARMulator. For this
special version, locate and select file armul9xxe.dll.
5-54 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI 0066B

AXD Desktop
Select the ARMulator target line and click the Configure button to display the dialog
shown in Figure 5-80.

 Figure 5-80 ARMulator configuration dialog

The ARMulator configuration dialog enables you to:

• specify which ARM processor you want ARMulator to emulate

• choose between emulating a processor clock running at a speed that you can
specify, or executing instructions in real time

• specify whether a floating-point emulator is to be used

• specify that the emulated target is to operate in little-endian or big-endian mode

• specify a memory map file, or that you want to use default settings.

If you are using the software floating-point C libraries, ensure that the Floating Point
Emulation option is off (blank), its default setting. The option should be on (checked)
only if you are using the floating-point emulator (FPE).

If, in the Memory Map File box, you select No Map File, the memory model declared
as default in the armul.cnf file is used. This typically represents a flat 4GB bank of
ideal 32-bit memory having no wait states. To use a memory map file, select Map File.
Specify the filename (for example, armsd.map) by entering it, or click the Browse
button, locate and select the file, and click Open. You must specify an existing memory
map file. For more information about ARMulator and memory map files, see the ADS
Debug Target Guide.
ARM DUI 0066B Copyright © 1999, 2000 ARM Limited. All rights reserved. 5-55

AXD Desktop
If you set a nonzero emulated Clock Speed, then the clock speed used is the value that
you enter. Values stored in debugger internal variable $clock depend on this setting,
and are unavailable if you select Real-time. For information about debugger internal
variables, see Debugger Internals system view on page 5-46. The AXD clock speed
defaults to 0.00 for compatibility with the defaults of armsd. Selecting Real-time in
AXD is equivalent to omitting the -clock armsd option on the command line. In other
words, the clock frequency is unspecified, and the default clock frequency specified in
the configuration file armul.cnf is used.

For ARMulator, an unspecified clock frequency is of no consequence because
ARMulator does not need a clock frequency to be able to simulate the execution of
instructions and count cycles (for $statistics). However, your application program
might sometimes need to access a clock, so ARMulator must always be able to give
clock information. That is why the clock frequency from the configuration file is used
by ARMulator if no emulated clock speed is specified.

In either case, the clock information is used by ARMulator to calculate the elapsed time
since execution of the application program began. This elapsed time can be read by the
application program using the C function clock() or the semihosting SWI_clock, and
is also visible to the user from the debugger as $clock. It is also used internally by
ARMulator in the calculation of $memstats. The clock speed (whether specified or
unspecified) has no effect on actual (real-time) speed of execution under ARMulator. It
affects the simulated elapsed time only.

$memstats is handled slightly differently because it does need a defined clock
frequency, so that ARMulator can calculate how many wait states are needed for the
memory speed defined in an armsd.map file. If a clock speed is specified and an
armsd.map file is present, then $memstats can give useful information about memory
accesses and times. Otherwise, for the purposes of calculating the wait states, a default
core:memory clock ratio specified in the configuration file is used, so that $memstats
can still give useful memory timings.

Multi-ICE configuration

If you need to add Multi-ICE to the list of available targets, click Add and use the
resulting browse dialog to locate and select the Multi-ICE.dll file.

Select the Multi-ICE target line and click the Configure button to display the dialog
shown in Figure 5-81.

The Multi-ICE configuration dialog enables you to:

• specify the network address of the computer on which the Multi-ICE Server
software is running

• select a processor driver
5-56 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI 0066B

AXD Desktop
• specify a connection name (required only when access to the Multi-ICE Server
software is across a network)

• specify DLL Settings to control the use of various debugger features

Note

The only such feature at present is Read Ahead Cache Enabled. This improves
memory read performance by reading more memory than the debugger requests
and caching the rest in case it is needed. The DLL learns which regions of
memory are safe to access from previous read requests and never reads memory
that has not been accessed previously. For certain operations this improves
performance considerably, for example stepping with many string variables
displayed in a debugger window. The setting is saved and is on by default. If you
are debugging a system with demand paged memory, switch this feature off.

• select a channel viewer (check the Enabled check box if you want to add viewers
to or remove viewers from the list or to select one of the listed viewers).
ARM DUI 0066B Copyright © 1999, 2000 ARM Limited. All rights reserved. 5-57

AXD Desktop
 Figure 5-81 Multi-ICE configuration dialog

BATS configuration

If you need to add BATS to the list of available targets, click Add and use the resulting
browse dialog to locate and select the bats.dll file.

Select the BATS target line and click the Configure button to display the dialog shown
in Figure 5-82.
5-58 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI 0066B

AXD Desktop
 Figure 5-82 BATS configuration dialog

In the BATS configuration dialog you can:

• click Add to display a browse dialog and select a filename to add to the (initially
empty) list of available configuration files

• click Remove to remove the currently displayed filename from the list of
available configuration files

• select little-endian or big-endian mode of operation for the target you are
preparing to emulate

• click OK to configure BATS with the information stored in the configuration file
identified by the currently displayed filename

• click Cancel to close the dialog without making any change to the current
configuration of BATS.

Remote_A configuration

To allow AXD to communicate with an Angel or EmbeddedICE target, you must
configure the Remote_A connection appropriately. To configure the Remote_A
connection, select the ADP target. If this is not listed, click Add and use the resulting
browse dialog to locate and select the remote_a.dll file.

Select the ADP target line and click the Configure button to display the dialog shown
in Figure 5-83.
ARM DUI 0066B Copyright © 1999, 2000 ARM Limited. All rights reserved. 5-59

AXD Desktop
 Figure 5-83 Configuration of Remote_A connection

The Remote_A connection dialog allows you to examine and/or change the following
settings:

Remote connection driver
Click Select... to see a list of available drivers. This includes Serial, Serial
/Parallel, and Ethernet drivers. Select one if you want to use it instead of
the current driver. To change the settings of the currently selected driver,
click Configure.... A dialog appears, similar to those in Figure 5-84,
Figure 5-85 on page 5-63, or Figure 5-85 on page 5-63.

 Figure 5-84 Serial connection configuration
5-60 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI 0066B

AXD Desktop
 Figure 5-85 Serial/parallel connection configuration

 Figure 5-86 Ethernet connection configuration

Heartbeat
Ensures reliable transmission by sending heartbeat messages. If not
enabled, there is a danger that the host and the target can get into a
deadlock situation, with both waiting for a packet.

Endian
These buttons allow you to inform the debugger that the target is
operating in little-endian or big-endian mode.

Angel automatically corrects a wrong endian target setting.

Channel Viewers
Channel viewers are not supported if you are running AXD under UNIX.

When you run AXD under Windows, checking Enabled allows you to
add, remove, or select channel viewers in the displayed list of .dll files.
See Comms Channel processor view on page 5-25 for more information.

Click the Add... button to add a channel viewer DLL to the displayed list.

Click the Remove... button to remove the currently selected channel
viewer DLL from the displayed list.

5.7.4 Status Bar

If you click on the Status Bar menu item so that it is checked the status bar is displayed
at the bottom of the AXD screen (see Status bar on page 5-4).
ARM DUI 0066B Copyright © 1999, 2000 ARM Limited. All rights reserved. 5-61

AXD Desktop
If you click on the Status Bar menu item so that it is cleared the status bar is not
displayed.

5.7.5 Profiling

Point to Profiling to display a submenu, shown in Figure 5-87. This allows you to
control profiling, provided you made suitable settings when you loaded the image. See
Profiling on page 4-12 for details.

 Figure 5-87 Profiling submenu

5.7.6 Source Path...

Select Source Path... from the Options menu to display the Set Source Path dialog
shown in Figure 5-88. This specifies the paths that are searched, and the order in which
they are searched, when a source file is required.

 Figure 5-88 Set Source Path dialog

To insert a path in the list, click the Insert button. Either browse for the required path
name or enter the full path name, then press Return.

For example, you might specify C:\my sources\project B as a source path.

You can select and delete a single path name, or delete all path names. You can also
select and move a path name up or down the list.

Source paths are persistent. They are saved by AXD and used in subsequent debugging
sessions.
5-62 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI 0066B

AXD Desktop
5.8 Window menu

The Window menu, shown in Figure 5-89, allows you to control the display of
windows and icons on your screen.

 Figure 5-89 Window menu

Source and Disassembly views always float within the main window. All other views
can be displayed in any one of three types of window:

• docked at one edge of the main window

• floating anywhere on the screen

• floating within the main window.

The Window menu items operate on views that are floating within the main window
only. Windows that can float to any position on the screen and windows that are docked
are not affected or listed.

Any cascaded or tiled windows are arranged within the screen area that remains
unoccupied by any docked windows. Docked and floating windows are described in
Docked and floating windows on page 2-9.

The Window menu items are described in the subsections that follow.

5.8.1 Cascade

Cascade operates on any windows set to float within the main window. They are
repositioned, resized, and overlapped, so as to be as large as possible while still showing
enough of each one to identify it and to allow you to select it. They fill most of the area
of the main window that remains unoccupied by any docked windows.

5.8.2 Tile

Tile operates on any windows set to float within the main window. They are
repositioned and resized so as to avoid any overlapping and to fill the area of the main
window that remains unoccupied by any docked windows.
ARM DUI 0066B Copyright © 1999, 2000 ARM Limited. All rights reserved. 5-63

AXD Desktop
5.8.3 Arrange Icons

Arrange Icons arranges any windows minimized to icons along the bottom edge of the
area of the main window that remains unoccupied by any docked windows.

5.8.4 List of relevant windows

All windows that are currently floating within the main window are listed in the lower
part of the Window menu, each window identified by the text that appears in its title
bar. Refer to this list if some windows have become obscured. Select any window from
the list to bring it to the front of the display.
5-64 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI 0066B

AXD Desktop
5.9 Help menu

The Help menu, shown in Figure 5-90, provides you with access to AXD online help
and to details of the version of AXD that you are running.

 Figure 5-90 Help menu

The Help menu items and relevant toolbar icons are described in the subsections that
follow.

5.9.1 Contents

Contents displays the first page of AXD online help. You can navigate from there to
any other available topic.

5.9.2 Using help

Using Help displays instructions for various ways to obtain online help while you are
using the debugger.

5.9.3 Online Books

Online Books allows you to view the ARM manuals that are published in both printed
and online forms, and are complementary to online help. If this option is unavailable,
select Start → Programs → ARM Developer Suite v1.0 → Online Books.

5.9.4 About AXD

About AXD displays the name, version number, and build number of the AXD
software you are running.

When you have seen the details, close the dialog by clicking on either the Close button
or the OK button.

5.9.5 Toolbar icons

Clicking on the Query icon is equivalent to selecting Contents from the Help menu.

Clicking on the Query and arrow icon changes the mouse pointer into a similar icon.
Click again on any part of the display for which you want help.
ARM DUI 0066B Copyright © 1999, 2000 ARM Limited. All rights reserved. 5-65

AXD Desktop
5-66 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI 0066B

Chapter 6
AXD Command-line Interface

This chapter describes the use of the Command Line Interface (CLI) window. It
contains the following sections:

• Command Line Window on page 6-2

• Parameters and prefixes on page 6-4

• Commands with list support on page 6-5

• Predefined command parameters on page 6-6

• Definitions on page 6-8

• Commands on page 6-11.
ARM DUI 0066B Copyright © 1999, 2000 ARM Limited. All rights reserved. 6-1

AXD Command-line Interface
6.1 Command Line Window

Select Command Line Interface from the System Views menu to display the
Command Line Window (CLI window). In the CLI window you can enter commands
that are equivalent to many of the debugger menu items, or submit a file of such
commands. This provides a reliable and consistent way for you to execute sequences of
commands repeatedly.

You might use the CLI window for the following reasons:

• As an alternative to the GUI

• To automate repetitive tasks.

To display the CLI window pop-up menu, right-click in the CLI window.

6.1.1 As an alternative to the GUI

Using the GUI involves selecting items from menus. Many of these menu items
correspond to commands you can enter in the CLI window.

One advantage of working in the CLI window is the ability to log all your actions in a
disk file.

If any of your commands result in data being displayed by the debugger, these appear
in the CLI window. You can choose whether a log file includes everything displayed in
the CLI window, or your commands only.

You can use both the CLI and the GUI in a debug session. If, for example, a GUI
command changes the current processor, then any CLI command that by default refers
to the current processor will refer to the newly-defined processor.

6.1.2 To automate repetitive tasks

You can record the commands you issue in a log file (see Command Line Interface
system view pop-up menu on page 5-44 or record on page 6-27). You can then easily
repeat the same commands by submitting the file to the CLI using the obey command
(see obey on page 6-25).

6.1.3 CLI pop-up menu

Right-click in the CLI window to display the CLI window pop-up menu.

For details refer to AXD online help or to Command Line Interface system view pop-up
menu on page 5-44.
6-2 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI 0066B

AXD Command-line Interface
To display the CLI properties dialog shown in Figure 6-1, select Properties... from the
pop-up menu.

 Figure 6-1 CLI properties dialog

The CLI Properties dialog allows you to set various default values so that you can avoid
the need to specify them on commands you intend to issue. It also provides an
alternative method of issuing certain commands, such as toggling on or off logging or
recording, or selecting files to use for those purposes.

In a few cases, this dialog provides the only method of setting values. Such values
include the number of lines of disassembly or source code to display, and the number
of history records visible in a view.

Click Help to display more information about this dialog.
ARM DUI 0066B Copyright © 1999, 2000 ARM Limited. All rights reserved. 6-3

AXD Command-line Interface
6.2 Parameters and prefixes

When entering commands, you might need to supply parameters of various types. To
specify the type of a parameter, prefix its value with one of the symbols #, |, @, $, or +.

6.2.1 # parameters

After a # symbol the remaining character(s) must be numeric, and identify an object by
its position in a list.

Before specifying an object by using a # parameter you need to issue a command that
displays the relevant indexed list. For commands that display indexed lists, see
Commands with list support on page 6-5.

6.2.2 | parameters

Type a | symbol to separate a parent and a child item in a parameter that includes
hierarchical levels.

You might need to include a | symbol when you supply a position parameter, for
example, even though the symbol is not shown in the syntax description of the
command.

A | symbol in a syntax description denotes alternatives. and you do not type it when
you enter the command.

6.2.3 @ parameters

The @ symbol indicates that the parameter is an address. The remainder of the parameter
is an expression that is evaluated to a memory address before use.

6.2.4 $ parameters

The $ symbol indicates that the parameter is a low-level symbol or an internal debugger
symbol.

6.2.5 + parameters

The + symbol prefixes the second parameter of a range when it is to be used as a size
rather than an upper value.
6-4 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI 0066B

AXD Command-line Interface
6.3 Commands with list support

Several commands display lists with entries identified by an index number (starting
from 1 for the first entry). You can use these index number to refer to specific entries.

The following indexed lists are available:

• files

• classes

• functions

• variables

• watchpoints

• breakpoints

• regbanks

• registers

• stack entries

• low-level symbols

• processors

• images.

Commands that display these indexed lists and commands that accept indexed entries
from these lists are described in Commands on page 6-11.
ARM DUI 0066B Copyright © 1999, 2000 ARM Limited. All rights reserved. 6-5

AXD Command-line Interface
6.4 Predefined command parameters

Several commands take parameters in the form of text strings, but a very few predefined
values are the only ones you are allowed to supply. For example, where runmode is
specified as a parameter, you can enter either the string ASYNC or the string SYNC. Any
other value for this parameter is invalid.

In the alphabetical list of Commands on page 6-11, the parameters printed in italics
are those that you replace with the value you need when you issue the command.

These parameters are not case-sensitive. You can freely mix upper-case and lower-case
characters. The parameters for which you must specify certain values only are described
in the subsections that follow.

6.4.1 runmode

The runmode parameter must be set to ASYNC or SYNC.

Setting runmode to ASYNC allows the command-line window to continue functioning
while commands are executed. To run a script, each command must execute completely
before the next command is issued, and in this case you must set runmode to SYNC.

The setting of runmode is shown in the Run mode field of the CLI Properties dialog.

6.4.2 format

The format parameter must be set to Hex, Dec, Oct, or Bin.

Use this parameter to specify how values are displayed. For example, each line in a
memory listing shows the contents of 16 bytes of memory, grouped into 4, 8 or 16
values (see memory on page 6-7). The setting of the format parameter determines
whether each value is displayed in hexadecimal, decimal, octal or binary format.

You can also use the format parameter to specify the display format for registers.

The setting of format is shown in the Format field of the CLI Properties dialog.

6.4.3 asm

The asm parameter must be set to ARM, Thumb, or auto.

ARM instructions occupy 32 bits and Thumb instructions occupy 16 bits. ARM C and
C++ compilers can generate either ARM or Thumb code. Use the asm parameter to
specify that the code being debugged contains ARM code or Thumb code, or that the
debugger should make the setting itself (auto). You generally need to specify the
instruction type if the code was built without debug information.
6-6 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI 0066B

AXD Command-line Interface
The setting of asm is shown in the Instr size field of the CLI Properties dialog.

6.4.4 instr

The instr parameter must be set to LINE or INSTR.

This parameter determines whether a step consists of a line of source code (LINE) or an
assembler instruction (INSTR).

The setting of instr is shown in the Step field of the CLI Properties dialog.

6.4.5 step

The step parameter must be set to IN or OUT.

This affects the way an instruction calling a function is processed. IN specifies that the
step proceeds only to the first executable instruction in the called function. OUT
specifies that the step includes execution of the called function and proceeds to the
instruction at which execution returns to the calling program.

6.4.6 memory

The memory parameter must be set to 8, 16, or 32.

8 displays memory in 8-bit bytes

16 displays memory in 16-bit halfwords

32 displays memory in 32-bit words.

The setting of memory is shown in the Size field of the CLI Properties dialog.

To specify the format for displaying values, see format on page 6-6.

6.4.7 scope

The scope parameter must be set to CLASS, GLOBAL, or LOCAL.

This parameter specifies that any context variables displayed by the associated
command are those scoped to class, global, or local, respectively.

6.4.8 toggle

The toggle parameter must be set to ON or OFF.

This parameter switches the associated command on or off.
ARM DUI 0066B Copyright © 1999, 2000 ARM Limited. All rights reserved. 6-7

AXD Command-line Interface
6.5 Definitions

With most commands you need to specify parameters that define, for example, a
processor, file, position, address, or format. This section lists these definitions and
explains how to use them as command parameters.

processor You can identify a processor by:

• the name of the processor

• the index of the processor in the current processor list, in the form
of a value prefixed with #

• the globally unique identifier of the processor as shown in the
output of a processors command

• null (the current processor is assumed if you do not specify a
processor).

file You can identify a file by:

• its filename

• the index of the file in the current file list, in the form of a value
prefixed with #

• the globally unique identifier of the file as shown in the output of a
files command.

image You can identify an image by:

• the name of the image

• the index of the image in the current image list, in the form of a
value prefixed with #

• the globally unique identifier of the image as shown in the output
of an images command

• null (the image associated with the current processor is assumed if
you do not specify an image).

class You can identify a class by:

• the class name which can include the name of an image, separated
from the class name by a vertical bar, in the form image|class

• the index of the class in the current class list, in the form of a value
prefixed with #.

position To specify a position in a source file, use vertical bar separators as in
image|file|line. If you omit the image name, the image associated
with the current processor is assumed.

A position might also be a location within an executable image, in which
case you can specify it in the form image|@address.
6-8 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI 0066B

AXD Command-line Interface
A position can also be inferred from many debug objects, such as
breakpoints or low-level symbols. You can therefore specify a position as
an index of a position-based object in the last displayed list of such
objects. Specify the index as a value prefixed by #.

context You can specify a context by specifying a stack entry, in the form of a
value prefixed by #.

expr An expression is either a numerical value or an expression that evaluates
to a numerical value.

breakpoint You specify a breakpoint as its index in the breakpoint list, in the form of
a value prefixed by #.

watchpoint You specify a watchpoint as its index in the watchpoint list, in the form
of a value prefixed by #.

runmode You must specify this as either SYNC or ASYNC.

step This controls the amount of processing that takes place following an
instruction that calls a function. You must specify this as either In or Out.

instr You must specify either Instr to define a step as one instruction or Line
to define a step as one line of source code.

regbank You can identify a register bank by:

• the name of the register bank

• the index of the register bank in the register bank list, in the form
of a value prefixed with #

• the globally unique identifier of the register bank as shown in the
output of a registerbanks command.

memory Denotes that memory is to be displayed in bytes, halfwords, or words.
You must specify 8, 16, or 32.

format Denotes the format in which the contents of memory, registers, or
variables are displayed. You must specify Hex, Dec, Oct, or Bin.

scope Denotes which context variables to display, based on their scope. You
must specify Class, Local, or Global.

toggle Where this parameter is allowed, you can use it to switch on or off certain
properties. You must specify either On or Off.

asm Denotes that assember instructions are ARM (32-bit) or Thumb (16-bit).
You must specify ARM, Thumb, or auto. If you specify auto, the
debugger determines the correct setting itself.

register You can identify a register by:

• the name of the register

• the index of the register in the current register list, in the form of a
value prefixed with #.

value You specify a numeric value.

string You specify a text string enclosed in quotes (“...”).
ARM DUI 0066B Copyright © 1999, 2000 ARM Limited. All rights reserved. 6-9

AXD Command-line Interface
ipvariable
Denotes any one of a group of variables that define image-related
properties. The ipvariables currently supported are:

cmdline
This variable holds the parameter passed to the image when
execution starts. If the image requires multiple parameters,
enclose the whole string in quotes (“...”).

ppvariable
Denotes any one of a group of variables that define processor-related
properties. The ppvariables currently supported are:

vector_catch
Defines which exceptions in the processor are intercepted by
the debugger. See Processor pop-up menu on page 5-35 for
more information.

comms_channel
Enables (1) or disables (0) the debug communications channel
viewer. If this option is enabled you cannot use DCC
semihosting.

semihosting_enabled
Enables or disables semihosting. Valid values are:

0 Semihosting is disabled.

1 Standard semihosting is enabled.

2 DCC semihosting is enabled. This applies to
Multi-ICE only.

semihosting_vector
Contains the address of the breakpoint used to detect a
semihosted SWI (0x8 by default). See the description of the
semihosting SWIs in the ADS Debug Target Guide for more
information.

semihosting_dcchandler_address
Contains the address in memory where Multi-ICE will place
its DCC handler code. See the Multi-ICE User Guide for more
information.

arm_semihosting_swi
Defines the ARM software interrupt number reserved for
semihosting. You should not normally change this.

thumb_semihosting_swi
Defines Thumb software interrupt number reserved for
semihosting. You should not normally change this.
6-10 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI 0066B

AXD Command-line Interface
6.6 Commands

This section lists in alphabetical order all the commands that you can issue using the
command-line interface. Refer to Definitions on page 6-8 for descriptions of parameters
used with many of these commands.

In the syntax definition of each command, square brackets ([...]) enclose optional
parameters and a vertical bar (|) separates alternatives from which you choose one. Do
not type the square brackets or the vertical bar.

You might need to type vertical bars when entering hierarchical values, for example
imagename|@address. for a position parameter.

Replace parameters printed in italics with the value you need.

When you supply more than one parameter, use a comma or a space as a separator.

If you want to enter a command that is similar to one you have previously entered, use
the up and down arrow keys to retrieve the earlier command, then use the left and right
arrow keys to position the cursor where you want to change the command.

Where lines of output are described, <tab> indicates the presence of a tab character.

A few command descriptions include an alias for the command. You can use either the
command or its alias. Aliases are supported because you might be familiar with their
use in armsd, or use these forms of the commands in existing script files.

6.6.1 addsourcedir

The addsourcedir command inserts the specified directory in the current list of paths
at the specified position. The paths in this list, and the order in which they are listed,
specify the paths on local or remote machines searched when a source file is required.

The shorthand form of the addsourcedir command is asd.

Syntax

asd path[index]

where:

path is a fully qualified directory, or a list of fully qualified directories
separated by ; for Windows or : for UNIX. Enclose the path
specification in quotes if it contains spaces.
ARM DUI 0066B Copyright © 1999, 2000 ARM Limited. All rights reserved. 6-11

AXD Command-line Interface
index specifies the position of the new entry in the list. A value of 0 or 1 places
the new entry at the head of the list. A value greater than the current list
size or unspecified places the new entry at the end of the list. If no index
is specified, the path is added to the end of the list.

Example

asd "c:\my sources\project B" 3

6.6.2 backtrace

See stackentries on page 6-35.

6.6.3 break

If you supply no parameters, the break command lists all the breakpoints that are
currently set. Each breakpoint is shown on a separate line, in the following format:

index<tab>{file}:line<tab>@address<tab>SW|HW

The position in this list, index, gives you a convenient way of referring to a breakpoint
in such commands as clearbreak.

If you supply parameters, the command creates and sets a new simple breakpoint so that
execution continues while the specified address is visited skip times and stops on the
(skip+1)th time. If you do not specify a value for skip, a default value of 0 is
assumed, so execution stops every time the address is visited.

The shorthand form of the break command is br.

Syntax

br[expr|position [, skip]]

where:

expr|position

is either an expression or a position that defines where a new breakpoint
is to be created.

skip specifies the number of times an arrival at the breakpoint is ignored
before an arrival is acted upon.
6-12 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI 0066B

AXD Command-line Interface
Examples

br c:\test\main.c|130 100

sets a breakpoint on line 130 of file main.c, with 100 arrivals ignored
before execution is interrupted.

br #5|150 sets a breakpoint at line 150 of file number 5. The index #5 must have
been obtained using the files command.

Note

To set complex breakpoints, select Watch/Breakpoints... from the Execute menu.

6.6.4 cclasses

The cclasses command lists all the classes in the specified class in the currently
loaded image. Each class is shown on a separate line, in the following format:

index<tab>classname

The position in this list, index, gives you a convenient way of referring to a class of
classes.

The shorthand form of the cclasses command is ccl.

Syntax

ccl class

Example

ccl testclass

displays subclasses of testclass.

6.6.5 cfunctions

The cfunctions command lists all the functions in the specified class. Each variable
is shown on a separate line, in the following format:

index<tab>functionname (parameterlist)

The position in this list, index, gives you a convenient way of referring to a class
function.

The shorthand form of the cfunctions command is cfu.
ARM DUI 0066B Copyright © 1999, 2000 ARM Limited. All rights reserved. 6-13

AXD Command-line Interface
Syntax

cfu class

Example

cfu #2 displays functions in the class identified by index number 2. The index
must have been obtained using the classes command.

6.6.6 classes

The classes command lists all the classes in the specified image, or in the current
image if you do not specify an image. Each class is shown on a separate line, in the
following format:

index<tab>classname

The position in this list, index, gives you a convenient way of referring to a class.

The shorthand form of the classes command is cl.

Syntax

cl[image]

6.6.7 clear

The clear command clears the command-line window.

There is no shorthand form of the clear command.

Syntax

clear

6.6.8 clearbreak

The clearbreak command unsets and deletes the specified breakpoint. See break on
page 6-12 for a description of how to refer to a breakpoint.

The shorthand form of the ClearBreak command is cbr.

Alias

unbreak is an alternative to clearbreak.
6-14 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI 0066B

AXD Command-line Interface
Syntax

cbr breakpoint

Examples

cbr #2 clears breakpoint number 2. The index #2 must have been obtained using
the break command.

unbreak #2

has exactly the same effect.

6.6.9 clearwatch

The clearwatch command unsets and deletes the specified watchpoint. See watchpt
on page 6-38 for a description of how to refer to a watchpoint.

The shorthand form of the clearwatch command is cwpt.

Alias

unwatch is an alternative to clearwatch.

Syntax

cwpt watchpoint

Examples

cwpt #2 clears watchpoint number 2. The index #2 must have been obtained using
the watchpt command.

unwatch #2 has exactly the same effect.

6.6.10 comment

The comment command sends the specified character string to the current log file. If
logging is not taking place this command has no effect.

The shorthand form of the comment command is com.

Syntax

com string
ARM DUI 0066B Copyright © 1999, 2000 ARM Limited. All rights reserved. 6-15

AXD Command-line Interface
6.6.11 context

If you do not supply a parameter, the context command displays details of the current
context, as follows:

Image: imagename|@address

File: sourcefilename|linenumber

If you specify a stack entry, the context command sets the current context to that of
the stack entry you specify. See stackentries on page 6-35 for further information on
stack entries.

This command does not change the execution context. It allows you to browse through
all the available contexts of the current debug session and examine context-related
variables

The shorthand form of the Context command is con.

Syntax

con[context]

Example

con #2 sets the current context to that of stack entry number 2. The index #2 must
have been obtained using the stackentries command.

6.6.12 convariables

The convariables command displays the name, type, and value of all variables valid
in the current or specified context and in the specified scope. If you do not specify a
scope, then class, global, and local variables are listed.

The shorthand form of the convariables command is convar.

Syntax

convar[context][, scope][, format]

where:

context specifies the context of the variables you want to list, the default being
the current context (see stackentries on page 6-35).

scope can be set to CLASS, GLOBAL, or LOCAL (see scope on page 6-7).

format specifies the format in which the contents of the variables are listed, if
this is different from the default format (see format on page 6-6).
6-16 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI 0066B

AXD Command-line Interface
Examples

convar #1 dec

displays the global, class, and local variables in the context of stack entry
number 1, in decimal format. Index #1 must have been obtained with the
stackentries command.

convar local

displays the local variables in the current context, in hexadecimal format.

6.6.13 cvariables

The cvariables command lists all the variables in the specified class in the currently
loaded image. Each variable is shown on a separate line, in the following format:

index<tab>variablename<tab>type

The position in this list, index, gives you a convenient way of referring to a class
variable.

The shorthand form of the cvariables command is cva.

Syntax

cva class

Examples

cva testclass

displays the class variables of testclass.

cva #1 displays the class variables of the class identified by index number 1. The
index must have been obtained using the classes command.

6.6.14 dbginternals

The dbginternals command displays the debugger internal variables of the current
target. These are the same variables as those displayed when you select Debugger
Internals from the System Views menu. Each variable is shown on a separate line, in
the following format:

index<tab>variablename<tab>value

The shorthand form of the dbginternals command is di.
ARM DUI 0066B Copyright © 1999, 2000 ARM Limited. All rights reserved. 6-17

AXD Command-line Interface
Syntax

di

6.6.15 disassemble

The disassemble command disassembles and displays lines of assembler code that
correspond to the contents of the specified area of memory.

The shorthand form of the disassemble command is dis.

Alias

list is an alternative to disassemble.

Syntax

dis expr1, [+]expr2[, asm]

where:

expr1 is an expression that evaluates to the starting address of the area of
memory you want to see disassembled.

expr2 is an expression that either evaluates to the end address of the area of
memory you want to see disassembled or, if preceded by +, evaluates to
the number of bytes you want disassembled.

asm can be set to ARM, Thumb, or Auto (see asm on page 6-6). If not specified,
the current value of the appropriate internal CLI variable is used.

6.6.16 examine

See memory on page 6-24.

6.6.17 files

The files command lists all the source files that have contributed debug information
to the specified image, or to the current image if you do not specify an image. Each
source file is shown on a separate line, in the following format:

index<tab>ID<tab>filename

This means that you can refer to a source file in any one of three ways:

index the position in this list

ID the identifier of the source file

filename the name of the source file.
6-18 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI 0066B

AXD Command-line Interface
The shorthand form of the files command is fi.

Syntax

fi[image]

6.6.18 fillmem

The fillmem command fills the specified area of memory with the specified value
repeated sufficient times. If the size of the area to be filled is not an exact multiple of
the size of the value being written, some bytes remain unchanged at the end of the area.
The value written (repeatedly) to memory is the value you specify, padded with leading
zeros or truncated if necessary to achieve the size you specify with the memory
parameter.

The shorthand form of the fillmem command is fmem.

Syntax

fmem expr1, [+]expr2, value[, memory]

where:

expr1 specifies the starting address of the area of memory to be filled.

expr2 specifies either the end address or, if preceded by +, the number of bytes
of the area of memory to be filled.

value specifies what is to be written to memory.

memory can be set to 8, 16, or 32, and determines whether value should be
evaluated to an 8-bit, a 16-bit, or a 32-bit value (see memory on
page 6-7).

6.6.19 findstring

The findstring command searches for the specified string in the specified area of
memory or, by default, in the whole available memory range. The command displays
messages giving the starting address of every occurrence found of the specified value.

If you view the contents of memory with size set to more than 8 bits, it is possible for
bytes to be displayed in an order different from that in which they are stored (as a result
of the endian setting). The findstring command always tests consecutive memory
locations, regardless of how the contents of those locations might be displayed.

The shorthand form of the findstring command is fds.
ARM DUI 0066B Copyright © 1999, 2000 ARM Limited. All rights reserved. 6-19

AXD Command-line Interface
Syntax

fds string[, [low-expr][, high-expr]]

where:

string specifies the string you are seeking.

low-expr is an expression that evaluates to the memory address at which you want
the search to begin.

high-expr is an expression that evaluates to the memory address at which you want
the search to end.

6.6.20 findvalue

The findvalue command searches for the specified value in the specified area of
memory or, by default, in the whole available memory range. The command displays
messages giving the starting address of every occurrence found of the specified value.

If you view the contents of memory with size set to more than 8 bits, it is possible for
bytes to be displayed in an order different from that in which they are stored (as a result
of the endian setting). The findvalue command always tests consecutive memory
locations, regardless of how the contents of those locations might be displayed.

The shorthand form of the findvalue command is fdv.

Syntax

fdv valexpr[, [low-expr][, high-expr]]

where:

valexpr is an expression that evaluates to the value you are seeking.

low-expr is an expression that evaluates to the memory address at which you want
the search to begin.

high-expr is an expression that evaluates to the memory address at which you want
the search to end.

6.6.21 format

The format command sets the default formats for both input and output of simple
values.

The shorthand form of the format command is fmt.
6-20 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI 0066B

AXD Command-line Interface
Syntax

fmt inbase, outformat

where:

inbase can be set to Hex, Dec, or Oct.

outformat can be set to Hex, Dec, Oct, or Bin (see format on page 6-6).

6.6.22 functions

The functions command lists all the functions in the specified image, or of the current
image if you do not specify an image. Each function is shown on a separate line, in the
following format:

index<tab>functiontype<tab><tab>functionname (ParameterList)

The position in this list, Index, gives you a convenient way of referring to a function.

The shorthand form of the Functions command is fu.

Syntax

fu[image]

6.6.23 getfile

See loadbinary on page 6-23.

6.6.24 go

See run on page 6-28.

6.6.25 help

The help command invokes AXD online help.

The shorthand form of the help command is hlp.

Syntax

hlp
ARM DUI 0066B Copyright © 1999, 2000 ARM Limited. All rights reserved. 6-21

AXD Command-line Interface
6.6.26 images

The images command lists all the images currently loaded on the target. Each image is
shown on a separate line, in the following format:

index<tab>ID<tab>imagename

This means that you can refer to an image in any one of three ways:

index the position in this list

ID the identifier of the image

imagename the name of the image.

For an example of a command that can refer to an image see reload on page 6-28.

The shorthand form of the images command is im.

Syntax

im

6.6.27 imgproperties

The imgproperties command displays internal variables related to the specified
image, or to the currently loaded image if you do not specify an image. Each variable is
shown on a separate line, in the following format:

ipvariable<tab>value

The shorthand form of the imgproperties command is ip.

Syntax

ip[image]

6.6.28 let

See setwatch on page 6-34.

6.6.29 list

See disassemble on page 6-18.
6-22 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI 0066B

AXD Command-line Interface
6.6.30 load

The load command loads the contents of the specified image file onto the specified
processor. If you do not specify a processor, the command loads the image onto the
current processor.

The shorthand form of the load command is ld.

Syntax

ld file[, processor]

where:

file specifies the file containing the image you want to load.

processor specifies the processor onto which you want to load the image.

An image loaded by the load command has a default breakpoint set at the first
executable instruction in main().

6.6.31 loadbinary

The loadbinary command reads the specified file and loads its contents into target
memory, starting at the specified address.

The shorthand form of the loadbinary command is lb.

Alias

getfile is an alternative to loadbinary.

Syntax

lb file, addrexpr

where:

file specifies the file containing the data to be loaded.

addrexpr is an expression that evaluates to a memory address.

6.6.32 loadsymbols

The loadsymbols command loads debug information from the specified file onto the
specified processor, or onto the current processor if you do not specify a processor.

The shorthand form of the LoadSymbols command is lds.
ARM DUI 0066B Copyright © 1999, 2000 ARM Limited. All rights reserved. 6-23

AXD Command-line Interface
Alias

readsyms is an alternative to loadsymbols.

Syntax

lds file[, processor]

where:

file specifies the file containing the symbols you want to load.

processor specifies the processor onto which you want to load the symbols.

6.6.33 log

The log command starts or stops logging the contents of the CLI window to a disk file.
If you supply no parameter, logging stops. If you supply a filename, logging starts in
the specified file and any existing log file is closed. See also record on page 6-27.

There is no shorthand form of the log command.

Syntax

log[file]

6.6.34 lowlevel

The lowlevel command lists all the low-level symbols associated with the specified
image, or with the current image if you do not supply a parameter. Each low-level
symbol is shown on a separate line, in the following format:

index<tab>address<tab><tab>symbolname

The position in this list, index, gives you a convenient way of referring to a low-level
symbol in other commands.

The shorthand form of the lowlevel command is lsym.

Syntax

lsym[image]
6-24 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI 0066B

AXD Command-line Interface
6.6.35 memory

The memory command displays the specified area of memory according to the specified
size and format parameters, or using default size and format settings if you do not
supply them (to set default values, use either the format command or the CLI Properties
dialog). Each line displayed shows the contents of 16 bytes of memory, as follows:

address<tab>formattedvalues<tab>ASCIIequivalents

The shorthand form of the Memory command is mem.

Alias

examine is an alternative to memory.

Syntax

mem expr1, [+]expr2[, memory[, format]]

where:

expr1 is an expression that evaluates to the starting address of the area of
memory that you want to examine.

expr2 is an expression that either evaluates to the end address of the area of
memory that you want to examine or, if preceded by a +, evaluates to the
number of bytes that you want to examine.

memory can be set to 8, 16, or 32 (see memory on page 6-7).

format can be set to Hex, Dec, Oct, or Bin (see format on page 6-6).

6.6.36 obey

The obey command executes the list of CLI commands contained in the specified file.

There is no shorthand form of the Obey command.

Syntax

obey file

where:

file identifies a file containing valid CLI commands, each separated by a
carriage return, with the end of file at the beginning of a new line.
ARM DUI 0066B Copyright © 1999, 2000 ARM Limited. All rights reserved. 6-25

AXD Command-line Interface
6.6.37 parse

The parse command sets the parsing state on or off according to the supplied
parameter.

You should normally leave parse set to its default value of ON so that commands are
checked for valid syntax. Set parse OFF only when you use the CLI script command
which uses the CLI expansion mechanism to generate new CLI commands.

The shorthand form of the Parse command is par.

Syntax

par toggle

where:

toggle must be set to ON or OFF.

6.6.38 print

See watch on page 6-38.

6.6.39 processors

The processors command lists all the processors available on the current target. Each
processor is shown on a separate line, in the following format:

index<tab>ID<tab>procname

This means you can refer to a processor in any one of three ways:

index the position in this list

ID the identifier of the processor

procname the name of the processor.

For examples of commands in which you might need to refer to a processor see stop on
page 6-37 and run on page 6-28.

The shorthand form of the processors command is proc.

Syntax

proc
6-26 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI 0066B

AXD Command-line Interface
6.6.40 procproperties

The procproperties command displays internal variables related to the specified
processor, or to the current processor if you do not specify a processor. Each variable is
shown on a separate line, in the following format:

ppvariable<tab>value

The shorthand form of the procproperties command is pp.

Syntax

pp[image]

6.6.41 putfile

See savebinary on page 6-30.

6.6.42 quitdebugger

The quitdebugger command ends execution of AXD.

The shorthand form of the quitdebugger command is quitd.

Syntax

quitd

6.6.43 readsyms

See loadsymbols on page 6-23.

6.6.44 record

The record command starts or stops the logging of commands (only) to a disk file. If
you supply no parameter, logging stops. If you supply a filename, logging starts in the
specified file and any existing log file is closed. See also log on page 6-24.

The shorthand form of the Record command is rec.

Syntax

rec[file]
ARM DUI 0066B Copyright © 1999, 2000 ARM Limited. All rights reserved. 6-27

AXD Command-line Interface
6.6.45 regbanks

The regbanks command lists all the register banks associated with the specified
processor, or with the current processor if you do not supply a parameter. Each register
bank is shown on a separate line, in the following format:

index<tab>ID<tab>regbankname

The position in this list, index, gives you a convenient way of referring to a register
bank in other commands.

The shorthand form of the regbanks command is regbk.

Syntax

regbk[processor]

6.6.46 registers

The registers command lists all the registers and their values in the specified register
bank. The register bank name is displayed on the first output line, and column headings
on the second. Each register is then shown on a separate line, in the following format:

index<tab>regname<tab>regvalue

The index value given in this list allows you to specify individual registers in other
commands. See setreg on page 6-33, for example

The value of each register is shown in its default format unless you specify a format.

The shorthand form of the Registers command is reg.

Syntax

reg [regbank[, format]]

where:

regbank specifies the register bank to be listed. If you do not specify a register
bank, the one name Current is listed. See regbanks for details of how to
specify a register bank.

format specifies the format to be used in the list if you do not want the default
format (see format on page 6-6).
6-28 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI 0066B

AXD Command-line Interface
6.6.47 reload

The reload command reloads the specified image. If you do not specify an image, the
command reloads the current image. See images on page 6-21 for information on
referring to images.

The shorthand form of the reload command is rld.

Syntax

rld[image]

where:

image specifies the image you want to reload.

6.6.48 run

The run command starts or restarts execution in the specified processor, or in the
current processor if you do not specify a processor.

The shorthand form of the Run command is r.

Alias

go is an alternative to run.

Syntax

r[processor][, runmode]

where:

processor specifies the processor (the current processor is the default)

runmode if specified must be set to ASYNC or SYNC (see runmode on page 6-6).

6.6.49 runmode

The runmode command allows you to examine or set the mode of execution and the
step size. To see the current settings, issue the command with no parameters.

The shorthand form of the runmode command is rmode.

Syntax

rmode[runmode[, instr]]
ARM DUI 0066B Copyright © 1999, 2000 ARM Limited. All rights reserved. 6-29

AXD Command-line Interface
where:

runmode can be set to SYNC or ASYNC (see runmode on page 6-6).

instr can be set to INSTR or LINE (see instr on page 6-7), but is overridden if
no source is available.

6.6.50 runtopos

The runtopos command causes execution to proceed until the specified position is
reached. The command applies to execution in the specified processor, or in the current
processor if you do not specify one.

The shorthand form of the RunToPosition command is rto.

Syntax

rto position[, processor]

where:

position is an expression that evaluates to a memory address.

processor identifies the processor.

6.6.51 savebinary

The savebinary command copies the contents of the specified area of memory to the
specified disk file.

The shorthand form of the savebinary command is sb.

Alias

putfile is an alternative to savebinary.

Syntax

sb file, expr1, [+]expr2

where:

file specifies the file in which you want to save the contents of the specified
area of memory.

expr1 is an expression that evaluates to the starting address of the area of
memory to save.

expr2 is an expression that evaluates either to the end address of the area of
memory to save or, if preceded by +, to the number of bytes to save.
6-30 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI 0066B

AXD Command-line Interface
6.6.52 script

Not available in ADS v1.0.

6.6.53 setimgprop

The setimgprop command sets an image-related internal variable to the specified
value (see imgproperties on page 6-22). You need to supply either a string or an
expression, depending on the type of the variable.

The shorthand form of the setimgprop command is sip.

Syntax

sip image, ipvar, value

where:

image specifies the image that is to have an internal variable reset.

ipvar specifies the ipvariable to be reset. See Definitions on page 6-8 for a list
of valid ipvariables.

value specifies the new value to be assigned to the specified variable.

6.6.54 setmem

The setmem command sets the contents of memory at the specified address to the
specified value.

The shorthand form of the setmem command is smem.

Syntax

smem addrexpr, valexpr[, memory]

where:

addrexpr evaluates to the memory address at which you want to insert the new
value.

valexpr evaluates to the value that you want to insert at the specified memory
address. This evaluation results in an 8-bit, a 16-bit, or a 32-bit value
depending on the setting of the memory parameter, or of the current
global variable value if you do not specify the memory parameter.

memory if used must be set to 8, 16, or 32 (see memory on page 6-7).
ARM DUI 0066B Copyright © 1999, 2000 ARM Limited. All rights reserved. 6-31

AXD Command-line Interface
6.6.55 setpc

The setpc command sets the program counter to the specified value. The value you
enter is evaluated according to the current setting of the input base variable.

The shorthand form of the setpc command is pc.

Syntax

pc expr

6.6.56 setproc

The setproc command makes the specified processor the current one. If other
commands are issued with no processor specified, they apply to the current processor.

The shorthand form of the setprocessor command is sproc.

Syntax

sproc processor

6.6.57 setprocprop

The setprocprop command sets a processor-related internal variable to the specified
value (see procproperties on page 6-26). You need to supply either a string or an
expression, depending on the type of the variable.

The shorthand form of the setprocprop command is spp.

Syntax

spp ppvariable, value

where:

ppvariable

specifies the ppvariable to be reset. See Definitions on page 6-8 for a list
of valid ppvariables.

value specifies the new value to be assigned to the specified variable.
6-32 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI 0066B

AXD Command-line Interface
6.6.58 setreg

The setreg command sets the specified register in the specified register bank to the
value obtained by evaluating the specified expression (see registers on page 6-28). If
you do not specify a register bank, the register bank named Current is used.

The expression can also identify a register and include a register bank name.

The shorthand form of the setreg command is sreg.

Syntax

sreg [regbank|]register, expr

Examples

sreg r12 100

sets register r12 in register bank current to the value 100.

sreg FIQ|r12 IRQ|r13

sets register r12 in register bank FIQ to the value of register r13
in register bank IRQ.

6.6.59 setsourcedir

The setsourcedir command sets the list of paths to that specified.

The paths in this list, and the order in which they are listed, specify the paths searched
when a source file is required.

The shorthand form of the setsourcedir command is ssd.

Syntax

ssd list of directories

The list is of fully qualified directory names. Enclose the list in quotes if it contains any
spaces. To clear the current list, specify an empty list ("") with no space characters
between the quotation marks. If you are specifying multiple paths, separate them with
‘;’ for Windows NT or ‘:’ for UNIX.

Example

ssd "c:\my srcs\proj A;d:\proj B;c:\srclib"
ARM DUI 0066B Copyright © 1999, 2000 ARM Limited. All rights reserved. 6-33

AXD Command-line Interface
6.6.60 setwatch

The setwatch command sets the specified expression to the specified value. This is of
most use when the expression is one that is being watched (see watch on page 6-38).

The shorthand form of the setwatch command is swat.

Alias

let is an alternative to setwatch.

Syntax

swat expr1, expr2

where:

expr1 specifies an expression to which you want to assign a value.

expr2 specifies a new value to be assigned to the expression.

Examples

swat a1 100

sets variable a1 to the value 100.

swat a b sets variable a to the value of variable b.

6.6.61 source

The source command displays the specified lines of the specified source file, in the
following format:

linenumber<tab>sourcecode

The file must be associated with a loaded image.

The shorthand form of the Source command is src.

Alias

type is an alternative to source.

Syntax

src value1, [+]value2[, file]
6-34 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI 0066B

AXD Command-line Interface
where:

value1 specifies the line number of the source file at which you want the listing
to begin.

value2 specifies either the line number of the source file at which you want the
listing to end or, if preceded by +, the number of lines you want listed.

file specifies the source file you want to list (by default the command lists the
file associated with the current context).

6.6.62 sourcedir

The sourcedir command lists the paths searched when a source file is required, in the
following format:

index<tab>fully qualified directory name

The paths are searched in the order in which they are listed.

The shorthand form of the sourcedir command is sdir.

Syntax

sdir

6.6.63 stackentries

The stackentries command lists the current backtrace information stored in the
debugger describing the current execution context. Each stack entry is listed on a
separate line, in the following format:

index<tab>stackentry

The index value given in this list allows you to specify individual stack entries in other
commands. See convariables on page 6-16 and context on page 6-15, for example.

The shorthand form of the stackentries command is stk.

Alias

backtrace is an alternative to stackentries.

Syntax

stk[count]

where:
ARM DUI 0066B Copyright © 1999, 2000 ARM Limited. All rights reserved. 6-35

AXD Command-line Interface
count specifies the number of lines you want listed if you do not want the whole
stack displayed.

6.6.64 stackin

The stackin command sets the current context to that of the called procedure or
method.

The shorthand form of the stackin command is in.

Syntax

in

6.6.65 stackout

The stackout command sets the current context to that of the calling procedure or
method.

The shorthand form of the stackout command is out.

Syntax

out

6.6.66 step

The step command causes execution to proceed by one step according to the current
run mode.

The shorthand form of the step command is st.

Syntax

st[step][instr]

where:

step can be set to IN or OUT (see step on page 6-7).

instr can be set to LINE or INSTR (see instr on page 6-7).

Examples

step in line

steps one source line. If the line contains a subroutine call, steps into the subroutine.
6-36 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI 0066B

AXD Command-line Interface
step out instr

steps out of the current stack. If no stack frame information is available, steps one
instruction.

step

steps, without forcing a step in or out, one instruction or source line depending on the
setting of instr. If a subroutine call is encountered, this command steps over it.

6.6.67 stop

The stop command stops execution of the specified processor, or of the current
processor if you supply no parameter.

The stop command is obeyed only when runmode is set to its default value of ASYNC
(see runmode on page 6-6).

There is no shorthand form of the stop command.

Syntax

stop[processor]

6.6.68 type

See source on page 6-34.

6.6.69 unbreak

See clearbreak on page 6-14.

6.6.70 unwatch

See clearwatch on page 6-15.

6.6.71 variables

The variables command lists all the global variables of the specified image, or of the
current image if you do not specify an image. Each variable is listed on a separate line,
in the following format:

index<tab>varname

The position in this list, index, gives you a convenient way of referring to a variable.

The shorthand form of the variables command is va.
ARM DUI 0066B Copyright © 1999, 2000 ARM Limited. All rights reserved. 6-37

AXD Command-line Interface
Syntax

va[image]

6.6.72 watch

The watch command displays the name, type, and value of the specified expression, in
the following format:

name<tab>type<tab>value

The command displays a simple expression according to the specified format, or the
default format if you do not specify one (see also format on page 6-6). It displays a
complex expression after suitably expanding it. See also setwatch on page 6-34.

The shorthand form of the Watch command is wat.

Alias

print is an alternative to watch.

Syntax

wat expr[, format]

6.6.73 watchpt

If you supply parameters, the watchpt command creates and sets a new watchpoint so
that execution continues normally while the value stored at the specified location
changes skip times, stopping on the (skip+1)th time. If you do not specify skip it
takes a default value of 0.

To set complex watchpoints, select Watch/Breakpoints... from the Execute menu.

If you supply no parameters, the watchpt command lists all the watchpoints that are
currently set. Each watchpoint is listed on a separate line, in the following format:

index<tab>SW|HW<tab>address

The position in this list, index, gives you a convenient way of referring to a watchpoint
in such commands as ClearWatch.

The shorthand form of the WatchPoint command is wpt.
6-38 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI 0066B

AXD Command-line Interface
Syntax

wpt[expr[, skip]]

6.6.74 where

The where command displays information about the specified context, or about the
current context if you do not supply a parameter. The command displays the source file
name, line number, and source line if the source is available. Otherwise the command
displays the disassembled instruction (see stackentries on page 6-35).

There is no shorthand form of the where command.

Syntax

where[context]
ARM DUI 0066B Copyright © 1999, 2000 ARM Limited. All rights reserved. 6-39

AXD Command-line Interface
6-40 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI 0066B

Part B
 ADW and ADU

Chapter 7
About ADW and ADU

This chapter introduces ARM Debugger for Windows (ADW) and ARM Debugger for
UNIX (ADU). These are two versions of the same debugger, adapted to run under
Windows and UNIX respectively.

This chapter contains the following sections:

• About the ADW and ADU debuggers on page 7-2

• Online help on page 7-4

• Debugging an ARM application on page 7-5

• Debugging systems on page 7-6

• Debugger concepts on page 7-8.
ARM DUI 0066B Copyright © 1999, 2000 ARM Limited. All rights reserved. 7-1

About ADW and ADU
7.1 About the ADW and ADU debuggers

ADW formed part of the ARM Software Development Toolkit (SDT), and is also
supplied with the ARM Developer Suite (ADS). ADU was an extra-cost addition in SDT
2.11a or greater, and is also included in ADS.

ADW and ADU enable you to run and debug your ARM-targeted image using any of
the debugging systems described in Debugging systems on page 7-6.

You can also use ADW and ADU to benchmark your application.

Refer to the documentation supplied with your target board for specific information on
setting up your system to work with ADS, Multi-ICE, EmbeddedICE, Angel, and so on.

Note

ADW and ADU screens differ slightly in appearance. Your screens, therefore, might
look different from the figures in this part of the book.

In the past the ARM C++ compiler was an extra-cost option, and its installation added
extra features to ADW and ADU to support debugging C++. The C++ compiler is
supplied as a standard part of ADS, so making the extra features available in all cases.
Refer to Chapter 10 Using ADW and ADU with C++ for details.

Most of Part B of this book applies to both ADW and ADU. If a section applies to one
version only, this is indicated in the text or in the section heading.

7.1.1 Minimum requirements for UNIX

You can run ADU on either a Sun workstation or an HP workstation, provided they meet
the minimum requirements described in the subsections that follow.

Sun workstation

The minimum hardware requirements for installing and running ADU are:

• Sun UltraSparc or compatible machine

• CD-ROM drive (this can be a networked CD-ROM drive).

The minimum software requirements for installing and running ADU are:

• Solaris 2.5.1 or 2.6, with the Common Desktop Environment (CDE)

• ARM Developer Suite v1.0.

HP workstation

The minimum hardware requirements for installing and running ADU are:
7-2 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI 0066B

About ADW and ADU
• HP PA-RISC machine

• CD-ROM drive (this can be a networked CD-ROM drive).

The minimum software requirements for installing and running ADU are:

• HP-UX 10.20

• ARM Developer Suite v1.0.
ARM DUI 0066B Copyright © 1999, 2000 ARM Limited. All rights reserved. 7-3

About ADW and ADU
7.2 Online help

When you have started ADW or ADU, you can display online help giving information
about your current situation, or navigate your way to any other page of ADW and ADU
online help.

F1 key Press the F1 key on your keyboard to display help on the currently active
window.

Help button
Many ADW and ADU windows contain a Help button. Click this button
to display help on the currently active window.

Help menu
Select Contents from the Help menu to display a Help Topics screen
with Contents, Index, and Find tabs. The tab you used last is selected.
Click either of the other tabs to change the selection.

Select Search from the Help menu to display the Help Topics screen with
the Index tab selected.

On the Contents tabbed page, click on a closed book to open it and see a
list of the topics it contains. Select a topic and click the Display button to
display online help. Click on an open book to close it.

On the Index tabbed page, either scroll through the list of entries or start
typing an entry to bring into view the index entry you want. Select an
index entry and click the Display button to display online help.

On the Find tabbed page, follow the instructions to search the online help
text for any keywords you specify. The first time you use Find a database
file is constructed, and is then available for any later Find operations.

Select Using Help from the Help menu to display a guide to on-screen
help.

Hypertext links
Most pages of online help include highlighted text you can click on to
display other relevant online help:

• highlighted text underscored with a broken line displays a pop-up
box

• highlighted text underscored with a solid line jumps to another
page of help.

Browse buttons
Most pages of online help include a pair of browse buttons allowing you
to display a sequence of related help pages.
7-4 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI 0066B

About ADW and ADU
7.3 Debugging an ARM application

ADW and ADU work in conjunction with either:

• a hardware target system, such as an ARM Development Board, communicating
through Multi-ICE, EmbeddedICE, or Angel

• a software target system, such as ARMulator.

You debug your application using a number of windows giving various views on the
application you are debugging.

To debug your application you must choose:

• a debugging system, which can be:

— hardware-based on an ARM core

— software that emulates an ARM core.

• a debugger, such as ADW, ADU, or armsd.

Figure 7-1 shows a typical debugging arrangement of hardware and software:

 Figure 7-1 A typical debugging set-up
ARM DUI 0066B Copyright © 1999, 2000 ARM Limited. All rights reserved. 7-5

About ADW and ADU
7.4 Debugging systems

The following debugging systems are available for applications developed to run on an
ARM core:

• ARMulator

• Multi-ICE and EmbeddedICE

• Angel debug monitor on page 7-7.

7.4.1 ARMulator

ARMulator is a collection of programs that emulate the instruction sets and architecture
of various ARM processors. ARMulator:

• provides an environment for the development of ARM-targeted software on the
supported host systems

• enables benchmarking of ARM-targeted software.

ARMulator is instruction-accurate, meaning that it models the instruction set without
regard to the precise timing characteristics of the processor. It can report the number of
cycles the hardware would have taken. As a result, ARMulator is well suited to software
development and benchmarking.

7.4.2 Multi-ICE and EmbeddedICE

Multi-ICE and EmbeddedICE are JTAG-based debugging systems for ARM
processors. Multi-ICE and EmbeddedICE provide the interface between a debugger and
an ARM core embedded within an ASIC. These systems provide:

• real-time address-dependent and data-dependent breakpoints

• single stepping

• full access to, and control of the ARM core

• full access to the ASIC system

• full memory access (read and write)

• full I/O system access (read and write).

Multi-ICE and EmbeddedICE also enable the embedded microprocessor to access host
system peripherals, such as screen display, keyboard input, and disk drive storage.

For information on configuration options see Configurations on page 9-25. For detailed
information on Multi-ICE refer to the Multi-ICE documentation.
7-6 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI 0066B

About ADW and ADU
7.4.3 Angel debug monitor

Angel is a debug monitor that allows rapid development and debugging of applications
running on ARM-based hardware. Angel can debug applications running in either ARM
state or Thumb state on target hardware. It runs alongside the application being
debugged on the target platform.

You can use Angel to debug an application on an ARM Development Board or on your
own custom hardware. See the ADS Debug Target Guide for more information.
ARM DUI 0066B Copyright © 1999, 2000 ARM Limited. All rights reserved. 7-7

About ADW and ADU
7.5 Debugger concepts

This section introduces some of the concepts involved in debugging program images.

7.5.1 Debug agent

A debug agent is the entity that performs the actions requested by the debugger, such as
setting breakpoints, reading from memory, or writing to memory. It is not the program
being debugged, or the ARM Debugger itself. Examples of debug agents include
Multi-ICE, EmbeddedICE, ARMulator, and Angel Debug Monitor.

7.5.2 Remote debug interface

The Remote Debug Interface (RDI) is an open ARM standard procedural interface
between a debugger and the debug agent. The widest possible adoption of this standard
is encouraged.

RDI gives the debugger a uniform way to communicate with:

• a debug agent running on the host (for example, ARMulator)

• a debug monitor running on ARM-based hardware accessed through a
communication link (for example, Angel)

• a debug agent controlling an ARM processor through hardware debug support
(for example, Multi-ICE).
7-8 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI 0066B

Chapter 8
Getting Started in ADW and ADU

This chapter describes the main features of the ADW and ADU desktop and gives you
enough information to start working with the debugger. Additional features are
described in Chapter 9 Working with ADW and ADU. This chapter contains the
following sections:

• The ADW and ADU desktop on page 8-2

• Starting and closing ADW and ADU on page 8-4

• Loading, reloading, and executing a program image on page 8-7

• Examining and setting variables, registers, and memory on page 8-9.
ARM DUI 0066B Copyright © 1999, 2000 ARM Limited. All rights reserved. 8-1

Getting Started in ADW and ADU
8.1 The ADW and ADU desktop

The main features of the ADW and ADU desktop are:

• A menu bar, toolbar, mini toolbar, and status bar. For details see Menu bar,
toolbar, mini toolbar and status bar.

• A number of windows displaying a variety of information as you debug your
executable image. For details see ADW and ADU desktop windows on page 8-11.

• A window-specific menu that is available for each window, as described in ADW
and ADU desktop windows on page 8-11.

Figure 8-1 shows ADW or ADU with the Execution, Console, Globals and Locals
windows, in the process of debugging the sample image DHRY.

 Figure 8-1 A typical ADW or ADU desktop display

8.1.1 Menu bar, toolbar, mini toolbar and status bar

The menu bar is at the top of the ADW and ADU desktop. Click on a menu name to
display the pull down menu.
8-2 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI 0066B

Getting Started in ADW and ADU
The ARM C++ compiler supplied as part of ADS adds extra features to ADW and
ADU. In particular, a C++ menu appears between the View and Execute menus. This
provides options relevant only to C++ program debugging. C++ also adds its own mini
toolbar. See Chapter 10 Using ADW and ADU with C++ for more information.

Underneath the menu bar is the toolbar. Position the cursor over an icon and a brief
description is displayed. A processor-specific mini toolbar is also displayed. The
menus, the toolbar, and the mini toolbar are described in greater detail in the online help.

At the bottom of the desktop is the status bar. This provides current status information
or describes the currently selected user interface component.
ARM DUI 0066B Copyright © 1999, 2000 ARM Limited. All rights reserved. 8-3

Getting Started in ADW and ADU
8.2 Starting and closing ADW and ADU

Starting and closing ADW and ADU are described in the subsections:

• Starting ADW

• Starting ADU

• ADW and ADU arguments

• Closing ADW and ADU on page 8-6.

8.2.1 Starting ADW

Start ADW in any of the following ways:

• if you are running Windows 95 or Windows 98, click on the ADW Debugger
icon in the ARM Developer Suite program folder or select Start → Programs
→ ARM Developer Suite v1.0 → ADW Debugger

• if you are running Windows NT4, double-click on the adw.exe icon in the ARM
Developer Suite\Bin Program group or select Start → Programs → ARM
Developer Suite v1.0 → ADW Debugger

• if you are working in the CodeWarrior IDE, open a project and select Edit →
target Settings... → Debugger → ARM Debugger to ensure that ADW is the
default debugger, ARM Runner to ensure that ADW is the default runner, make
any other settings, Save the settings, then click Run/Debug or select Debug from
the Project menu

• launch ADW from the DOS command line, optionally with arguments.

8.2.2 Starting ADU

Start ADU in either of the following ways:

• from any directory type the full path and name of the debugger, for example,
/opt/arm/adu

• change to the directory containing the debugger and type its name, for example,
./adu

8.2.3 ADW and ADU arguments

The possible arguments (which must be in lower case) for both ADW and ADU are:

-debug ImageName

Load ImageName for debugging.

-exec ImageName

Load and run ImageName.
8-4 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI 0066B

Getting Started in ADW and ADU
-reset Reset the registry settings to defaults.

-nologo Do not display the splash screen on startup.

-nowarn Do not display the warning when starting remote debugging.

-nomainbreak

Do not set a breakpoint on main() on loading image.

-script ScriptName

Obey the ScriptName on startup. This is the equivalent of typing obey
ScriptName as soon as the debugger starts up.

-symbols Load only the symbols of the specified image. This is equivalent to
selecting Load Symbols only… from the File menu.

-li, -bi Start the debugger in little-endian or big-endian mode.

-args Pass the remaining command-line arguments to the specified image.

-armul Start the debugger using ARMulator.

-adp -linespeed baudrate [-port [s=serial port[,p=parallel

port]] | [e=ethernet address]]

Start the debugger using Remote_A, if available in the current RDI
connection list.

You can use -linespeed baudrate only in conjunction with -adp, to
specify the baud rate of the connection.

You can use -port only in conjunction with -adp, to specify the
connection to the device.

-session SessionName

Use this field to specify an ADW session name (which must contain no
space characters). You can use this option to save ADW configuration
settings in the Windows registry:

• If you specify a new session name, ADW creates a new named
session and saves the configuration information for the current
debug session in the Windows registry when you exit ADW.

• If you specify a previously used session name, ADW is configured
using the information in the named session.

This option is useful for saving and restoring multiple configurations for
use with Multi-ICE, or in any other case where you want to restore your
previous ADW configuration.
ARM DUI 0066B Copyright © 1999, 2000 ARM Limited. All rights reserved. 8-5

Getting Started in ADW and ADU
As an example of the use of arguments, to launch ADW from the command-line and
load sorts.axf for debugging, but without setting a breakpoint on main(), type:

adw -debug sorts.axf -nomainbreak

To launch ADW (with arguments) from the CodeWarrior IDE, select Target Settings...
→ Debugger → ARM Debugger, select ADW and specify any arguments you want to
be supplied to the debugger.

Refer to Specifying command-line arguments for your program on page 9-20 for more
information on specifying command-line options.

8.2.4 Closing ADW and ADU

Select Exit from the File menu to close down ADW or ADU.
8-6 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI 0066B

Getting Started in ADW and ADU
8.3 Loading, reloading, and executing a program image

You must load a program image before you can execute it or step through it.

8.3.1 Loading an image

To load a program image:

1. Select Load Image from the File menu or click the Open File button. The Open
File dialog is displayed.

2. Select the filename of the executable image you want to debug.

3. Enter in the Arguments box any command-line arguments your image needs.

4. Click OK. The program is displayed in the Execution window as disassembled
code.

A breakpoint is automatically set at the entry point of the image, usually the first
line of source after the main() function. The current execution marker, a green
bar indicating the current line, is located at the entry point of the program.

If you have recently loaded your required image, your file appears as a recently used
file on the File menu. If you load your image from the recently used file list, ADW or
ADU loads the image using the command-line arguments you specified in the previous
run.

8.3.2 Reloading an image

Having finished executing an image, the simplest way of preparing it for re-execution
is to reload it.

To reload an executable image, select Reload Current image from the File menu or
click the Reload button on the toolbar.

8.3.3 Executing an image

To run your program in ADW or ADU, select Go from the Execute menu or click the
Go button to execute the entire program. Execution continues until:

• a breakpoint halts the program at a specified point

• a watchpoint halts the program when a specified variable or register changes

• you stop the program by clicking the Stop button.

Alternatively, select Step from the Execute menu or click the Step button to step
through the code a line at a time (see Stepping through an image on page 9-9).

While the program executes:
ARM DUI 0066B Copyright © 1999, 2000 ARM Limited. All rights reserved. 8-7

Getting Started in ADW and ADU
• the Console window is active, provided semihosting is in operation (see ADS
Debug Target Guide for more information)

• the program code is displayed in the Execution window.

To continue execution from the point where the program stopped use Go or Step.

Note

Having finished executing an image, the simplest way of preparing it for re-execution
is to reload it.
8-8 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI 0066B

Getting Started in ADW and ADU
8.4 Examining and setting variables, registers, and memory

You can use ADW or ADU to display and modify the contents of the variables and
registers used by your executable image. You can also examine the contents of memory.

8.4.1 Variables

To display or modify local or global variables:

1. Display either the Locals or Globals window:

a. Select View → Variables → Local or click the Locals button on the toolbar
to display a list of local variables.

b. Select View → Variables → Global to display a list of global variables.

2. Double-click on the value you want to change in the right pane of the window.
Generally, in-place editing is possible allowing you to change the selected value.
If necessary, a Memory window is displayed or the variable is expanded or
accessed indirectly.

3. Press Return when you have set the variable to the required value, or click away
from the value to cancel the editing.

8.4.2 Registers

To display or modify registers for the current processor mode, click the Registers
button on the toolbar.

To display or modify registers for a selected processor mode:

1. Select the Registers submenu from the View menu.

2. Select the required processor mode from the Registers submenu. The registers
are displayed in the appropriate Registers window.

To change the value held in a register, double-click on its current value in the right pane
of its window.

Generally, in-place editing is possible, allowing you to change the selected value. Press
Return when you have set the register to the required value, or click away from the
value to cancel the editing.

If in-place editing is not possible, a dialog is displayed allowing you to edit the value
stored in the register.
ARM DUI 0066B Copyright © 1999, 2000 ARM Limited. All rights reserved. 8-9

Getting Started in ADW and ADU
8.4.3 Memory

To display the contents of a particular area of memory:

1. Select Memory from the View menu or click on the Memory button. The
Memory Address dialog is displayed.

2. Enter the address as a hexadecimal value (prefixed by 0x) or as a decimal value.
You can also enter an expression, for example @main + 0x5c.

3. Click OK. The Memory window opens and displays the contents of memory
around the address you specified.

When you have opened the Memory window you can:

• display other parts of the current 4KB area of memory by using the scrollbar

• display more remote areas of memory by entering another address

• right-click anywhere in the window to display the Memory window menu,
allowing you to display the contents as words, halfwords, or bytes with ASCII
characters.

To enter another address range:

1. Select Goto from the Search menu or select Goto address from the Memory
Window menu. The Goto Address dialog is displayed.

2. Enter an address as a hexadecimal value (prefixed by 0x) or as a decimal value.
You can also enter an expression, for example @main + 0x5c.

3. Click OK.

See Saving an area of memory to disk on page 9-19 for more information on working
with areas of memory.
8-10 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI 0066B

Getting Started in ADW and ADU
8.5 ADW and ADU desktop windows

The first time you run ADW or ADU, you see the:

• Execution window on page 8-11

• Console window on page 8-12

• Command window on page 8-13.

The can also use the View menu to display the:

• Backtrace window on page 8-14

• Breakpoints window on page 8-14

• Debugger Internals window on page 8-15

• Disassembly window on page 8-15

• Expression window on page 8-15 (from the Variables submenu)

• Function Names window on page 8-15

• Locals/Globals window on page 8-16 (from the Variables submenu)

• Low Level Symbols window on page 8-16

• Memory window on page 8-17

• RDI Log window on page 8-17

• Registers window on page 8-17

• Search Paths window on page 8-18

• Source File window on page 8-18

• Source Files List window on page 8-18

• Watchpoints window on page 8-18.

Some windows become available only after you have loaded an image.

Each of the ADW and ADU desktop windows displays a window-specific menu when
you click the secondary mouse button over the window. The secondary button is
typically the right mouse button. To activate an item-specific option you must position
the cursor over the item in the window before clicking.

Each of the window-specific menus is described in the online help for that window.

You can change the format of displayed windows, and the settings are automatically
saved for future use. When you start the debugger you see the arrangement of windows
you were using when you last quit ADW or ADU.

8.5.1 Execution window

The Execution window (see Figure 8-2 on page 8-12) displays the source code of the
currently executing program.
ARM DUI 0066B Copyright © 1999, 2000 ARM Limited. All rights reserved. 8-11

Getting Started in ADW and ADU
 Figure 8-2 Execution window

Use the Execution window to:

• execute the entire program or step through the program line by line

• change the display mode to show disassembled machine code interleaved with
high-level C or C++ source code

• display another area of the code by address

• toggle, set, edit, or delete breakpoints.

8.5.2 Console window

The Console window (see Figure 8-3 on page 8-13) allows you to interact with the
executing program. Anything printed by the program, for example a prompt for user
input, is displayed in this window and any input required by the program must be
entered here.

Information remains in the window until you select Clear from the Console window
menu. You can also save the contents of the Console window to disk, by selecting Save
from the Console window menu.
8-12 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI 0066B

Getting Started in ADW and ADU
 Figure 8-3 Console window

Initially the Console window displays the startup messages of your target processor, for
example ARMulator or ARM Development board.

Note

When the executing image needs input from the debugger keyboard, most ADW and
ADU functions are disabled until you have entered that information.

8.5.3 Command window

Use the Command window (see Figure 8-4 on page 8-14) to enter armsd instructions
when you are debugging an image.
ARM DUI 0066B Copyright © 1999, 2000 ARM Limited. All rights reserved. 8-13

Getting Started in ADW and ADU
 Figure 8-4 Command window

See Using command-line debugger instructions on page 9-21 for further details about
the use of the Command window. Type help at the Debug prompt for information on
the available commands or refer to Part C of this book.

8.5.4 Backtrace window

The Backtrace window displays current backtrace information about your program. Use
this to:

• show disassembled code for the current procedure

• show a list of local variables for the current procedure

• toggle, set, edit, or delete breakpoints.

8.5.5 Breakpoints window

The Breakpoints window displays a list of all breakpoints set in your image. The actual
breakpoint is displayed in the right-hand pane. If the breakpoint is on a line of code, the
relevant source file is shown in the left-hand pane.

Use the Breakpoints window to:

• show source/disassembled code

• edit or remove breakpoints.

To set a new breakpoint, see Source File window on page 8-18.
8-14 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI 0066B

Getting Started in ADW and ADU
8.5.6 Debugger Internals window

The Debugger Internals window displays some of the internal variables used by ADW
and ADU. These internal variables are also used by armsd, and details are given in
armsd variables on page 12-7.

You can use the Debugger Internals window to examine the values of these variables,
and to change the values of all except those marked read-only in the table. For
information about display formats see Working with variables on page 9-12.

8.5.7 Disassembly window

The Disassembly window displays disassembled code interpreted from a specified area
of memory. Memory addresses are listed in the left-hand pane and disassembled code
is displayed in the right-hand pane. You can view ARM code, Thumb code, or both.

Use the Disassembly window to:

• go to another area of memory

• change the disassembly mode to ARM, Thumb, or Mixed

• set, edit, or remove breakpoints.

Note

More than one Disassembly window can be active at a time.

For details of displaying disassembled code, see Displaying disassembled and
interleaved code on page 9-15.

8.5.8 Expression window

The Expression window displays the values of selected variables and/or registers.

Use the Expression window to:

• change the format of selected items, or all items

• edit or delete expressions

• display the section of memory pointed to by the contents of a variable.

For more information on displaying variable information, see Working with variables
on page 9-12.

8.5.9 Function Names window

The Function Names window lists the functions that are part of your program.

Use the Function Names window to:
ARM DUI 0066B Copyright © 1999, 2000 ARM Limited. All rights reserved. 8-15

Getting Started in ADW and ADU
• display a selected function as source code

• set, edit, or remove a breakpoint on a function.

8.5.10 Locals/Globals window

The Locals window (see Figure 8-5) displays a list of variables currently in scope. The
Globals window displays a list of global variables. The variable name is displayed in
the left-hand pane, the value is displayed in the right-hand pane.

 Figure 8-5 Locals window

Use the Locals/Globals window to:

• change the content of a variable (double-click on the value)

• display the section of memory pointed to by a variable

• change the display format for the selected value, or for all values in the window

• set, edit, or remove a watchpoint on a variable

• double-click on an item to expand a structure (the details are displayed in another
variable window).

As you step through the program, the variable values are updated.

For more information on displaying variable information, see Working with variables
on page 9-12.

8.5.11 Low Level Symbols window

The Low Level Symbols window displays a list of all the low-level symbols in your
program.

Use the Low Level Symbols window to:

• display the memory pointed to by the selected symbol

• display the source/disassembled code pointed to by the selected symbol

• set, edit, or remove a breakpoint on the line of code pointed to by the selected
symbol.
8-16 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI 0066B

Getting Started in ADW and ADU
You can display the low-level symbols in either name or address order. Right-click in
the window to display the Low Level Symbols window menu and select Sort Symbols
by… to toggle between the two settings.

8.5.12 Memory window

The Memory window displays the contents of an area of memory surrounding a
specified address. Addresses are listed in the left-hand pane, and the memory content is
displayed in the right-hand pane.

Use the Memory window to:

• display other areas of memory by scrolling or specifying an address

• set, edit, or remove a watchpoint

• change the contents of memory (double-click on an address)

• change the format of the display.

You can open multiple Memory windows.

8.5.13 RDI Log window

The RDI Log window displays the low-level communication messages between ADW
or ADU and the target processor.

Note

This facility is not normally enabled (see Remote debug information on page 9-16).

8.5.14 Registers window

The Registers window displays the registers corresponding to the mode named at the
top of the window, with the contents displayed in the right-hand pane. You can
double-click on an item to modify the value in the register.

Use the Registers window to:

• display the contents of the register memory

• display the memory pointed to by the selected register

• edit the contents of a register

• set, edit, or remove a watchpoint on a register.

You can, for example, double-click on the value of a program status register to change
its settings.
ARM DUI 0066B Copyright © 1999, 2000 ARM Limited. All rights reserved. 8-17

Getting Started in ADW and ADU
Note

Multiple register mode windows can be open at any one time, but you cannot open more
than one window for each processor mode. For example, you can open no more than
one FIQ register window at a time.

8.5.15 Search Paths window

The Search Paths window displays the search paths of the image currently being
debugged. You can remove a search path from this window using the Delete key.

8.5.16 Source File window

The Source File window displays the contents of the source file named at the top of the
window. Line numbers are displayed in the left-hand pane, code in the right-hand pane.

Use the Source File window to:

• search for a line of code by line number

• set, edit, or remove breakpoints on a line of code

• toggle the interleaving of source and disassembly.

For more information on displaying source files, see Working with source files on
page 9-11.

8.5.17 Source Files List window

The Source Files List window displays a list of all source files that have contributed
debug information to the loaded image.

Use the Source Files List window to select a source file that is displayed in its own
Source File window.

8.5.18 Watchpoints window

The Watchpoints window displays a list of all watchpoints.

Use the Watchpoints window to:

• delete a watchpoint

• edit a watchpoint.

To set a new watchpoint, see Memory window on page 8-17.
8-18 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI 0066B

Chapter 9
Working with ADW and ADU

This chapter describes more of the features of ADW and ADU. It contains the following
sections:

• Breakpoints, watchpoints, backtracing and stepping on page 9-2

• ADW and ADU further details on page 9-11

• Channel viewers on page 9-23

• Configurations on page 9-25.
ARM DUI 0066B Copyright © 1999, 2000 ARM Limited. All rights reserved. 9-1

Working with ADW and ADU
9.1 Breakpoints, watchpoints, backtracing and stepping

You use breakpoints and watchpoints to stop program execution when a selected line of
code is about to be executed, or when a specified condition occurs. You can also execute
your program step by step. This section contains the following subsections:

• Breakpoints on page 9-2

• Watchpoints on page 9-6

• Backtrace on page 9-9

• Stepping through an image on page 9-9.

9.1.1 Breakpoints

A breakpoint is a point in the code where your program is halted by ADW or ADU.
When you set a breakpoint it is marked in red in the left pane of the breakpoints window.

There are two types of breakpoint:

• a simple breakpoint that stops at a particular point in your code

• a complex breakpoint that:

— stops when the program has passed the specified point a number of times

— stops at the specified point only when an expression is true.

You can set a breakpoint at a point in the source, or in the disassembled code if it is
currently being displayed. To display the disassembled code, either:

• select Toggle Interleaving from the Options menu to display interleaved source
and assembly language in the Execution window

• select Disassembly... from the View menu to display the Disassembly window.

You can also set breakpoints on individual statements on a line, if that line contains
more than one statement.

You can set, edit, or delete breakpoints in the following windows:

• Execution

• Disassembly

• Source File

• Backtrace

• Breakpoints

• Function Names

• Low Level Symbols

• Class View (applicable to C++ only).
9-2 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI 0066B

Working with ADW and ADU
Setting a simple breakpoint

There are two methods you can use to set a simple breakpoint:

• Method 1

1. Double-click on the line where you want to set the breakpoint.

2. Click the OK button in the dialog box that appears.

• Method 2

1. Position the cursor in the line where you want to set the breakpoint.

2. Set the breakpoint in any of the following ways:

— select Toggle Breakpoint from the Execute menu

— click the Toggle breakpoint button

— press the F9 key.

A new breakpoint is displayed as a red marker in the left pane of the Execution window,
the Disassembly window, or the Source File window.

In a line with several statements you can set a breakpoint on an individual statement, as
demonstrated in the following example:

int main()
{
 hello(); world();
 .
 .
 .
 return 0;
}

If you position the cursor on the word world and click the Toggle breakpoint button,
hello() is executed, and execution halts before world() is executed.

To see all the breakpoints set in your executable image select Breakpoints from the
View menu.

To set a simple breakpoint on a function:

1. Display a list of function names in the Function Names window by selecting
Function Names from the View menu.

2. Select Toggle Breakpoint from the Function Names window menu or click the
Toggle breakpoint button.

The breakpoint is set at the first statement of the function. In a Low Level Symbols
window, the breakpoint is set to the first machine instruction of the function, that is, at
the beginning of its entry sequence.
ARM DUI 0066B Copyright © 1999, 2000 ARM Limited. All rights reserved. 9-3

Working with ADW and ADU
Complex breakpoints

When you set a complex breakpoint, you specify additional conditions in the form of
expressions entered in the Set or Edit Breakpoint dialog (Figure 9-1).

 Figure 9-1 Set or Edit Breakpoint dialog

This dialog contains the following fields:

File The source file that contains the breakpoint. This field is read-only.

Location The position of the breakpoint within the source file. This position is a
hexadecimal address for assembler code. For C or C++ code, it is shown
as a function name, followed by a line number, and if the line contains
multiple statements, a column position. This field is read-only.

Expression
An expression that must be true for the program to halt, in addition to any
other breakpoint conditions. Use C-like operators such as:

i < 10
i != j
i != j + k

Count The program halts when all the breakpoint conditions apply for the nth
time.

Breakpoint Size
You can set breakpoints to be 32-bit (ARM) or 16-bit (Thumb) size, or
allow the debugger to make the appropriate setting. A checkbox allows
you to make your selection the default setting.
9-4 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI 0066B

Working with ADW and ADU
Setting or editing a complex breakpoint

You can set complex breakpoints on:

• a line of code

• a function

• a low-level symbol.

To set or edit a complex breakpoint on a line of code:

1. Double-click on the line where you want to set a breakpoint, or on an existing
breakpoint position. The Set or Edit Breakpoint dialog is displayed.

2. Enter or alter the details of the breakpoint.

3. Click OK. The breakpoint is displayed as a red marker in the left-hand pane of
the Execution, Source File, or Disassembly window. If the line in which the
breakpoint is set contains several functions, the breakpoint is set on the function
that you selected in step 1.

To set or edit a complex breakpoint on a function:

1. Display a list of function names in the Function Names window.

2. Select Set or Edit Breakpoint from the Function Names window menu.

3. The Set or Edit Breakpoint dialog is displayed. Complete or alter the details of the
breakpoint.

4. Click OK.

To set or edit a breakpoint on a low-level symbol:

1. Display the Low Level Symbols window.

2. Select Set or Edit Breakpoint from the window menu.

3. Complete or alter the details of the breakpoint.

4. Click OK.

Removing a breakpoint

There are five methods of removing a breakpoint:

Method 1

1. Double-click on a line containing a breakpoint (highlighted in red) in the
Execution window.
ARM DUI 0066B Copyright © 1999, 2000 ARM Limited. All rights reserved. 9-5

Working with ADW and ADU
2. Click the Delete button in the dialog box that appears.

Method 2

1. Single-click on a line containing a breakpoint (highlighted in red) in the
Execution window.

2. Right-click on the line.

3. Select Toggle breakpoint from the pop-up menu that is displayed.

Method 3

1. Single-click on a line containing a breakpoint (highlighted in red) in the
Execution window.

2. Click the Toggle breakpoint button in the toolbar, or press the F9 key.

Method 4

1. Select Breakpoints from the View menu to display a list of breakpoints in the
Breakpoint window.

2. Select the breakpoint you want to remove.

3. Click the Toggle breakpoint button or press the Delete key.

Method 5

1. Select Delete All Breakpoints from the Execute menu to delete all breakpoints
that are set in the currently selected image. Delete All Breakpoints is also
available in relevant window menus.

9.1.2 Watchpoints

In its simplest form, a watchpoint halts a program when the value stored in a specified
register or memory address changes. The watchpoint halts the program at the next
statement or machine instruction after the one that triggered the watchpoint.

There are two types of watchpoints:

• a simple watchpoint that stops when a stored value changes

• a complex watchpoint that:

— stops when a stored value has changed a specified number of times

— stops when a stored value changes to a specified value.
9-6 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI 0066B

Working with ADW and ADU
Note

If you set a watchpoint on a local variable, you lose the watchpoint as soon as you leave
the function that uses the local variable.

Setting a simple watchpoint

To set a simple watchpoint:

1. Select the variable, area of memory, or register you want to watch.

2. Set the watchpoint in any of the following ways:

• select Toggle Watchpoint from the Execute menu

• select Toggle Watchpoint from the window-specific menu

• click the Watchpoint button.

Select Watchpoints from the View menu to see all the watchpoints set in your
executable image.

Complex watchpoints

When you set a complex watchpoint, you specify additional conditions in the form of
expressions entered in the Set or Edit Watchpoint dialog (see Figure 9-2).

 Figure 9-2 Set or Edit Watchpoint dialog

This dialog contains the following fields:

Item The variable or register to be watched (in a read-only field).

Target Value
The value of the variable or register that is to halt the program. If this
value is not specified, any change in the value of the item halts the
program, dependent on the other watchpoint conditions.
ARM DUI 0066B Copyright © 1999, 2000 ARM Limited. All rights reserved. 9-7

Working with ADW and ADU
Expression
An expression that must be true for the program to halt, in addition to any
other watchpoint conditions. Use C-like operators such as:

i < 10
i != j
i != j + k

Count The program halts when all the watchpoint conditions apply for the nth
time.

Setting and editing a complex watchpoint

To set a complex watchpoint:

1. Select the variable or register to watch.

2. Select Set or Edit Watchpoint from the Execute menu.

3. Specify the required details in the resulting Set or Edit Watchpoint dialog.

4. Click OK.

To edit a complex watchpoint:

1. Select Watchpoints from the View menu to display current watchpoints.

2. Double-click the watchpoint to edit it.

3. Modify the details as required.

4. Click OK.

Removing a watchpoint

Remove a simple watchpoint by using either of the following methods:

Method 1

1. Select Watchpoints from the View menu to display a list of watchpoints in the
Watchpoint window.

2. Select the watchpoint you want to remove.

3. Remove the selected watchpoint in either of the following ways:

• click the Toggle watchpoint button on the toolbar

• press the Delete key.

Method 2

1. Position the cursor on a variable or register that has a watchpoint and right-click.
9-8 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI 0066B

Working with ADW and ADU
2. Select Toggle Watchpoint from the pop-up menu.

Note

If you set a watchpoint on a local variable, you lose the watchpoint as soon as you leave
the function that uses the local variable.

9.1.3 Backtrace

When your program has halted, typically at a breakpoint or watchpoint, backtrace
information is displayed in the Backtrace window. This displays information about the
procedures that are currently active.

The following example shows the backtrace information for a program compiled with
debug information and linked with the C library:

#DHRY_2:Proc_6 line 42
#DHRY_1:Proc_1 line 315
#DHRY_1:main line 170
PC = 0x0000eb38 (_main + 0x5e0)
PC = 0x0000ae60 (__entry + 0x34)

This backtrace provides you with the following information:

Lines 1-3 The first line indicates the function that is currently executing. The
second line indicates the source code line from which this function was
called, and the third line indicates the call to the second function.

Lines 4-5 Line 4 shows the position of the call to the C library in the main procedure
of your program, and the final line shows the entry point in your program
made by the call to the C library.

Note

A simple assembly language program assembled without debug information and not
linked to a C library would show only the pc values.

9.1.4 Stepping through an image

To follow the execution of a program more closely than breakpoints or watchpoints
allow, you can step through the code in four ways.

Step to the next line of code

Step to the next line of code in either of the following ways:
ARM DUI 0066B Copyright © 1999, 2000 ARM Limited. All rights reserved. 9-9

Working with ADW and ADU
• select Step from the Execute menu

• click the Step button.

The program moves to the next line of code, which is highlighted in the Execution
window. Function calls are treated as one statement.

If only C code is displayed, Step moves to the next line of C. If disassembled code is
shown (possibly interleaved with C source), Step moves to the next line of
disassembled code.

Step in to a function call

Step in to a function call in either of the following ways:

• select Step In from the Execute menu

• click the Step In button.

The program moves to the next line of code. If the code is in a called function, the
function source appears in the Execution window, with the current line highlighted.

Step out of a function

Step out of a function in either of the following ways:

• select Step Out from the Execute menu

• click the Step Out button.

The program completes execution of the function and halts at the line immediately
following the function call.

Run execution to the cursor

To execute your program to a specific line in the source code:

1. Position the cursor in the line where execution should stop.

2. Select Run to Cursor from the Execute menu or click the Run to Cursor button.

This executes the code between the current execution and the position of the cursor.

Note

Be sure that the execution path includes the statement selected with the cursor.
9-10 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI 0066B

Working with ADW and ADU
9.2 ADW and ADU further details

Various debugger windows are described in ADW and ADU desktop windows on
page 8-11. This section gives more details of some of those windows, and describes
other information available to you during a debugging session.

The topics covered in this section are:

• Working with source files

• Working with variables on page 9-12

• Displaying disassembled and interleaved code on page 9-15

• Remote debug information on page 9-16

• Using regular expressions on page 9-16

• High-level and low-level symbols on page 9-17

• Profiling on page 9-18

• Saving an area of memory to disk on page 9-19

• Loading an area of memory from disk on page 9-19

• Specifying command-line arguments for your program on page 9-20

• Using command-line debugger instructions on page 9-21

• Changing the data width for reads and writes on page 9-21

• Flash download on page 9-22.

9.2.1 Working with source files

The debuggers provide a number of options that enable you to:

• view the paths that lead to the source files for your program

• list the names of source files that have contributed debug information

• examine the contents of specific source files.

The following sections describe these options in detail.

Search paths

To view the source for your program image during the debugging session, you must
specify the location of the files. A search path points to a directory or set of directories
that are used to locate files whose location is not referenced absolutely.

If you use the ARM command-line tools to build your project, you might need to edit
the search paths for your image manually, depending on the options you chose when
you built it.

If you move the source files after building an image, use the Search Paths window to
change the search paths set up in ADW or ADU.
ARM DUI 0066B Copyright © 1999, 2000 ARM Limited. All rights reserved. 9-11

Working with ADW and ADU
To display source file search paths select Search Paths from the View menu. The
current search paths are displayed in the Search Paths window.

To add a source file search path:

1. Select Add a Search Path from the Options menu. The Browse for Folder dialog
is displayed.

2. Browse for the directory you want to add and highlight it.

3. Click OK.

To delete a source file search path:

1. Select Search Paths from the View menu. The Search Paths window is displayed.

2. Select the path to delete.

3. Press the Delete key.

Listing source files

Follow these steps to examine the source files of the current program:

1. Display the Source Files List window, showing the names of the files that have
contributed debug information, by selecting Source Files from the View menu.

2. Select a source file to examine by double-clicking on its name. The file is opened
in its own Source File window.

Note

You can have more than one source file open at a time.

9.2.2 Working with variables

To display a list of local or global variables, select the appropriate item from the View
menu. A Locals/Globals window is displayed. You can also display the value of a single
variable, or you can display additional variable information from the Locals/Globals
window.

Follow these steps to display the value of a single variable:

1. Select View → Variables → Expression.

2. Enter the name of the variable in the View Expression dialog.

3. Click OK. The variable and its value are displayed in the Expression window.
9-12 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI 0066B

Working with ADW and ADU
Alternatively:

1. Highlight the name of the variable.

2. Select View → Variables → Immediate Evaluation, or click the Evaluate
Expression button. The value of the variable is displayed in a message box and
in the Command window.

Note

If you select a local variable that is not in the current context, an error message is
displayed.

Changing the value

To change the value of a variable that is displayed in a Local/Globals window,
double-click on its current value. In-place editing is invoked whenever possible,
otherwise a dialog is displayed allowing you to edit the value.

If the type of the variable is long long or unsigned long long, your new value might be
of such a length that it appears to be invalid. In such a case, enter LL or ULL as
appropriate at the end of the new value to force its acceptance.

Changing display formats

If the currently active window is the Locals, Globals, Expressions, or Debugger
Internals window, you can change the display format for one or all of the variables.

Follow these steps to change the display format:

1. Right-click on a variable and select Change line format (to change the display
format for that line only) or Change window format (for all lines) from the
window menu. The Display Format dialog is displayed.

2. Enter the display format. Use the same syntax as a printf() format string in C.
Table 9-1 lists the valid format descriptors.

3. Click OK.
ARM DUI 0066B Copyright © 1999, 2000 ARM Limited. All rights reserved. 9-13

Working with ADW and ADU
Note

Individual line formats are overridden by a change to the window format. A line format
of null returns the format of that line to the current window format. A window format
of null returns all display formats to the default setting.

The initial display format of a variable declared as char[]= is special. The whole string
is displayed, whereas normally arrays are displayed as ellipses (…). If the format is
changed it reverts to the standard array representation.

Alternative methods of changing the default display formats for all windows are:

• select Change Default Display Formats... from the Options menu and change
any of the displayed format strings

• select Debugger Internals from the View menu and change the value of
variables such as uint_format, float_format, and so on.

 Table 9-1 Display formats

Type Format Description

int Only use this if the expression being printed yields an integer:

%d Signed decimal integer (default for integers).

%u Unsigned integer.

%x Hexadecimal (lowercase letters).

char Only use this if the expression being printed yields a char:

%c Character.

char* %s Pointer to character. Only use this for expressions that
yield a pointer to a null terminated string.

void* %p Pointer (0x%.8lx), for example, 0x00018abc. This is
safe with any kind of pointer.

float Only use this for floating-point results:

%e Exponent notation, for example, 9.999999e+00.

%f Fixed-point notation, for example, 9.999999.

%g General floating-point notation, for example, 1.1,
1.2e+06.
9-14 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI 0066B

Working with ADW and ADU
Variable properties

If you have a list of variables displayed in a Locals/Globals window, you can display
additional information on a variable by selecting Properties from the window-specific
menu (see Figure 9-3). To display the window-specific menu, right-click on an item.
The information is displayed in a dialog.

 Figure 9-3 Variable Properties dialog

Indirection

Select Indirect through item from the Variables menu to display other areas of
memory.

If you select a variable of integer type, the value is converted to a pointer. Sign
extension is used if applicable, and the memory at that location is displayed. If you
select a pointer variable, the memory at the location pointed to is displayed. You cannot
select a void pointer for indirection.

9.2.3 Displaying disassembled and interleaved code

You can display disassembled code in the Execution window or in the Disassembly
window. Select Disassembly from the View menu to display the Disassembly window.

You can choose the type of disassembled code to display by selecting the Disassembly
mode submenu from the Options menu. ARM code, Thumb code, or both can be
displayed, depending on your image.

To display interleaved C or C++ and assembly language code:

1. Select Toggle Interleaving from the Options menu to display interleaved source
and assembly language in the Execution window. Disassembled code is displayed
in grey. The C or C++ code is displayed in black.

To display an area of memory as disassembled code:

1. Select Disassembly from the View menu, or click the Display Disassembly
button. The Disassembly Address dialog is displayed.
ARM DUI 0066B Copyright © 1999, 2000 ARM Limited. All rights reserved. 9-15

Working with ADW and ADU
2. Enter an address or an expression, for example @main.

3. Click OK. The Disassembly window displays the assembler instructions derived
from the code held in the specified area of memory. Use the scroll bars to display
the content of another memory area, or:

a. Select Goto from the Search menu.

b. Enter an address.

c. Click OK.

Specifying a disassembly mode

ADW and ADU try to display disassembled code as ARM code or Thumb code,
according to settings encoded in the debug information. Sometimes, however, the type
of code required cannot be determined. This can happen, for example, if you have
copied the contents of a disk file into memory or if you are disassembling a ROM.

When you display disassembled code in the Execution window you can choose to
display ARM code, Thumb code, or both. To specify the type of code displayed, select
Disassembly mode from the Options menu.

9.2.4 Remote debug information

The RDI Log window displays the low-level communication messages between the
debugger and the target processor.

This facility is not normally enabled. It must be specially turned on when the RDI is
compiled.

To display Remote Debug Information (RDI) select RDI Protocol Log from the View
menu. The RDI Log window is displayed.

Use the RDI Log Level dialog, obtained by selecting Set RDI Log Level from the
Options menu, to select the information to be shown in the RDI Log window:

Bit 0 RDI level logging on or off

Bit 1 Device driver logging on or off

9.2.5 Using regular expressions

Use regular expressions to specify and match strings. A regular expression is either:

• a single extended ASCII character (other than the special characters described
below)

• a regular expression modified by one of the special characters.
9-16 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI 0066B

Working with ADW and ADU
You can include low-level symbols or high-level symbols in a regular expression (see
High-level and low-level symbols on page 9-17 for more information).

Pattern matching follows the UNIX regexp(5) format, but without the special
symbols, ^ and $.

The following special characters modify the meaning of the previous regular expression
(and work only when they follow a regular expression):

* Zero or more of the preceding regular expressions. For example, A*B
would match B, AB, and AAB.

? Zero or one of the preceding regular expression. For example, AC?B
matches AB and ACB but not ACCB.

+ One or more of the preceding regular expression. For example, AC+B
matches ACB and ACCB, but not AB.

The following special characters are regular expressions in themselves:

\ Precedes any special character you need to include literally in an
expression to form a single regular expression. For example, * matches
a single asterisk (*) and \\ matches a single backslash (\). The regular
expression \x is equivalent to \x as the character x is not a special
character.

() Allows grouping of characters. For example, (202)* matches
202202202 (as well as nothing at all), and (AC?B)+ looks for sequences
of AB or ACB, such as ABACBAB.

. Exactly one character. This is different from ? in that the period (.) is a
regular expression in itself, so .* matches all, while ?* is invalid. Note
that . does not match the end-of-line character.

[] A set of characters, any one of which can appear in the search match. For
example, the expression r[23] would match strings r2 and r3. The
expression [a-z] would match all characters between a and z.

9.2.6 High-level and low-level symbols

A high-level symbol for a procedure refers to the address of the first instruction that has
been generated within the procedure, and is denoted by the function name shown in the
Function Names window.

A low-level symbol for a procedure refers to the address that is the target for a branch
instruction when execution of the procedure is required.
ARM DUI 0066B Copyright © 1999, 2000 ARM Limited. All rights reserved. 9-17

Working with ADW and ADU
The low-level and high-level symbols can refer to the same address. Any code between
the addresses referred to by the low-level and high-level symbols generally concerns the
stack backtrace structure in procedures that conform to the appropriate variants of the
ARM/Thumb Procedure Call Standard (ATPCS), or argument lists in other procedures.
You can display a list of the low-level symbols in your program in the Low Level
Symbols window.

In a regular expression, indicate high-level and low-level symbols as follows:

• precede the symbol with @ to indicate a low-level symbol

• precede the symbol with ^ to indicate a high-level symbol.

9.2.7 Profiling

Profiling involves sampling the program counter (pc) at specific time intervals. From
this information the percentage of time spent in each procedure can be estimated. Using
the armprof command-line program on the data generated by ADW or ADU, you see
where effort can be most effectively spent to make the program more efficient.

Note

Profiling is supported by ARMulator and Angel, but not by EmbeddedICE or
Multi-ICE.

To collect profiling information:

1. Load your image file.

2. Select Options → Profiling → Toggle Profiling.

3. Execute your program.

4. When the image terminates, select Options → Profiling → Write to File.

5. A Save dialog appears. Enter a file name and a directory as necessary.

6. Click Save.

Note

You cannot display profiling information from within the debugger. You must capture
the data using the Profiling functions on the Options menu, then use the armprof
command-line tool, described in the ADS Tools Guide.

Profiling information is collected from the beginning of program execution. If you want
to collect information on just a part of the execution:
9-18 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI 0066B

Working with ADW and ADU
1. Initiate collection of profiling information before executing the program.

2. Clear the information collected up to a breakpoint at the beginning of the region
of interest, by selecting Options → Profiling → Clear Collected.

3. Execute the program as far as another breakpoint at the end of the region of
interest.

9.2.8 Saving an area of memory to disk

To copy the contents of an area of memory to a disk file:

1. Select Put File from the File menu to display the Put file dialog (see Figure 9-4
on page 9-19).

 Figure 9-4 Put File dialog

2. Enter the name of the file to write to.

3. Enter a memory area in the From address and To fields.

4. Click Save.

5. Click OK. The output is saved as a binary file.

9.2.9 Loading an area of memory from disk

To copy the contents of a disk file to memory:

1. Select Get File from the File menu to display the Get file dialog (Figure 9-5).
ARM DUI 0066B Copyright © 1999, 2000 ARM Limited. All rights reserved. 9-19

Working with ADW and ADU
 Figure 9-5 Get File dialog

2. Select the file you want to load into memory.

3. Enter a memory address where the file should be loaded.

4. Click Open.

9.2.10 Specifying command-line arguments for your program

Follow these steps to specify the command-line arguments for your program:

1. Select Set Command Line Args from the Options menu. The Command Line
Arguments dialog is displayed (see Figure 9-6).

 Figure 9-6 Command Line Arguments dialog

2. Enter the command-line arguments for your program.

3. Click OK.

Note

You can also specify command-line arguments when you load your program in the
Open File dialog or by changing the debugger internal variable, $cmdline.
9-20 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI 0066B

Working with ADW and ADU
9.2.11 Using command-line debugger instructions

If you are familiar with the ARM symbolic debugger (armsd) you might prefer to use
almost the same set of commands from the Command window. The armsd command
Pause is unavailable in the Command window. Follow these steps to use all other
armsd commands from within ADW or ADU:

1. Select Command from the View menu to open the Command window displaying
a Debug: command line.

2. Enter ARM command-line debug commands at this prompt. The syntax used is
the same as for armsd. Type help for information on the available commands.

Refer to Part C of this book for more information on armsd.

9.2.12 Changing the data width for reads and writes

You can use the Command window to enter a command that reads data from, or writes
data to memory. You must, however, be aware of the default width of data read or
written, and how to change it if necessary. By default, a read from or write to memory
in ADW or ADU transfers a word value. For example:

let 0x8000 = 0x01

transfers 4 bytes to memory starting at address 0x8000. In this example the bytes at
0x8001, 0x8002 and 0x8003 are all zero-filled.

To write a single byte to memory, use an instruction of the form:

let *(char *) 0xaddress = value

To read a single byte from memory, use an instruction of the form:

print /%x *(char *) 0xaddress

where /%x means display in hexadecimal.

You can also read and write halfword short values in a similar way, for example:

let *(short *) 0xaddress = value
print /%x *(short *) 0xaddress

You can also select View → Variables → Expression to open the View Expression
window, and use that to specify bytes or shorts for displaying memory. For example, for
bytes, enter *(char *) 0xaddress in the View Expression box, and for halfwords,
enter *(short *) 0xaddress in the View Expression box. To display in
hexadecimal, click the right mouse button on the Expression window, select Change
Window Format and enter %x.
ARM DUI 0066B Copyright © 1999, 2000 ARM Limited. All rights reserved. 9-21

Working with ADW and ADU
Note

Changes to window formats are saved. Changes to line formats are not saved. If you
select Change Window Format and leave the format field blank, the setting defaults
to the original setting.

9.2.13 Flash download

Use the Flash Download dialog (see Figure 9-7) to write an image to the Flash memory
chip on an ARM Development Board or any suitably equipped hardware.

 Figure 9-7 Flash Download dialog

Set Ethernet Address
Use the Set Ethernet Address option if necessary after writing an image
to Flash memory. You might do this, for example, if you are using Angel
with Ethernet support.

When you click OK, you are prompted for the IP address and netmask,
for example, 193.145.156.78.

You do not need to use this option if you have built your own Angel port
with a fixed Ethernet address.

Arguments / Image
Specifies the arguments or image to write to Flash. Use the Browse
button to select the image.

For more information about writing to Flash memory, including details of how to build
your own Flash image, refer to the ADS Debug Target Guide and the ADS Tools Guide.
9-22 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI 0066B

Working with ADW and ADU
9.3 Channel viewers

ADW supports the use of Channel Viewers to access debug communication channels.
An example channel viewer is supplied with ADW (ThumbCV.dll) or you can provide
your own viewer.

Note

ADU also supports the use of Channel Viewers, but ADS does not yet include a channel
viewer that runs under UNIX.

9.3.1 ThumbCV channel viewer

To select a Channel Viewer when running ADW:

1. Select Configure Debugger from the Options menu.

2. On the Target tab, select Remote_A.

3. Click the Configure button. The Remote_A Connection dialog is displayed.

4. Select the Channel Viewer Enabled option. The Add and Remove buttons are
activated.

5. Click the Add button and a list of .DLLs is displayed.

6. Select the appropriate .DLL and click the Open button.

Click the OK button on either the Remote_A Connection dialog or the Debugger
Configuration dialog to restart ADW with an active channel viewer. See
Remote_A connection on page 9-34 for more information on the Remote_A
Connection dialog. ThumbCV.DLL provides the viewer shown in Figure 9-8.

 Figure 9-8 Thumb Comms Channel Viewer
ARM DUI 0066B Copyright © 1999, 2000 ARM Limited. All rights reserved. 9-23

Working with ADW and ADU
This window has a dockable dialog bar at the bottom that is used to send information
down the channel. Typing information in the edit box and clicking the Send button will
store the information in a buffer. The information is sent when requested by the target.
The Left to send counter displays the number of bytes that are left in the buffer.

Sending information

To send information to the target, type a string into the edit box on the dialog bar and
click the Send button. The information is sent when requested by the target, in ASCII
character codes.

Receiving information

The information that is received by the channel viewer is converted into ASCII
character codes and displayed in the window, if the channel viewers are active.
However, if 0xffffffff is received, the following word is treated and displayed as a
number.
9-24 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI 0066B

Working with ADW and ADU
9.4 Configurations

You can examine and change the configuration of:

• the Debugger, which includes configuration of:

— the target environment for the image being debugged

— debugger parameters

— startup parameters.

• ARMulator

• a Remote_A connection to Angel or EmbeddedICE

• Multi-ICE

• BATS

• EmbeddedICE.

9.4.1 Debugger configuration

The Debugger Configuration dialog consists of three tabbed screens:

• Target environment

• Debugger on page 9-26

• Memory Maps on page 9-28 (for SDT 2.xx versions of ARMulator only).

Select Configure Debugger from the Options menu to open the Debugger
Configuration dialog.

Target environment

To configure the target environment:

1. Click the Target tab of the Debugger Configuration dialog (see Figure 9-9 on
page 9-26).

2. Change the following configuration options, as required:

Target Environment
Select the target environment for the image being debugged.

Add Display an Open dialog to add a new environment to the debugger
configuration.

Remove Remove a target environment.

Configure
Display a configuration dialog for the selected environment.

 Display a more detailed description of the selected environment.
ARM DUI 0066B Copyright © 1999, 2000 ARM Limited. All rights reserved. 9-25

Working with ADW and ADU
 Figure 9-9 Configuration of target environment

3. Save or discard your changes:

• click OK to save any changes and exit

• click Apply to save any changes

• click Cancel to ignore all changes not applied and exit

• click Help to display online help.

Note

Apply is disabled for the Target page because a successful RDI connection must be
made first. When you click OK an attempt is made to make your selected RDI
connection. If this does not succeed, the ARMulate setting is restored.

Debugger

To change the configuration used by the debugger:

1. Click the Debugger tab of the Debugger Configuration dialog (see Figure 9-10
on page 9-27).

2. Change the following configuration settings, as required:
9-26 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI 0066B

Working with ADW and ADU
Profile Interval
This is the time between pc sampling in microseconds. It is applicable
to ARMulator and Angel only. Lower values give more accurate
results than higher values, but slow down execution more.

 Figure 9-10 Configuration of debugger

Source Tab Length
This specifies the number of space characters used for tabs when
displaying source files.

Endian Use these buttons to inform the debugger that the target is operating in
little-endian or big-endian mode.

Little low addresses have the least significant bytes.

Big high addresses have the least significant bytes.

These buttons are disabled if you are using RDI 1.51, and in that case
similar buttons are enabled on the target configuration dialog.

Disable Allows you to turn off the following display features:

Splash screen
When selected, stops display of the splash screen (the ARM
Debugger startup box) when the debugger is first loaded.
ARM DUI 0066B Copyright © 1999, 2000 ARM Limited. All rights reserved. 9-27

Working with ADW and ADU
Remote Startup warning
Turns on or off the warning that debugging is starting with
Remote_A enabled. If the warning is turned off and
debugging is started without the necessary hardware
attached, there is a possibility that ADW or ADU might
hang. If the warning is enabled, you have the opportunity to
start in ARMulate.

3. Save or discard your changes:

• click OK to save any changes and exit

• click Apply to save any changes

• click Cancel to ignore all changes not applied and exit.

Note

When you make changes to the debugger configuration the current execution is ended
and your program is reloaded.

Memory Maps

For the version of ARMulator that is supplied as part of the ARM Developer Suite you
can select a memory map file in the ARMulator Configuration dialog (see ARMulator
configuration on page 9-31).

For older versions of ARMulator only (for example, the version supplied with SDT
2.50), the matching older version of file armul.cnf must also be present in the \bin
directory, and you can configure Memory Maps as follows:

1. Click the Memory Maps tab of the Debugger Configuration dialog (see
Figure 9-11).
9-28 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI 0066B

Working with ADW and ADU
 Figure 9-11 Configuration of ARM Debugger memory maps

2. Change the following configuration settings, as required:

Memory Map
This allows you to specify a memory map file, containing information
about a simulated memory map that ARMulator uses. It applies to
older versions of ARMulator only. The file includes details of the
databus widths and access times for each memory region in the
simulated system. See the ADS Debug Target Guide for more
information.

You can select one of three Memory Map options:

No Map File
Use the ARMulator default memory map. This is a flat 4GB bank of
ideal 32-bit memory, having no wait states.

Global Map File
Use a global memory map. Select this option to use the specified
memory map file for every image loaded during the current debug
session.

A box allows you to enter a filename or to select a filename from a pull
down list. Use this box to add new map files to the list, or select a map
file from the list. When you have selected a map file, the debugger
checks that the file exists and is of a valid format. Any file that fails
these checks is removed from the list. The dialog remains, however, so
you can correct an error or select another map file if necessary.
ARM DUI 0066B Copyright © 1999, 2000 ARM Limited. All rights reserved. 9-29

Working with ADW and ADU
Use the Remove button to remove the currently selected file from the
list.

The browse button allows you to select a memory map file using a
dialog.

Local Map File
Use a local memory map. Select this option to use a memory map file
that is local to a project.

If a local memory map file is required when the debugger is initialized,
the current working directory is searched. If a re-initialization occurs
after the debugger has started and loaded an image, the directory
containing the image is searched.

A box allows you to pull down a list of filenames, add a new filename
to the list, or select a filename from the list. You must not specify an
absolute path name, but you can specify a memory map file relative to
the current image path.

The browse button allows you to select a memory map file using a
dialog.

When you have specified a filename, the debugger does not check for
the existence of the file or the validity of its format. If the format of the
file is found to be invalid at re-initialization, the debugger displays an
error message. In that case, or if the file does not exist, the debugger
defaults to the No Map File option and uses the ARMulator default
settings.

Use the Remove button to remove the currently selected file from the
list.

Note

Map files are used only at re-initialization, not when a program is loaded. When
you select the Local Map File option, the map file in the working directory of the
current image is used. If you load a new image, the same map file is used. To use
a map file that is associated with the new image, you must re-initialize the
debugger by selecting Configure Debugger… from the Options menu and
clicking OK.

3. Save or discard your changes:

• click OK to save any changes and exit

• click Apply to save any changes

• click Cancel to ignore all changes not applied and exit.
9-30 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI 0066B

Working with ADW and ADU
9.4.2 ARMulator configuration

Use the ARMulator Configuration dialog to change configuration settings for
ARMulator:

To change configuration settings for ARMulator:

1. Select Configure Debugger from the Options menu.

2. Click on the Target tab.

3. Select ARMulate in the Target Environment field.

4. Click on the Configure button. Two ARMulator Configuration dialogs are
available, and the one that is appropriate for the ARMulator you are using is
displayed. Descriptions follow of both ARMulation Configuration dialogs. Be
sure to read only the one you need. When you are satisfied with all the settings,
click OK.

Configuration of newer ARMulator

The latest ARMulator is supplied in two forms. You normally use the ARMulator
supplied in file armulate.dll. If, however, you need to simulate the ARM966E-S
core, then you must user the ARMulator supplied in file armulxxe.dll instead. Using
either of these ARMulators supplied as part of the ARM Developer Suite, the
ARMulation Configuration dialog appears as follows:
ARM DUI 0066B Copyright © 1999, 2000 ARM Limited. All rights reserved. 9-31

Working with ADW and ADU
 Figure 9-12 Configuration of newer ARMulator

The configuration dialog for the newer ARMulator enables you to:

• specify which ARM processor you want ARMulator to emulate

• choose between emulating a processor clock running at a speed that you can
specify, or executing instructions in real time

• specify whether floating point arithmetic is to be emulated

• specify that the emulated target is to operate in little-endian or big-endian mode

• specify a memory map file, or that you want to use default settings.

For information about ARMulator Clock speed settings, refer to ARMulator clock
speed on page 9-34.

If you are using the software floating-point C libraries, ensure that the Floating Point
Emulation option is off (blank). The option should be on (checked) only if you are
using the Floating Point Emulator (FPE).

If, in the Memory Map File box, you select No Map File, the memory model declared
as default in the armul.cnf file is used. This typically represents a flat 4GB bank of
ideal 32-bit memory having no wait states. To use a memory map file, select Map File.
Specify the filename by entering it, or click the Browse button, locate and select the file,
and click Open. You must specify an existing memory map file. For more information
about ARMulator and memory map files, see the ADS Debug Target Guide.
9-32 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI 0066B

Working with ADW and ADU
Configuration of older ARMulator

If you are using an ARMulator (armulate.dll file) older than the one supplied as part
of the ARM Developer Suite, the ARMulation Configuration dialog appears as follows:

 Figure 9-13 Configuration of older ARMulator

The configuration dialog for the older ARMulator enables you to:

• specify which ARM processor you want ARMulator to emulate

• choose between emulating a processor clock running at a speed that you can
specify, or executing instructions in real time

• specify whether floating-point arithmetic is to be emulated.

For information about ARMulator Clock speed settings, refer to ARMulator clock
speed on page 9-34.

If you are using the software floating-point C libraries, ensure that the Floating Point
Emulation option is off (blank). The option should be on (checked) only if you are
using the Floating Point Emulator (FPE).

Note

If you use the SDT 2.50 armulate.dll file, you must use the SDT 2.50 armul.cnf
file. If you use the ADS armulate.dll file, you must use the ADS armul.cnf file.
ARM DUI 0066B Copyright © 1999, 2000 ARM Limited. All rights reserved. 9-33

Working with ADW and ADU
ARMulator clock speed

If you set a nonzero emulated Clock Speed, then the clock speed used is the value that
you enter. Values stored in debugger internal variable $clock depend on this setting,
and are unavailable if you set the speed to 0.00 (older ARMulator) or select Real-time
(newer ARMulator). For information about debugger internal variables, see Debugger
Internals window on page 8-15. The ADW or ADU clock speed defaults to 0.00 for
compatibility with the defaults of armsd. Setting 0.00 MHz or selecting Real-time in
ADW or ADU is equivalent to omitting the -clock armsd option on the command line.
In other words, the clock frequency is unspecified, and the default clock frequency
specified in the configuration file armul.cnf is used.

The configuration file is armul9xxe.cnf if you are using the special ARMulator from
file armul9xxe.dll.

For ARMulator, an unspecified clock frequency is of no consequence because
ARMulator does not need a clock frequency to be able to emulate the execution of
instructions and count cycles (for $statistics). However, your application program
might sometimes need to access a clock, so ARMulator must always be able to give
clock information. That is why the clock frequency from the configuration file is used
by ARMulator if no emulated clock speed is specified.

In either case, the clock information is used by ARMulator to calculate the elapsed time
since execution of the application program began. This elapsed time can be read by the
application program using the C function clock() or the semihosting SWI_clock, and
is also visible to the user from the debugger as $clock. It is also used internally by
ADW, ADU, and armsd in the calculation of $memstats. The clock speed (whether
specified or unspecified) has no effect on actual (real-time) speed of execution under
ARMulator. It affects the simulated elapsed time only.

$memstats is handled slightly differently because it does need a defined clock
frequency, so that ARMulator can calculate how many wait states are needed for the
memory speed defined in an armsd.map file. If a clock speed is specified and an
armsd.map file is present, then $memstats can give useful information about memory
accesses and times. Otherwise, for the purposes of calculating the wait states, a default
core:memory clock ratio specified in the configuration file is used, so that $memstats
can still give useful memory timings.

9.4.3 Remote_A connection

If you are using Angel or EmbeddedICE, use the Remote_A connection dialog to
configure the settings for the remote connection you are using to debug your
application.

To change remote connection settings:
9-34 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI 0066B

Working with ADW and ADU
1. Select Configure Debugger from the Options menu.

2. Click on the Target tab.

3. Select Remote_A Target Environment to select Angel Debug Protocol (ADP).

4. Click Configure to display the Remote_A connection dialog (see Figure 9-14).

5. When you are satisfied with any changes you make to the settings, click OK.

 Figure 9-14 Configuration of remote connection

The Remote_A connection dialog allows you to examine and/or change:

Remote connection driver
Click Select... to see a list of available drivers, including Serial, Serial
/Parallel, and Ethernet. Select one to use it instead of the current driver.
To change the settings of the currently selected driver, click Configure....
A dialog appears, similar to one of Figure 9-15, Figure 9-16 on
page 9-36, or Figure 9-17 on page 9-36.
ARM DUI 0066B Copyright © 1999, 2000 ARM Limited. All rights reserved. 9-35

Working with ADW and ADU
 Figure 9-15 Serial connection configuration

 Figure 9-16 Serial/parallel connection configuration

 Figure 9-17 Ethernet connection configuration

Heartbeat
Ensures reliable transmission by sending heartbeat messages. If not
enabled, there is a danger that the host and the target can get into a
deadlock situation, with both waiting for a packet.

Endian
Use these buttons to inform the debugger that the target is operating in
little-endian or big-endian mode. Generally, Angel can make the correct
endian setting in this dialog automatically.

These buttons are disabled if you are using RDI 1.50, and in that case
similar buttons are enabled on the Debugger tabbed page of the Debugger
Configuration dialog.
9-36 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI 0066B

Working with ADW and ADU
Channel Viewers
Channel viewers are not supported by ADU.

In ADW, checking Enabled allows you to add, remove, or select channel
viewers in the displayed list of .dll files. The only one ARM supplies is
ThumbCV.dll. See ThumbCV channel viewer on page 9-23 for more
information.

Click the Add... button to add a channel viewer DLL to the displayed list.

Click the Remove... button to remove the currently selected channel
viewer DLL from the displayed list.

9.4.4 Multi-ICE configuration

If you need to add Multi-ICE to the list of available targets, click Add and use the
resulting browse dialog to locate and select the Multi-ICE.dll file.

Select the Multi-ICE target line and click the Configure button to display the dialog
shown in Figure 9-18.

 Figure 9-18 Multi-ICE configuration dialog

The Multi-ICE configuration dialog enables you to:
ARM DUI 0066B Copyright © 1999, 2000 ARM Limited. All rights reserved. 9-37

Working with ADW and ADU
• specify the network address of the computer on which the Multi-ICE Server
software is running

• select a processor driver

• specify a connection name (required only when access to the Multi-ICE Server
software is across a network)

• specify DLL Settings to control the use of various debugger features

Note

The only such feature at present is Read Ahead Cache Enabled. This improves
memory read performance by reading more memory than the debugger requests
and caching the rest in case it is needed. The DLL learns which regions of
memory are safe to access from previous read requests and never reads memory
that has not been accessed previously. For certain operations this improves
performance considerably, for example stepping with many string variables
displayed in a debugger window.

The setting is saved and is on by default. If you are debugging a system with
demand paged memory, switch this feature off.

• select a channel viewer (check the Enabled check box if you want to add viewers
to or remove viewers from the list or to select one of the listed viewers).

9.4.5 BATS configuration

If you need to add BATS to the list of available targets, click Add and use the resulting
browse dialog to locate and select the bats.dll file.

Select the BATS target line and click the Configure button to display the dialog shown
in Figure 9-19.

 Figure 9-19 BATS configuration dialog

In the BATS configuration dialog you can:
9-38 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI 0066B

Working with ADW and ADU
• click Add to display a browse dialog and select a filename to add to the (initially
empty) list of available configuration files

• click Remove to remove the currently displayed filename from the list of
available configuration files

• select little-endian or big-endian mode of operation for the target you are
preparing to emulate

• click OK to configure BATS with the information stored in the configuration file
identified by the currently displayed filename

• click Cancel to close the dialog without making any change to the current
configuration of BATS.

9.4.6 EmbeddedICE configuration

Use the EmbeddedICE Configuration dialog to select the settings for an EmbeddedICE
target. This option is enabled only if EmbeddedICE is connected to your machine.

To change the EmbeddedICE configuration options:

1. Select Configure EmbeddedICE from the Options menu. A configuration
dialog, shown in Figure 9-20, is displayed.

 Figure 9-20 Configuration of EmbeddedICE target

2. Change the following configuration settings, as required:

Name Name given to the EmbeddedICE configuration. Valid options are:

ARM7DI for use with ARM7 core with debug extensions and
EmbeddedICE logic (includes ARM7DMI)
ARM DUI 0066B Copyright © 1999, 2000 ARM Limited. All rights reserved. 9-39

Working with ADW and ADU
ARM7TDI
for use with ARM7 core with Thumb and debug extensions
and EmbeddedICE logic (includes ARM7TDMI).

Version Version given to the EmbeddedICE configuration. Specify the version
to use or enter any if you do not require a specific implementation.

Load Agent
Specify a new EmbeddedICE ROM image file, download it to your
board, and run it. Use this for minor updates to the ROM.

Load Config
Specify an EmbeddedICE configuration file to load. Click OK to run.
9-40 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI 0066B

Chapter 10
Using ADW and ADU with C++

This chapter describes the additions that ARM C++ makes to ADW and ADU, and
contains the following sections:

• About ADW and ADU for C++ on page 10-2

• Using the C++ debugging tools on page 10-3.
ARM DUI 0066B Copyright © 1999, 2000 ARM Limited. All rights reserved. 10-1

Using ADW and ADU with C++
10.1 About ADW and ADU for C++

ADW and ADU have been extended to support C++ debugging. A dynamic link library
(adw_cpp.dll) is installed in the same directory as adw.exe. The adw_cpp.dll
adds:

• a C++ menu between the View and Execute menus in the main menu bar

• five buttons in the ADW or ADU toolbar:

 Evaluate Expression

 View Classes

 Show Watches

 Hide Watches

 Recalculate Watches.

Figure 10-1 shows an example of the ADW and ADU C++ debug interface and the C++
menu.

 Figure 10-1 The ADW and ADU C++ interface
10-2 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI 0066B

Using ADW and ADU with C++
10.2 Using the C++ debugging tools

The menu items in the C++ menu provide three additional debugger windows:

• the Class View window displays the class hierarchy of a C++ program in outline
format

• the Watch View window displays a list of watches, allowing you to add and
remove variables and expressions to be watched, and change the contents of
watched variables

• the Evaluate Expression window allows you to enter an expression to be
evaluated, and to add that expression to the Watch window.

10.2.1 Using the Class View window

You can use the Class View window to view the class structure of your C++ program.
Classes are displayed in an outline format that allows you to navigate through the
hierarchy to display the member functions for each class. A special branch of the
hierarchy called Global displays global functions.

You can also use the Class View window to view function code and set breakpoints for
a class.

Displaying the Class View window

To open the Class View window:

1. Select View Classes from the C++ menu, or click on the View Classes button in
the toolbar. A Class View window is displayed that shows the class hierarchy of
your C++ program. Figure 10-2 shows an example of the Class View window.

 Figure 10-2 The Class View window
ARM DUI 0066B Copyright © 1999, 2000 ARM Limited. All rights reserved. 10-3

Using ADW and ADU with C++
Viewing code from the Class View window

To view the source code for a class:

1. Display the Class View window.

2. Click the right mouse button on a member function. A Class View window menu
is displayed (Figure 10-3).

 Figure 10-3 The Class View window menu

3. Select View Source from the Class View window menu to display the source
code for the function. You can also double-click the left mouse button on a
member function to display the function source.

4. Select Set or Edit Breakpoint... from the Execute menu if you want to add a
breakpoint within the code you are viewing. Refer to Setting and clearing
breakpoints from the Class View window for information on how to set a
breakpoint at function entry.

Setting and clearing breakpoints from the Class View window

To toggle a breakpoint in the program when the source for a class or function is entered:

1. Display the Class View window.

2. Click the right mouse button on a member function. A Class View window menu
is displayed (see Figure 10-3).

3. Select Toggle Breakpoint from the Class View window menu to set a breakpoint,
or unset an existing breakpoint. Breakpoints are indicated by a red dot to the left
of the function in the Class View window.
10-4 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI 0066B

Using ADW and ADU with C++
10.2.2 Using the Watch window

The Watch window allows you to set watches on variables and expressions. It provides
similar functionality to the debugger Local and Global windows. In addition, it provides
a C++ interpretation of the data being displayed.

Note

The Watch window is not used to set watchpoints. Select Set or Edit Watchpoint...
from the Execute menu to set watchpoints. Refer to Watchpoints on page 9-6 for more
information.

Evaluation of function pointers and member functions is not available in this version of
ADW or ADU.

You can specify the contents and format of the Watch window using the Watch window
menu. The following sections describe how to:

• view the Watch window

• display the Watch window menu

• delete and add watch items

• format watch items

• change the contents of watched items

• recalculate watches.

Viewing the Watch window

To view the Watch window:

1. Select Show Watch Window from the C++ menu or click on the Show Watches
button in the toolbar. The Watch window displays a list of watched variables and
expressions. Figure 10-4 shows an example.

 Figure 10-4 The Watch window
ARM DUI 0066B Copyright © 1999, 2000 ARM Limited. All rights reserved. 10-5

Using ADW and ADU with C++
Expressions that return a scalar value are displayed as an expression-value pair.
Non-scalar values, such as structures and classes, are displayed as a tree of
member variables. If a class is derived, the base classes are represented by
::<base class> member variables of the class.

Note

You can also open the Watch window from the Evaluate Expression window. Refer to
Evaluating expressions and adding watches on page 10-9 for more information.

Displaying the Watch window menu

The Watch window menu enables you to add and delete watches, to change the display
format of watches, and to change the contents of watched variables. To display the
Watch window menu:

1. Display the Watch window.

2. Click the right mouse button in the Watch window. The Watch window menu is
displayed. This menu is context-sensitive. The menu items that it contains will
depend on:

• whether or not you have clicked on an existing watch item

• the type of watch item you have clicked on.

For example, Figure 10-5 shows the Watch window menu that is displayed when
the right mouse button is clicked on the character array buf.

 Figure 10-5 The Watch window menu

Deleting a watch item

To delete a watch item from the Watch window:

1. Display the Watch window.
10-6 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI 0066B

Using ADW and ADU with C++
2. Either:

• click the right mouse button on the item you want to delete and select
Delete Item from the Watch window menu

• click on the item you want to delete and press the Delete key.

The watch item is deleted from the Watch window.

Adding a watch item

To add a watch item to the Watch window:

1. Display the Watch window.

2. Either:

• click the right mouse button in the Watch window to display the Watch
window menu and select Add Item from the Watch window menu

• press the Insert key.

A Watch Control window is displayed (see Figure 10-6).

 Figure 10-6 The Watch Control window

3. Enter an expression to add to the Watch window and click OK. Refer to
Evaluating expressions and adding watches on page 10-9 for more information
on the types of expression you can add to the Watch window.

Note

You can also add an expression to the Watch window directly from the Evaluate
Expression window. Refer to Evaluating expressions and adding watches on page 10-9
for more information.

Formatting watch items

To change the formatting of values displayed in the Watch window:

1. Display the Watch window.
ARM DUI 0066B Copyright © 1999, 2000 ARM Limited. All rights reserved. 10-7

Using ADW and ADU with C++
2. Right-click in the Watch window to display the Watch window menu.

3. Select Format Window to format all items in the window. The Display Format
window is displayed (Figure 10-7).

 Figure 10-7 The Display Format window

4. Enter a format string for the item, or items in the window. You can enter any
single print conversion specifier that is acceptable as an argument to ANSI C
sprintf() as a format string, except that * cannot be used as a precision. For
example, enter %x to format values in hexadecimal, or %f to format values as a
character string (see also Working with variables on page 9-12).

5. Click OK to apply the format change.

Changing the contents of watched items

To change the contents of items in the Watch window:

1. Display the Watch window.

2. Display the Modify Item window (see Figure 10-8) by double-clicking on the
item you want to change. Alternatively, right-click on the item you want to
change and select Edit value from the Watch window menu.

 Figure 10-8 The Modify Item window

3. Enter a new value for the variable.

4. Click OK to change the contents of the variable.
10-8 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI 0066B

Using ADW and ADU with C++
Recalculating watches

Select Recalculate Watches from the C++ menu or click on the Recalculate Watches
button in the toolbar to reinitialize the Watch window to its original state, with all
structures and classes expanded by one level. This menu item can be used if the value
of any variable might have been changed by external hardware while the debugger is
not stepping through code.

10.2.3 Evaluating expressions

The Evaluate Expression window allows you to enter a simple C++ expression to be
evaluated. The Evaluate Expression window provides similar functionality to the
debugger Expression window, with a C++ interpretation of the data being displayed.

Evaluating expressions and adding watches

To enter an expression to be evaluated:

1. Select Evaluate Expressions from the C++ menu or click on the Evaluate
Expression button in the toolbar. The Evaluate Expression window is displayed
(Figure 10-9).

 Figure 10-9 The Evaluate Expression window

2. Enter the expression to be evaluated and press the Enter key, or click on the
Calculate button. The value of the expression is displayed:

• If the expression is a variable, the value of the variable is displayed.

• If the expression is a logical expression, the window displays 1 if the
expression evaluates to true, or 0 if the expression evaluates to false.

• If the expression is a function, the value of the function is displayed.
Member functions of C++ classes cannot be evaluated.
ARM DUI 0066B Copyright © 1999, 2000 ARM Limited. All rights reserved. 10-9

Using ADW and ADU with C++
Refer to Expression evaluation guidelines for more information on expression
evaluation in C++.

3. Click on the Add Watch button to add the expression to the Watch window.

Expression evaluation guidelines

The following rules apply to expression evaluation for C++:

• Member functions of C++ classes cannot be used in expressions.

• Overloaded functions cannot be used in expressions.

• Only C operators can be used in constructing expressions. Any operators defined
in a C++ class that also have a meaning in C, such as [], will not work correctly
because ADW and ADU use the C operator instead. Specific C++ operators, such
as the scope operator ::, are not recognized.

• Base classes cannot be accessed in standard C++ notation. For example:

class Base
{

char *name;
char *A;

};
class Derived : public class Base
{

char *name;
char *B;
void do_sth();

};

If you are in method do_sth() you can access the member variables A, name,
and B through the this pointer. For example, this->name returns the name
defined in class Derived.

To access name in class Base, the standard C++ notation is:

void Derived::do_sth()
{

Base::name="value"; // sets name in the base class
// to "value"

}

However, the expression evaluation window does not accept
this->Base::name because ADW and ADU do not understand the scope
operator. You can access this value with:

this->::Base.name
10-10 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI 0066B

Using ADW and ADU with C++
• Though it is possible to call member functions in the form
Class::Member(...), this will give undefined results.

• private, public, and protected attributes are not are not recognized in ADW
or ADU expression evaluation. This means that private and protected member
variables can be used during expression evaluation because ADW and ADU treat
them as public.
ARM DUI 0066B Copyright © 1999, 2000 ARM Limited. All rights reserved. 10-11

Using ADW and ADU with C++
10-12 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI 0066B

Part C
armsd

Chapter 11
About armsd

The ARM Symbolic Debugger (armsd) is an interactive source-level debugger providing
high-level debugging support for languages such as C, and low-level support for
assembly language. It is a command-line debugger that runs on all supported platforms.
This chapter contains the following sections:

• About armsd on page 11-2

• Command syntax on page 11-3.
ARM DUI 0066B Copyright © 1999, 2000 ARM Limited. All rights reserved. 11-1

About armsd
11.1 About armsd

The ARM symbolic debugger (armsd) can be used to debug programs built using the
ARM tools, if those programs have been produced with debugging enabled. A limited
amount of debugging information can be produced at link time, even if the object code
being linked was not compiled with debugging enabled.

11.1.1 Selecting a debugger

armsd supports:

• remote debugging

• debugging using ARMulator

• debugging using BATS

• remote debugging using ADP.

11.1.2 Automatic command execution on startup

You normally enter armsd commands from the keyboard, or by specifying a script file
containing commands, but before armsd accepts any such input it obeys commands
from an initialization file, if one exists.

The initialization file is called armsd.ini. The current directory is searched first for
this file, then the directory specified by the environment variable HOME.
11-2 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI 0066B

About armsd
11.2 Command syntax

You invoke armsd using the command given below. Underlining is used to show the
permitted abbreviations.

The full list of commands available when armsd is running is given in Alphabetical list
of armsd commands on page 13-6.

11.2.1 Command-line options

armsd [-help] [-vsn] [-little|-big] [-proc name] [-fpe|-nofpe]

[-symbols] [-o name] [-script name] [-exec] [-iname] [-clock n]

[-remote|-armul|-bats|-adp options] image_name arguments

where:

-help gives a summary of the armsd command-line options.

-vsn displays information on the armsd version.

-little specifies that memory should be little-endian (normally the
default setting).

-big specifies that memory should be big-endian.

-proc name specifies the cpu type that is to be emulated. With this option you
should not specify -rem or -adp as the target. Specify -armul as
the target to invoke ARMulator or -bats to invoke BATS. If you
do not specify a target, ARMulator is invoked if it can emulate the
specified processor, BATS is invoked otherwise. If the specified
processor cannot be emulated, armsd exits.

-fpe instructs ARMulator to load the FPE on startup.

-nofpe instructs ARMulator not to load the FPE on startup (this is the
default setting).

-symbols reads debug information from the specified image file but does not
download the image.

-o name writes output from the debuggee to the named file.

-script name takes commands from the named file (reverts to stdin on
reaching EOF).

-exec asks the debugger to execute immediately and quit when
execution stops.
ARM DUI 0066B Copyright © 1999, 2000 ARM Limited. All rights reserved. 11-3

About armsd
-iname adds name to the set of paths to be searched to find source files.

-clock n specifies the clock speed in Hz (suffixed with K or M) for
ARMulator. This is only valid with an armsd.map file.

-remote selects remote debugging. By default this will be ADP.

-armul selects ARMulator (ARM emulator software). This is assumed by
default if you do not specify a target but do specify a processor
type that ARMulator can emulate.

-bats selects the Basic ARM Ten System (BATS). This is assumed by
default if you do not specify a target but do specify a processor
type that ARMulator can not emulate.

-adp options selects remote debugging using ADP, further defined by one or
more of the following options:

-port expr

specifies the ADP port to use, where expr selects
serial, serial/parallel, or ethernet communications and
can be one of:

s=n selects serial port communications. n can be
1, 2 or a device name.

s=n,p=m

selects serial and parallel port
communication. n and m can be 1, 2, or a
device name. There must be no space
between the arguments.

e=id selects ethernet communication. id is the
ethernet address of the target board.

For serial and serial/parallel communications, you can
prefix ,h=0 to the port expression to switch off the
heartbeat feature of ADP. For example, -port
s=n,h=0 selects serial port 1 and turns off the ADP
heartbeat.

-linespeed n

sets the line speed to n.
11-4 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI 0066B

About armsd
-loadconfig name

specifies a file containing required configuration data,
when using a Remote_A connection to EmbeddedICE.
See loadconfig on page 12-15 for more information.

-selectconfig name version

specifies the target for which configuration data is
required, when using a Remote_A connection to
EmbeddedICE. See selectconfig on page 12-16 for
more information.

image_name gives the name of the file to debug. You can also specify this
information using the load command. See load on page 13-27 for
more information.

arguments gives program arguments. You can also specify this information
using the load command. See load on page 13-27 for more
information.
ARM DUI 0066B Copyright © 1999, 2000 ARM Limited. All rights reserved. 11-5

About armsd
11-6 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI 0066B

Chapter 12
Getting Started in armsd

This chapter includes further information about the use of the ARM Symbolic Debugger
(armsd). It contains the following sections:

• Specifying source-level objects on page 12-2

• armsd variables on page 12-7

• Low-level debugging on page 12-13

• armsd commands for EmbeddedICE on page 12-16

• Accessing the debug communications channel on page 12-18.
ARM DUI 0066B Copyright © 1999, 2000 ARM Limited. All rights reserved. 12-1

Getting Started in armsd
12.1 Specifying source-level objects

This section gives information on variables, program locations, expressions and
constants.

12.1.1 Variable names and context

You can usually just refer to variables by their names in the original source code. To
print the value of a variable, type:

print variable

High-level languages

With structured high-level languages, variables defined in the current context can be
accessed by giving their names. Other variables should be preceded by the context (for
example, filename of the function) in which they are defined. This also gives access to
variables that are not visible to the executing program at the point at which they are
being examined. The syntax in this case is:

procedure:variable

Global variables

Global variables can be referenced by qualifying them with the module name or
filename if there is likely to be any ambiguity. For example, because the module name
is the same as a procedure name, you should prefix the filename or module name with
#. The syntax in this case is:

#module:variable

Ambiguous declarations

If a variable is declared more than once within the same procedure, resolve the
ambiguity by qualifying the reference with the line number in which the variable is
declared as well as, or instead of, the function name:

#module:procedure:line-no:variable
12-2 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI 0066B

Getting Started in armsd
Variables within activations of a function

To pick out a particular activation of a repeated or recursive function call, prefix the
variable name with a backslash (\) followed by an integer. Use 1 for the first activation,
2 for the second and so on. A negative number will look backwards through activations
of the function, starting with \-1 for the previous one. If no number is specified and
multiple activations of a function are present, the debugger always looks at the most
recent activation.

To refer to a variable within a particular activation of a function, use:

procedure\{-}activation-number:variable

Expressing context

The complete syntax for the various ways of expressing context is:

{#}module{{:procedure}*
{\{-}activation-number}}
{#}procedure{{:procedure}*
{\{-}activation-number}}
#

Specifying variable names

The complete syntax for specifying a variable name is:

{context:.{line-number:::}}variable

The various syntax extensions needed to differentiate between different objects rarely
need to be used together.

12.1.2 Program locations

Some commands require arguments that refer to locations in the program. You can refer
to a location in the program by:

• procedure name

• program line number

• statement within a line.

In addition to the high-level program locations described here, low-level locations can
also be specified. See Low-level symbols on page 12-13 for further details.

Procedure name

Using a procedure name alone sets a breakpoint (see break on page 13-11) at the entry
point of that procedure.
ARM DUI 0066B Copyright © 1999, 2000 ARM Limited. All rights reserved. 12-3

Getting Started in armsd
Program line number

Program line numbers can be qualified in the same way as variable names, for example:

#module:123
procedure:3

Line numbers can sometimes be ambiguous, for example when a file is included within
a function. To resolve any ambiguities, add the name of the file or module in which the
line occurs in parentheses. The syntax is:

number(filename)

Statement within a line

To refer to a statement within a line, use the line number followed by the number of the
statement within the line, in the form:

line-number.statement-number

So, for example, 100.3 refers to the third statement in line 100.

12.1.3 Expressions

Some debugger commands require expressions as arguments. Their syntax is based on
C. A full set of operators is available. The lower the number, the higher the precedence
of the operator. These are shown in Table 12-1, in descending order of precedence.

 Table 12-1 Precedence of operators

Precedence Operator Purpose Syntax

1 () Grouping a * (b + c)

[] Subscript isprime[n]

. Record selection rec.field,a.b.c

rec->next -> Indirect selection rec->next is identical to
(*rec).next

2 ! Logical NOT !finished

~ Bitwise NOT ~mask

- Unary minus -a

* Indirection *ptr
12-4 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI 0066B

Getting Started in armsd
Subscripting can only be applied to pointers and array names. The symbolic debugger
checks both the number of subscripts and their bounds, in languages which support such
checking. It is inadvisable to use out-of-bound array accesses. As in C, the name of an
array can be used without subscripting to yield the address of the first element.

The prefix indirection operator * is used to dereference pointer values. If ptr is a
pointer, *ptr yields the object to which it points.

& Address &var

3 * Multiplication a * b

/ Division a / b

% Integer remainder a % b

4 + Addition a + b

- Subtraction a - b

5 >> Right shift a >> 2

<< Left shift a >> 2

6 < Less than a < b

> Greater than a > b

<= Less than or equal a <= b

>= Greater than or equal a >= b

7 == Equal a == 0

!= Not equal a != 0

8 & Bitwise AND a & b

9 ^ Bitwise EOR a ^ b

10 | Bitwise OR a | b

11 && Logical AND a && b

12 || Logical OR a || b

 Table 12-1 Precedence of operators (continued)

Precedence Operator Purpose Syntax
ARM DUI 0066B Copyright © 1999, 2000 ARM Limited. All rights reserved. 12-5

Getting Started in armsd
If the left-hand operand of a right shift is a signed variable, the shift is an arithmetic one
and the sign bit is preserved. If the operand is unsigned, the shift is a logical one and
zero is shifted into the most significant bit.

Note

Expressions must not contain function calls that return non-primitive values.

12.1.4 Constants

Constants can be decimal integers, floating-point numbers, octal integers or
hexadecimal integers. Note that 1 is an integer whereas 1. is a floating-point number.

Character constants are also allowed. For example, A yields 65, the ASCII code for the
character A.

Address constants can be specified by the address preceded with an @ symbol. For
commands which accept low-level symbols by default, the @ can be omitted.
12-6 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI 0066B

Getting Started in armsd
12.2 armsd variables

This section lists the variables available in armsd, and gives information on
manipulating them.

12.2.1 Summary of armsd variables

Many debugger defaults can be modified by setting variables. Table 12-2 lists the
variables. Most of these are described elsewhere in this chapter in more detail.

 Table 12-2 armsd variables

Variable Description

$clock
(ARMulator only)

Number of microseconds since simulation started. This
read-only variable is available only if a processor clock speed
is specified. See ARMulator configuration on page 5-54 for
information on specifying the emulated processor clock speed.

$cmdline Argument string for the debuggee.

$echo Non-zero if commands from obeyed files should be echoed
(initially 1).

$examine_lines Default number of lines for examine command (initially 8).

$int_format Default format for printing integer values (initially “0x%.8lx”).

$float_format Default format for printing floating-point values (initially
“%g”).

$uint_format Default format for printing unsigned integer values (initially
“0x%.8lx”).

$sbyte_format Default format for printing signed byte values (initially “%c”).

$ubyte_format Default format for printing unsigned byte values (initially
“%c”).

$string_format Default format for printing string values (initially “%s”).

$complex_format Default format for printing complex values (initially
“(%g,%g)”).

$pointer_format Default format for printing pointer values (initially
“0x%.8lx”).

$inputbase Base for input of integer constants (initially 10).

$list_lines Default number of lines for list command (initially 16).
ARM DUI 0066B Copyright © 1999, 2000 ARM Limited. All rights reserved. 12-7

Getting Started in armsd
$fpresult Floating-point value returned by last called function (junk if
none, or if a floating-point value was not returned). A
read-only variable. $fpresult returns a result only if the
image has been built for hardware floating-point. If the image
is built for software floating-point, it returns zero.

$memory_statistics
(ARMulator only)

Outputs any memory map statistics which ARMulator has been
keeping. A read-only variable. See ARMulator
configuration on page 5-54 for further details.

$rdi_log RDI logging is enabled if non-zero, and serial line logging is
enabled if bit 1 is set (initially 0).

$result Integer result returned by last called function (junk if none, or
if an integer result was not returned). A read-only variable.

$statistics
(ARMulator only)

Outputs any statistics which ARMulator has been keeping. A
read-only variable.

$statistics_inc
(ARMulator only)

Similar to $statistics, but outputs the difference between
the current statistics and those when $statistics was last
read. A read-only variable.

$vector_catch Indicates whether or not execution should be caught when
various conditions arise. The default value is %RUsPDAifE.
Capital letters indicate that the condition is to be intercepted:
R reset
U undefined instruction
S SWI
P prefetch abort
D data abort
A reserved (do not use)
I IRQ
F FIQ
E reserved (do not use)

$type_lines Default number of lines for the type command.

$top_of_memory This is used to enable Multi-ICE, EmbeddedICE, and Angel to
return sensible values when a HEAP_INFO SWI call is made
to determine where to place the heap and stack in memory. The
default is 0x80000 (512KB). Modify this before executing a
program on the target if the memory available differs from this.

 Table 12-2 armsd variables (continued)

Variable Description
12-8 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI 0066B

Getting Started in armsd
$sourcedir This variable contains a list of the paths to be searched when a
source file is required. It defaults to NULL if no value is
specified. When you specify search paths:

• Enclose the full pathname in double quotes.

• In ADW and armsd under Windows DOS, escape the
backslash directory separator with another backslash
character. For example:

"c:\\mysource\\src1"

• separate multiple pathnames with a semicolon, not with
a space character. For example:

"c:\\my src\\src1;c:\\my src\\src2"

$target_fpu This variable controls the way that floating-point values are
interpreted by the debugger. It is important for correct display
of float and double values in memory that this variable is set to
a value that is appropriate for the target in use. If you attempt
to change this value, a validity test ensures that the only
settings allowed are those that are compatible with the
representation of floating-point values in the current image.
Valid settings and their meanings are:
0 specifies that no floating-point code is to be used (none)
1 selects software floating-point library with pure-endian
doubles (softVFP), and is the default setting for images built
with ADS tools
2 selects software floating-point library with mixed-endian
doubles (softFPA)
3 selects hardware Vector Floating-Point unit (VFP)
4 selects hardware Floating-Point Accelerator (FPA).
SoftVFP and SoftFPA images run correctly on a target whether
or not hardware floating point is present, but VFP and FPA
images must be run on the appropriate hardware.

 Table 12-2 armsd variables (continued)

Variable Description
ARM DUI 0066B Copyright © 1999, 2000 ARM Limited. All rights reserved. 12-9

Getting Started in armsd
armsd internal variables

The variables in Table 12-3 are included to support EmbeddedICE.

12.2.2 Accessing variables

The following commands are available for accessing variables.

print

This command examines the contents of variables in the debugged program, or displays
the result of arbitrary calculations involving variables and constants. Its syntax is:

p{rint}{/format} expression

For example:

print/%x listp->next

prints field next of structure listp.

If no format string is entered, integer values default to the format described by the
variable $int_format. The default format string for floating-point values is %g. By
default, pointer values are printed in hexadecimal notation using the format string
0x%.8lx, for example, 0x000100e4.

let

The let command allows you to change the value of a variable or contents of a memory
location. Its syntax is:

 Table 12-3 armsd variables for EmbeddedICE

Variable Description

$icebreaker_lockedpoints Shows or sets locked EmbeddedICE logic points.

$semihosting_enabled Enables or disables semihosting.

$semihosting_vector Sets up semihosting SWI vector (described in the
ADS Debug Target Guide).

$semihosting_arm_swi Defines which ARM SWIs are interpreted as
semihosting requests by the debug agent.

$semihosting_thumb_swi Defines which Thumb SWIs are interpreted as
semihosting requests by the debug agent.
12-10 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI 0066B

Getting Started in armsd
{let} variable = expression{{,} expression}*
{let} memory-location = expression{{,} expression}*

An equals sign(=) or a colon(:) can be used to separate the variable or location from the
expression. If multiple expressions are used, they must be separated by commas or
spaces.

Variables can only be changed to compatible types of expression. However, the
debugger will convert integers to floating-point and vice versa, rounding to zero. The
value of an array can be changed, but not its address, because array names are constants.
If the subscript is omitted, it defaults to zero. If multiple expressions are specified, each
expression is assigned to variable[n- 1], where n is the nth expression.

The let command is used in low-level debugging to change memory. If the left-hand
expression is a constant or a true expression (and not a variable) it is treated as a word
address, and memory at that location (and if necessary the following locations) is
changed to the values in the following expression(s).

12.2.3 Formatting printed results

You can set the default format strings used by the print command for the output of
results of various types of data by using let with the following variable names:

• $int_format

• $uint_format

• $float_format

• $sbyte_format

• $ubyte_format

• $string_format

• $complex_format

• $pointer_format.

For example, you can change the value of the root-level variable $int_format from
its initial setting of "0x%.81x" to another value with a command of the form:

{let} $int_format = string

The initial value of each of these format variables is given in Summary of armsd
variables on page 12-7.

12.2.4 Specifying the base for input of integer constants

You use the $inputbase variable to set the base used for the input of integer constants.

{let} $inputbase = expression
ARM DUI 0066B Copyright © 1999, 2000 ARM Limited. All rights reserved. 12-11

Getting Started in armsd
If the input base is set to 0, numbers are interpreted as octal if they begin with 0.
Regardless of the setting of $inputbase, hexadecimal constants are recognized if they
begin with 0x.

Note

$inputbase only specifies the base for the input of numbers. For information on
output formats see Formatting printed results on page 12-11.
12-12 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI 0066B

Getting Started in armsd
12.3 Low-level debugging

Low-level debugging tables are generated automatically during linking (unless linked
with -nodebug). You cannot include high-level debugging tables in an image without
also including low-level debugging tables.

There is no need to enable debugging at the compilation stage for low-level debugging
only.

12.3.1 Low-level symbols

Low-level symbols are differentiated from high-level ones by preceding them with @.

The differences between high and low-level symbols are:

• a low-level symbol for a procedure refers to its call address, often the first
instruction of the stack frame initialization

• the corresponding high-level symbol refers to the address of the code generated
by the first statement in the procedure.

Low-level symbols can be used with most debugger commands. For example, when
used with the watch command they stop execution if the word at the location named by
the symbol changes. Low-level symbols can also be used where a command would
expect an address expression.

Certain commands (list, find, examine, putfile, and getfile) accept low-level
symbols by default. To specify a high-level symbol, precede it by ^.

Memory addresses can also be used with commands and should also be preceded by @.

Note

Low-level symbols do not have a context and so they are always available.
ARM DUI 0066B Copyright © 1999, 2000 ARM Limited. All rights reserved. 12-13

Getting Started in armsd
12.3.2 Predefined symbols

There are several predefined symbols, as shown in Table 12-4. To differentiate these
from any high-level or low-level symbols in the debugging tables, precede them with #.

 Table 12-4 High-level symbols for low-level entities

Symbol Description

r0 - r14 The general-purpose ARM registers 0 to 14.

r15 The address of the instruction which is about to execute. This can include
the condition code flags, interrupt enable flags, and processor mode bits,
depending on the target ARM architecture. Note that this value can be
different from the real value of register 15 due to the effect of pipelining.

pc The address of the instruction which is about to execute.

sp The stack pointer (r13).

lr The link register (r14)

fp The frame pointer (r11).

psr and cpsr psr and cpsr are synonyms for the current mode’s program status
register. The values displayed for the condition code flags, interrupt
enable flags, and processor mode bits, are an alphabetic letter per
condition code and interrupt enable flag, and a mode name (preceded by
an underscore) for the mode bits. This mode name will be one of USER,
IRQ, FIQ, SVC, UNDEF, ABORT and SYSTEM. 26-bit mode is no
longer supported by the ARM tool chain. See also Application Note 11,
Differences Between ARM6 Series and Earlier Processors.

spsr spsr is the saved status register for the current mode. The values
displayed are listed above in psr and cpsr. spsr is not defined if the
processor is not capable of 32-bit operation.

f0 to f7 The floating-point registers 0 to 7.

fpsr The floating-point status register.

fpcr The floating-point control register.

a1 to a4 These refer to arguments 1 to 4 in a procedure call (stored in r0 to r3).

v1 to v7 These refer to the five to seven general-purpose register variables which
the compiler allocates (stored in r4 to r10).
12-14 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI 0066B

Getting Started in armsd
Printing register information

All these registers can be examined with the print command and changed with the
let command. For example, the following form displays the program status register
(psr):

print/%x #psr

Setting the PSR

The let command can also set the psr, using the usual syntax for psr flags.

For example, the N and F flags could be set, the V flag cleared, and the I, Z and C flags
left untouched and the processor set to 32-bit supervisor mode, by typing:

let #psr = %NvF_SVC32

The following example changes to User mode:

psr = %_User32

Note

The percentage sign must precede the condition flags and the underscore which in turn
must precede the processor mode description.

Using # with low-level symbols

Normally, you do not need to use # to access a low-level symbol. You can use # to force
a reference to a root context if you see the error message:

Error: Name not found

For example, use #pc=0 instead of pc=0.

sb Static base, as used in reentrant variants of the ARM/Thumb Procedure
Call Standard (ATPCS) (r9/v6).

sl The stack limit register, used in variants of the APCS which implement
software stack limit checking (r10/v7).

ip Used in procedure entry and exit and as a scratch register (r12).

 Table 12-4 High-level symbols for low-level entities (continued)

Symbol Description
ARM DUI 0066B Copyright © 1999, 2000 ARM Limited. All rights reserved. 12-15

Getting Started in armsd
12.4 armsd commands for EmbeddedICE

The following armsd commands are included for compatibility with EmbeddedICE.
These are deprecated, and may be removed from future tool kits.

12.4.1 listconfig

The listconfig command lists the configurations known to the debug agent.

Syntax

The syntax of the listconfig command is:

listconfig file

where:

file specifies the file where the list of configurations is written.

12.4.2 loadagent

The loadagent command downloads a replacement EmbeddedICE ROM image, and
starts it (in RAM).

Syntax

The syntax of the loadagent command is:

loadagent file

where:

file names the EmbeddedICE ROM image file to load.

12.4.3 loadconfig

The loadconfig command loads an EmbeddedICE configuration data file. Such files
contain data required by EmbeddedICE related to various versions of various
processors. See also selectconfig on page 12-17.

Syntax

The syntax of the loadconfig command is:

loadconfig file
12-16 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI 0066B

Getting Started in armsd
where:

file names the EmbeddedICE configuration data file to load.

12.4.4 selectconfig

An EmbeddedICE configuration data file contains data blocks, each identified by a
processor name and version. The selectconfig command selects the required block
of EmbeddedICE configuration data from those available in the specified configuration
file (see loadconfig on page 12-16).

Syntax

The syntax of the selectconfig command is:

selectconfig name version

where:

name is the name of the processor for which configuration data is required.

version indicates the version which should be used:

any accepts any version number. This is the default.

n uses version n.

n+ uses version n or later.
ARM DUI 0066B Copyright © 1999, 2000 ARM Limited. All rights reserved. 12-17

Getting Started in armsd
12.5 Accessing the debug communications channel

The debugger accesses the debug communications channel using the following
commands.

For more information, see Command-line debugging commands on page A-3.

12.5.1 ccin

The ccin command selects a file containing Communications Channel data for
reading. This command also enables Host to Target Communications Channel
communication.

Syntax

The syntax of the ccin command is:

ccin filename

where:

filename names the file containing the data for reading.

12.5.2 ccout

The ccout command selects a file where Communications Channel data is written, and
also enables Target to Host Communications Channel communication.

Syntax

The syntax of the ccout command is:

ccout filename

where:

filename names the file where the data is written.
12-18 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI 0066B

Chapter 13
Working with armsd

This chapter lists and explains every command supported by the ARM Symbolic
Debugger (armsd). It contains the following sections:

• Groups of armsd commands on page 13-2

• Alphabetical list of armsd commands on page 13-6.
ARM DUI 0066B Copyright © 1999, 2000 ARM Limited. All rights reserved. 13-1

Working with armsd
13.1 Groups of armsd commands

This section lists all armsd commands in functional groups. The commands are
explained individually in Alphabetical list of armsd commands on page 13-6.

The functional groups are:

• Symbols

• Controlling execution

• Reading and writing memory on page 13-3

• Program context on page 13-3

• Low-level debugging on page 13-3

• Coprocessor support on page 13-4

• Profiling commands on page 13-5

• Miscellaneous commands on page 13-5.

The semicolon character (;) separates two commands on a single line.

Note

The debugger queues commands in the order it receives them, so that any commands
attached to a breakpoint are not executed until all previously queued commands have
been executed.

13.1.1 Symbols

These commands allow you to view information on armsd symbols:

symbols Lists all symbols (variables) defined in the given or current context, along
with their type information.

variable Provides type and context information on the specified variable (or
structure field).

arguments Shows the arguments that were passed to the current procedure, or
another active procedure.

13.1.2 Controlling execution

These commands allow you to control execution of programs by setting and clearing
watchpoints and breakpoints, and by stepping through instructions and statements:

break Adds breakpoints.

call Calls a procedure.
13-2 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI 0066B

Working with armsd
go Starts execution of a program.

istep Steps through one or more instructions.

load Loads an image for debugging.

reload Reloads the object file specified on the armsd command line, or with the
last load command.

return Returns to the caller of the current procedure (passing back a result).

step Steps execution through one or more statements.

unbreak Removes a breakpoint.

unwatch Clears a watchpoint.

watch Adds a watchpoint.

13.1.3 Reading and writing memory

These commands allow you to set and examine program context:

getfile Reads from a file and writes the content to memory.

putfile Writes the contents of an area of memory to a file.

13.1.4 Program context

These commands allow you to set and examine program context:

where Prints the current context as a procedure name, line number in the file,
filename and the line of code.

backtrace Prints information about all currently active procedures.

context Sets the context in which the variable lookup occurs.

out Sets the context to be the same as that of the current context’s caller.

in Sets the context to that called from the current level.

13.1.5 Low-level debugging

These commands allow you to select low-level debugging and to examine and display
the contents of memory, registers, and low-level symbols:

language Sets up low-level debugging if you are already using high-level
debugging.
ARM DUI 0066B Copyright © 1999, 2000 ARM Limited. All rights reserved. 13-3

Working with armsd
registers Displays the contents of ARM registers 0 to 14, the program counter (pc)
and the status flags contained in the program status register (psr).

fpregisters

Displays the contents of the eight floating-point registers f0 to f7 and the
floating-point program status register FPSR.

examine Allows you to examine the contents of the memory between a pair of
addresses, displaying it in both hexadecimal and ASCII formats, with 16
bytes per line.

list Displays the contents of the memory between a specified pair of
addresses in hexadecimal, ASCII and instruction format, with four bytes
(one instruction) per line.

find Finds all occurrences in memory of a given integer value or character
string.

lsym Displays low-level symbols and their values.

13.1.6 Coprocessor support

The symbolic debugger’s coprocessor support enables access to registers of a
coprocessor through a debug monitor that is ignorant of the coprocessor. This is only
possible if the registers of the coprocessor are read (if readable) and written (if writable)
by a single coprocessor data transfer (CPDT) or a coprocessor register transfer (CPRT)
instruction in a non-User mode. For coprocessors with more unusual registers, there
must be support code in a debug monitor.

coproc Describes the register set of a coprocessor and specifies how the contents
of the registers are formatted for display.

cregdef Describes how the contents of a coprocessor register are formatted for
display.

cregisters Displays the contents of all readable registers of a coprocessor, in the
format specified by an earlier coproc command.

cwrite Writes to a coprocessor register.
13-4 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI 0066B

Working with armsd
13.1.7 Profiling commands

The following commands allow you to start, stop, and reset the profiler, and to write
profiling data to a file:

pause Prompts you to press a key to continue.

profclear Resets profiling counts.

profon Starts collecting profiling data.

profoff Stops collecting profiling data.

profwrite Writes profiling information to a file.

13.1.8 Miscellaneous commands

These are general commands:

! Passes the following command to the host operating system.

| Introduces a comment line.

alias Defines, undefines, or lists aliases. It allows you to define your own
symbolic debugger commands.

comment Writes a message to stderr.

help Displays a list of available commands, or help on a particular command.

log Sends the output of subsequent commands to a file as well as the screen.

obey Executes a set of debugger commands which have previously been stored
in a file, as if they were being typed at the keyboard.

print Examines the contents of the debugged program’s variables.

type Types the contents of a source file, or any text file, between a specified
pair of line numbers.

while Is part of a multi-statement line.

quit Terminates the current symbolic debugger session and closes any open
log or obey files.
ARM DUI 0066B Copyright © 1999, 2000 ARM Limited. All rights reserved. 13-5

Working with armsd
13.2 Alphabetical list of armsd commands

This section explains how the armsd command syntax is annotated, and lists the
terminology used. Every armsd command is then listed and explained, starting with the
! command on page 13-8.

13.2.1 Annotating the command syntax

typewriter Shows command elements that you should type at the keyboard.

typewriter Underlined text shows the permitted abbreviation of a command.

typewriter Represents an item such as a filename or variable name. You should
replace this with the name of your file, variable, and so on.

{} Items in braces are optional. The braces are used for clarity and should
not be typed.

* A star (*) following a set of braces means that the items in those braces
can be repeated as many times as required. Many command names can be
abbreviated. The braces here show what can be left out. In the one case
where braces are required by the debugger, these are enclosed in quote
marks in the syntax pattern.

13.2.2 Names used in syntax descriptions

These terms are used in the following sections for the command syntax descriptions:

Context The activation state of the program. See Variable names and context on
page 12-2.

Expression
An arbitrary expression using the constants, variables and operators
described in Expressions on page 12-4. It is either a low-level or a
high-level expression, depending on the command.

Low-level Low-level expressions are arbitrary expressions using constants,
low-level symbols and operators. High-level variables can be included in
low-level expressions if their specification starts with # or $, or if they are
preceded by ^.

High-level High-level expressions are arbitrary expressions using constants,
variables and operators. Low-level symbols can be included in high-level
expressions by preceding them with @.
13-6 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI 0066B

Working with armsd
 The list, find, examine, putfile, and getfile commands require
low-level expressions as arguments. All other commands require
high-level expressions.

Location A location within the program (see Program locations on page 12-3).

Variable A reference to one of the program’s variables. Use the simple variable
name to look at a variable in the current context, or add more information
as described in Variable names and context on page 12-2 to see the
variable elsewhere in the program.

Format This is one of:

• hex

• ascii

• string

This is a sequence of characters enclosed in double quotes ("). A
backslash (\) can be used as an escape character within a string.

• A C printf() function format descriptor. Table 13-1 shows some
common descriptors.

 Table 13-1 Format descriptors

Type Format Description

int
%d
%u
%x

Use this only if the expression being printed yields an integer:
Signed decimal integer (default for integers)
Unsigned integer
Hexadecimal (lowercase letters) (same as hex format)

char
%c

Use this only if the expression being printed yields an integer:
Character (same as ascii format)

char *

%s

Use this only for expressions which yield a pointer to a
zero-terminated string:
Pointer to character (same as string format)

void *
%p

Use this with any kind of pointer:
Pointer (same as %.8x), for example, 00018abc

float
%e
%f
%g

Use this only for floating-point results:
Exponent notation, for example, 9.999999e+00
Fixed point notation, for example, 9.999999
General floating-point notation, for example, 1.1, 1.2e+06
ARM DUI 0066B Copyright © 1999, 2000 ARM Limited. All rights reserved. 13-7

Working with armsd
13.2.3 ! command

The ! command gives access to the command line of the host system without quitting
the debugger.

Syntax

The syntax of ! is:

!command

where:

command is the operating system command to execute.

Usage

Any command whose first character is ! is passed to the host operating system for
execution.

13.2.4 | command

The|command introduces a comment line.

Syntax

The syntax of|is:

|comment

where:

comment is a text string.

Usage

This command allows you to annotate your armsd script file.
13-8 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI 0066B

Working with armsd
13.2.5 alias

The alias command defines, undefines, or lists aliases. It allows you to define
symbolic debugger commands.

Syntax

The syntax of alias is:

alias {name{expansion}}

where:

name is the name of the alias.

expansion is the expansion for the alias.

Usage

If no arguments are given, all currently defined aliases are displayed. If expansion is not
specified, the alias named is deleted. Otherwise expansion is assigned to the alias name.

The expansion can be enclosed in double quotes (") to allow the inclusion of characters
not normally permitted or with special meanings, such as the alias expansion character
(‘) and the statement separator (;).

Aliases are expanded whenever a command line or the command list in a do clause is
about to be executed.

Words consisting of alphanumeric characters enclosed in backquotes (‘) are expanded.
If no corresponding alias is found they are replaced by null strings. If the character
following the closing backquote is non-alphanumeric, the closing backquote can be
omitted. If the word is the first word of a command, the opening backquote can be
omitted. To use a backquote in a command, precede it with another backquote.
ARM DUI 0066B Copyright © 1999, 2000 ARM Limited. All rights reserved. 13-9

Working with armsd
13.2.6 arguments

The arguments command shows the arguments that were passed to the current, or
other active procedure.

Syntax

The syntax of arguments is:

arguments {context}

where:

context specifies the program context to display. If context is not specified, the
current context is used (normally the procedure active when the program
was suspended).

Usage

You use the arguments command to display the name and context of each argument
within the specified context.

13.2.7 backtrace

The backtrace command prints information about all currently active procedures,
starting with the most recent, or for a given number of levels.

Syntax

The syntax of backtrace is:

backtrace {count}

where:

count specifies the number of levels to trace. This is an optional argument. If
you do not specify count, the currently active procedures are traced.

Usage

When your program has stopped running, because of a breakpoint or watchpoint, you
use backtrace to extract information on currently active procedures. You can access
information like the current function, the line of source code calling the function and so
on.
13-10 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI 0066B

Working with armsd
13.2.8 break

The break command allows you to specify breakpoints.

Syntax

The syntax of the break command is:

break{/size} {loc {count} {do ’{’command{;command}’}’} {if expr}}

where:

/size specifies which code type to break:

/16 specifies the instruction size as Thumb.

/32 specifies the instruction size as ARM.

With no size specifier, break tries to determine the size of breakpoint
to use by extracting information from the nearest symbol at or below the
address to be broken. This usually chooses the correct size, if debug
information is available. You can set the size explicitly, however, when
setting breakpoints on ROM, for example.

loc specifies where the breakpoint is to be inserted. For more information,
see Program locations on page 12-3.

count specifies the number of times the statement must be executed before the
program is suspended. It defaults to 1, so if count is not specified, the
program will be suspended the first time the breakpoint is encountered.

do specifies commands to be executed when the breakpoint is reached. Note
that these commands must be enclosed in braces, represented in the
pattern above by braces within quotes. Each command must be separated
by semicolons.

If you not specify a do clause, break displays the program and source
line at the breakpoint. If you want the source line displayed in
conjunction with the do clause, use where as the first command in the do
clause to display the line.

expr makes the breakpoint conditional upon the value of expr.

Usage

The break command specifies breakpoints at:

• procedure names

• lines

• statements within a line.
ARM DUI 0066B Copyright © 1999, 2000 ARM Limited. All rights reserved. 13-11

Working with armsd
Each breakpoint is given a number prefixed by #. A list of current breakpoints and their
numbers is displayed if break is used without any arguments.

Note

Use unbreak to delete any unwanted breakpoints. This is described in unbreak on
page 13-39.

13.2.9 call

The call command calls a procedure.

Syntax

The syntax of the call command is:

call {/size} loc {(expression-list)}

where:

/size specifies which code type to break:

/16 specifies the instruction size as Thumb.

/32 specifies the instruction size as ARM.

With no size specifier, call tries to determine the instruction set of the
destination code by extracting information from the nearest symbol at or
below the address to call. This usually chooses the correct size, but you
can set the size explicitly. The command correctly sets the PSR T-bit
before the call and restores it on exit.

loc is a function or low-level address.

expression_list

is a list of arguments to the procedure. String literals are not permitted as
arguments. If you specify more than one expression, separate the
expressions with commas.

Usage

If the procedure (or function) returns a value, examine it using:

print $result for integer variables

print $fpresult for floating-point variables.
13-12 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI 0066B

Working with armsd
13.2.10 coproc

The coproc command describes the register set of a coprocessor and specifies how the
contents of the registers are formatted for display.

Syntax

The syntax of the coproc command is:

coproc cpnum {rno{:rno1} size access values {displaydesc}*}*

where:

cpnum identifies the coprocessor.

rno{:rno1} identifies the register set.

size is the register size in bits.

access can comprise the letters:

R the register is readable.

W the register is writable.

D the register is accessed through CPDT instructions (if
not present, the register is accessed through CPRTs).

values the format depends on whether the register is to be accessed
through CPRT instructions. If so, it comprises four integer values
separated by a space or comma. These values form bits 0 to 7 and
16 to 23 of an MRC instruction to read the register, and bits 0 to 7
and 16 to 23 of an MCR instruction to write the register:

r0_7, r16_23, w0_7, w16_23

If not, it comprises two integer values to form bits 12 to 15 and bit
22 of CPDT instructions to read and write the register:

b12_15, b22

displaydesc describes how the contents of the registers are to be formatted for
display, and takes one of the forms listed in Table 13-2 on
page 13-14.

Usage

Each command can describe one register, or a range of registers, that are accessed and
formatted uniformly.
ARM DUI 0066B Copyright © 1999, 2000 ARM Limited. All rights reserved. 13-13

Working with armsd
Example

For example, the floating-point coprocessor might be described by the command:

copro 1 0:7 16 RWD 1,8
 8 4 RW 0x10,0x30,0x10,0x20 w0[16:20] ’izoux’ "_" w0[0:4]
’izoux’
 9 4 RW 0x10,0x50,0x10,0x40

 Table 13-2 Values for displaydesc argument

Item Definition

string Printed as is.

field string string Used as a printf format string to display the value of
field.

field One of the forms:

wn The whole of the nth word of the
register value

w[bit] Bit bit of the nth word of the
register value

wn[bit1:bit2] Bits bit1 to bit2 inclusive of the
nth word of the register value. The
bits can be given in either order.

field ’{’ string {string}* ’}’ field One of the forms wn[bit] or wn[bit1:bit2]. There
must be one string for each possible value of field. The
string in the appropriate position for the value of field is
displayed (the first string for value 0, and so on).

field ’letters’ field One of the forms wn[bit] or wn[bit1:bit2] above.
There must be one character in letters for each bit of
field. The letters are displayed in uppercase if the
corresponding bit of the field is set, and in lowercase if it is
clear. The first letter represents the lowest bit if bit1 <
bit2. Otherwise it represents the highest bit.
13-14 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI 0066B

Working with armsd
13.2.11 context

The context command sets the context in which the variable lookup occurs.

Syntax

The syntax of the context command is:

context context

where:

context specifies the program context. If context is not specified, the context is
reset to the active procedure.

Usage

The context command affects the default context used by commands which take a
context as an argument. When program execution is suspended, the search context is set
to the active procedure.

13.2.12 cregisters

The cregisters command displays the contents of all readable registers of a
coprocessor.

Syntax

The syntax of the cregisters command is:

cregisters cpnum

where

cpnum selects the coprocessor.

Usage

The contents of the registers is displayed in the format specified by an earlier coproc
command. The formatting options are described in Table 13-2 on page 13-14.

13.2.13 cregdef

The cregdef command describes how the contents of a coprocessor register are
formatted for display.
ARM DUI 0066B Copyright © 1999, 2000 ARM Limited. All rights reserved. 13-15

Working with armsd
Syntax

The syntax of the cregdef command is:

cregdef cpnum rno displaydesc

where:

cpnum selects the coprocessor.

rno selects the register number in the selected coprocessor.

displaydesc describes how the processor contents are formatted for display.

Usage

The contents of the registers is displayed according to the formatting options described
in Table 13-2 on page 13-14.

13.2.14 cwrite

The cwrite command writes to a coprocessor register.

Syntax

The syntax of the cwrite command is:

cwrite cpnum rno val{val...}*

where:

cpnum selects the coprocessor.

rno selects the register number in the named coprocessor.

val each val is an integer value and there must be one val item for each
word of the coprocessor register.

Usage

Before you write to a coprocessor register, you must define that register as writable.
This is described in coproc on page 13-13.

13.2.15 examine

The examine command allows you to examine the contents of memory.
13-16 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI 0066B

Working with armsd
Syntax

The syntax of the examine command is:

examine {expression1} {, {+}expression2 }

where:

expression1 gives the start address. The default address used is either:

• the address associated with the current context, minus 64, if
the context has changed since the last examine command
was issued

• the address following the last address displayed by the last
examine command, if the context has not changed since the
last examine command was issued.

expression2 specifies the end address, which can take three forms:

• if omitted, the end address is the value of the start address
+128

• if expression2 is preceded by +, the end address is given
by the value of the start line + expression2

• if there is no +, the end line is the value of expression2.

The $examine_lines variable can be used to alter the default
number of lines displayed from its initial value of 8 (128 bytes).

Usage

This command allows you to examine the contents of the memory between a pair of
addresses, displaying it in both hexadecimal and ASCII formats, with 16 bytes per line.
Low-level symbols are accepted by default.

13.2.16 find

The find command finds all occurrences in a specified area of memory of a given
integer value or character string.

Syntax

The syntax of the find command is either of the following:

find expression1,expression2,expression3

find string,expression2,expression3
ARM DUI 0066B Copyright © 1999, 2000 ARM Limited. All rights reserved. 13-17

Working with armsd
where:

expression1 gives the words in memory to search for.

expression2 specifies the lower boundary for the search.

expression3 specifies the upper boundary for the search.

string specifies the string to search for.

Usage

If the first form is used, the search is for words in memory whose contents match the
value of expression1.

If the second form is used, the search is for a sequence of bytes in memory (starting at
any byte boundary) whose contents match those of string.

Low-level symbols are accepted by default.

13.2.17 fpregisters

The fpregisters command displays the contents of the eight floating-point registers
f0 to f7 and the Floating-point Program Status Register (FPSR).

Syntax

The syntax of the fpregisters command is:

fpregisters[/full]

where:

/full includes more information on the floating-point numbers in the registers.

Usage

There are two formats for the display of floating-point registers.

fpregisters displays the registers and FPSR, in the following form:

f0 = 0 f1 = 3.1415926535
f2 = Inf f3 = 0
f4 = 3.1415926535 f5 = 1
f6 = 0 f7 = 0
fpsr = %IZOux_izoux
13-18 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI 0066B

Working with armsd
fpregisters/full

produces a more detailed display:

f0 = I + 0x3fff 1 0x0000000000000000
f1 = I + 0x4000 1 0x490fdaa208ba2000
f2 = I +u0x43ff 1 0x0000000000000000
f3 = I - 0x0000 0 0x0000000000000000
f4 = I + 0x4000 1 0x490fdaa208ba2000
f5 = I + 0x3fff 1 0x0000000000000000
f6 = I + 0x0000 0 0x0000000000000000
f7 = I + 0x0000 1 0x0000000000000000
fpsr = 0x01070000

(Note that fpregisters/full does not output both sets of
values.)

The format of this display is (for example):

F S Exp J Mantissa
I +u0x43ff 1 0x0000000000000000

where:

F is a precision/format specifier:

F single precision

D double precision

E extended precision

I internal format

P packed decimal.

S is the sign.

Exp is the exponent.

J is the bit to the left of the binary point.

Mantissa are the digits to the right of the binary point.

u The u between the sign and the exponent
indicates that the number is flagged as
uncommon, in this example infinity. This
applies only to internal format numbers.

In the FPSR description, the first set of letters indicates the
floating-point mask and the second the floating-point flags. The
status of the floating-point mask and flag bits is indicated by their
case. Uppercase means the flag is set and lowercase means that it
is cleared.

The flags are:
ARM DUI 0066B Copyright © 1999, 2000 ARM Limited. All rights reserved. 13-19

Working with armsd
I Invalid operation

Z Divide by zero

O Overflow

U Underflow

X Inexact.

13.2.18 go

The go command starts execution of the program.

Syntax

The syntax of the go command is:

go {while expression}

where:

while If while is used, expression is evaluated when a breakpoint is
reached. If expression evaluates to true (that is, non-zero), the
breakpoint is not reported and execution continues.

expression specifies the expression to evaluate.

Usage

The first time go is executed, the program starts from its normal entry point. Subsequent
go commands resume execution from the point at which it was suspended.

13.2.19 getfile

The getfile command reads from a file and writes the content to memory.

Syntax

The syntax of the getfile command is:

getfile filename expression

where:

filename names the file to read from.

expression defines the memory location to write to.
13-20 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI 0066B

Working with armsd
Usage

The contents of the file are read as a sequence of bytes, starting at the address which is
the value of expression. Low-level symbols are accepted by default.

13.2.20 help

The help command displays a list of available commands, or help on commands.

Syntax

The syntax of the help command is:

help {command}

where:

command is the name of the command you want help on.

Usage

The display includes syntax and a brief description of the purpose of each command. If
you need information about all commands, as well as their names, type help *.

13.2.21 in

The in command changes the current context by one activation level.

Syntax

The syntax of the in command is:

in

Usage

The in command sets the context to that called from the current level. It is an error to
issue an in command when no further movement in that direction is possible.

13.2.22 istep

The istep command steps execution through one or more instructions.
ARM DUI 0066B Copyright © 1999, 2000 ARM Limited. All rights reserved. 13-21

Working with armsd
Syntax

The syntax of the istep command is:

istep {in} {count|w{hile} expression}

istep out

Usage

This command is analogous to the step command except that it steps through one
instruction at a time, rather than one high-level language statement at a time.

13.2.23 language

The language command sets the high-level language.

Syntax

The syntax of the language command is:

language {language}

where:

language specifies the language to use. Enter one of the following:

• none

• C

• F77

• PASCAL

• ASM

Usage

The symbolic debugger uses any high-level debugging tables generated by a compiler
to set the default language to the appropriate one for that compiler, whether it is Pascal,
Fortran or C. If it does not find high-level tables, it sets the default language to none,
and modifies the behavior of where and step so that:

where reports the current program counter and instruction

step steps by one instruction.
13-22 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI 0066B

Working with armsd
13.2.24 let

The let command allows you to change the value of a variable or contents of a memory
location.

Syntax

The syntax of the let command is:

{let} {variable | location} = expression{{,} expression}*

where:

variable names the variable to change.

location names the memory location to change.

expression contains the expression or expressions.

Usage

The let command is used in low-level debugging to change memory. If the left-side
expression is a constant or a true expression (and not a variable), it is treated as a word
address, and memory at that location (and if necessary the following locations) is
changed to the values in the following expression(s).

An equals sign (=) or a colon (:) can separate the variable or location from the
expression. If multiple expressions are used, they must be separated by commas or
spaces.

Variables can only be changed to compatible types of expression. However, the
debugger converts integers to floating-point and vice versa, rounding to zero. The value
of an array can be changed, but not its address, because array names are constants. If
the subscript is omitted, it defaults to zero.

If multiple expressions are specified, each expression is assigned to variable[n-1],
where n is the nth expression.

See also let on page 12-10 for more information on the let command.

Specifying the source directory

You can use the variable $sourcedir to specify alternative search paths for source
files for the image currently loaded. This variable defaults to NULL if no alternative
directories are specified. You can set the value of $sourcedir using the command:

{let} $sourcedir = string
ARM DUI 0066B Copyright © 1999, 2000 ARM Limited. All rights reserved. 13-23

Working with armsd
where string must be a valid pathname, or pathnames. The string must be enclosed in
double quotes. If you are using armsd in a Windows DOS environment you must escape
the backslash directory separator with another backslash character.

For example:

let $sourcedir="c:\\myhome"

Multiple paths must be separated by a semicolon. For example:

ARMSD: let $sourcedir =
"/home/usr/me/src;/home/usr/me/src2;home/test source/lib1"
ARMSD: p $sourcedir
"/home/usr/me/src;/home/usr/me/src2;home/test source/lib1"

Note

No warning is displayed if you enter an invalid pathname.

Command-line arguments

Command-line arguments for the debuggee can be specified using the let command
with the root-level variable $cmdline. The syntax in this case is:

{let} $cmdline = string

The program name is automatically passed as the first argument, and thus should not be
included in the string. The setting of $cmdline can be examined using print.

go starts execution of the program.

getfile reads the contents of an area of memory from a file.

load loads an image for debugging.

putfile writes the contents of an area of memory to a file.

reload reloads the object file specified on the armsd command line, or the last
load command.

type types the contents of a source file, or any text file, between a specified
pair of line numbers.

Reading and writing bytes and halfwords (shorts)

When you specify a write to memory in armsd, a word value is used. For example:

let 0x8000 = 0x01
13-24 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI 0066B

Working with armsd
makes armsd transfer a word (4 bytes) to memory starting at the address 0x8000. The
bytes at 0x8001, 0x8002 and 0x8003 are zeroed.

To write only a single byte, you must indicate that a byte transfer is required. You can
do this with:

let *(char *)0xaddress = value

Similarly, to read from an address use:

print *(char *)0xaddress

You can also read and write halfwords (shorts) in a similar way:

let *(short *)0x8000 = value

print /%x *(short *)0x8000

where /%x displays in hex.

Editing long long variables

If you are changing the value of a long long or unsigned long long variable, your new
value might be of such a length that it appears to be invalid. In such a case, enter LL or
ULL as appropriate at the end of the new value to force its acceptance.
ARM DUI 0066B Copyright © 1999, 2000 ARM Limited. All rights reserved. 13-25

Working with armsd
13.2.25 list

The list command displays the contents of the memory between a specified pair of
addresses in hexadecimal, ASCII and instruction format, with four bytes (one
instruction) per line.

Syntax

The syntax of the list command is:

list{/size} {expression1}{, {+}expression2 }

where:

size distinguishes between ARM and Thumb code:

/16 lists as Thumb code.

/32 lists as ARM code.

With no size specifier, list tries to determine the instruction set
of the destination code by extracting information from the nearest
symbol at or below the address to start the listing.

expression1 gives the start address. If unspecified, this defaults to either:

• the address associated with the current context minus 32, if
the context has changed since the last list command was
issued

• the address following the last address displayed by the last
list command, if the context has not changed since the last
list command was issued.

expression2 gives the end address. It can take three forms:

• if expression2 is omitted, the end address is the value of
the start address + 64

• if it is preceded by +, the end address is the start line +
expression2

• if there is no +, the end line is the value of expression2.

Usage

The $list_lines variable can alter the default number of lines displayed from its
initial value of 16 (64 bytes).

Low-level symbols are accepted by default.
13-26 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI 0066B

Working with armsd
13.2.26 load

The load command loads an image for debugging.

Syntax

The syntax of the load command is:

load{/profile-option} image-file {arguments}

where:

profile-option specifies which profiling option to use:

/callgraph directs the debugger to provide the image
being loaded with counts which enable the
dynamic call-graph profile to be
constructed.

/profile directs the debugger to prepare the image
being loaded for flat profiling.

image-file is the name of the file to be debugged.

arguments are the command-line arguments the program normally takes.

Usage

image-file and any necessary arguments can also be specified on the command line
when the debugger is invoked. See Command-line options on page 11-3 for more
information.

If no arguments are supplied, the arguments used in the most recent load or reload,
setting of $cmdline, or command-line invocation are used again.

The load command clears all breakpoints and watchpoints, and does not set a
breakpoint at main() by default.
ARM DUI 0066B Copyright © 1999, 2000 ARM Limited. All rights reserved. 13-27

Working with armsd
13.2.27 log

The log command sends the output of subsequent commands to a file as well as to the
screen.

Syntax

The syntax of the log command is:

log filename

where:

filename is the name of the file where the record of activity is being stored.

Usage

To terminate logging, type log without an argument. The file can then be examined
using a text editor or the type command.

Note

The debugger prompt and the debug program input/output is not logged.
13-28 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI 0066B

Working with armsd
13.2.28 lsym

The lsym command displays low-level symbols and their values.

Syntax

The syntax of the lsym command is:

lsym pattern

where:

pattern is a symbol name or part of a symbol name.

Usage

The wildcard (*) matches any number of characters at the start and/or end of the pattern:

lsym *fred displays information about fred, alfred

lsym fred* displays information about fred, frederick

lsym *fred* displays information about alfred, alfreda, fred, frederick

The wildcard ? matches one character:

lsym ??fred matches Alfred

lsym Jo? matches Joe, Joy, and Jon

13.2.29 obey

The obey command executes a set of debugger commands which have previously been
stored in a file, as if they were being typed at the keyboard.

Syntax

The syntax of the obey command is:

obey command-file

where:

command-file is the file containing the list of commands for execution.

Usage

You can store frequently-used command sequences in files, and call them using obey.
ARM DUI 0066B Copyright © 1999, 2000 ARM Limited. All rights reserved. 13-29

Working with armsd
13.2.30 out

The out command changes the current context by one activation level and sets the
context to be that of the caller of the current context.

Syntax

The syntax of the out command is:

out

Usage

It is an error to issue an out command when no further movement in that direction is
possible.

13.2.31 pause

The pause command prompts you to press a key to continue.

Syntax

The syntax of the pause command is:

pause prompt-string

where:

prompt-string is a character string written to stderr.

Usage

Execution continues only after you press a key. If you press ESC while commands are
being read from a file, the file is closed before execution continues.

13.2.32 print

The print command examines the contents of the variables in the debugged program,
or displays the result of arbitrary calculations involving variables and constants.

Syntax

The syntax of the print command is:

print{/format} expression
13-30 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI 0066B

Working with armsd
where:

/format selects a display format, as described in Table 13-1 on page 13-7.
If no /format string is entered, integer values default to the
format described by the variable $int_format. Floating-point
values use the default format string %g.

expression enters the expression for evaluation.

Usage

Pointer values are treated as integers, using a default fixed format %.8x, for example,
000100e4.

See also print on page 12-10 for more information on the print command.

13.2.33 profclear

The profclear command clears profiling counts.

Syntax

The syntax of the profclear command is:

profclear

Usage

For more information on the ARM profiler, refer to the ADS Tools Guide.

13.2.34 profoff

The profoff command stops the collection of profiling data.

Syntax

The syntax of the profoff command is:

profoff

Usage

For more information on the ARM profiler, refer to the ADS Tools Guide.
ARM DUI 0066B Copyright © 1999, 2000 ARM Limited. All rights reserved. 13-31

Working with armsd
13.2.35 profon

The profon command starts the collection of profiling data.

Syntax

The syntax of the profon command is:

profon {interval}

where:

interval is the time between PC-sampling in microseconds.

Usage

Lower values have a higher performance overhead, and slow down execution, but
higher values are not as accurate.

13.2.36 profwrite

The profwrite command writes profiling information to a file.

Syntax

The syntax of the profwrite command is:

profwrite {filename}

where:

filename is the name of the file to contain the profiling data.

Usage

The generated information can be viewed using the armprof utility. This is described
in the ADS Tools Guide.

13.2.37 putfile

The putfile command writes the contents of an area of memory to a file. The data is
written as a sequence of bytes.

Syntax

The syntax of the putfile command is:
13-32 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI 0066B

Working with armsd
putfile filename expression1, {+}expression2

where:

filename specifies the name of the file to write the data into.

expression1 specifies the lower boundary of the area of memory to be written.

expression2 specifies the upper boundary of the area of memory to be written.

Usage

The upper boundary of the memory area is defined as follows:

• if expression2 is not preceded by a + character, the upper boundary of the
memory area is the value of:

expression2 - 1

• if expression2 is preceded by a + character, the upper boundary of the memory
area is the value of:

expression1 + expression2 - 1.

Low-level symbols are accepted by default.

13.2.38 quit

The quit command terminates the current armsd session.

Syntax

The syntax of the quit command is:

quit

Usage

This command also closes any open log or obey files.

13.2.39 readsyms

The readsyms command (like the -symbols command-line option) reads debug
information from the specified image file but does not load the image.
ARM DUI 0066B Copyright © 1999, 2000 ARM Limited. All rights reserved. 13-33

Working with armsd
Syntax

The syntax of the readsyms command is:

readsyms filename

Usage

This command gathers the required debugging information from the specified
executable image file but does not load the image into memory. The corresponding code
must be made available in another way (for example, via a getfile, or by being in
ROM).

13.2.40 registers

The registers command displays the contents of ARM registers 0 to 14, the program
counter, and the status flags contained in the program status register.

Syntax

The syntax of the registers command is:

registers {mode}

where:

mode selects the registers to display. For a list of mode names, refer to
Predefined symbols on page 12-14.

This option can also take the value all, where the contents of all registers
of the current mode are displayed, together with all banked registers for
other modes with the same address width.

Usage

If used with no arguments, or if mode is the current mode, the contents of all registers
of the current mode are displayed. If the mode argument is specified, but is not the
current mode, the contents of the banked registers for that mode are displayed.

A sample display produced by registers might look like this:
13-34 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI 0066B

Working with armsd
Example 13-1

 R0 = 0x00000000 R1 = 0x00000001 R2 = 0x00000002 R3 = 0x00000003
 R4 = 0x00000004 R5 = 0x00000005 R6 = 0x00000006 R7 = 0x00000007
 R8 = 0x00000008 R9 = 0x00000009 R10= 0x0000000a R11= 0x0000000b
 R12= 0x0000000c R13= 0x0000000d R14= 0x0000000e
 PC = 0x00008000 PSR= %NzcVIF_SVC26

13.2.41 reload

The reload command reloads the object file specified on the armsd command line, or
with the last load command.

Syntax

The syntax of the reload command is:

reload{/profile-option} {arguments}

where

profile-option specifies which profiling option to use:

/callgraph tells the debugger to provide the image
being loaded with counts to enable the
dynamic call-graph profile to be
constructed.

/profile directs the debugger to prepare the image
being loaded for flat profiling.

arguments are the command-line arguments the program normally takes. If
no arguments are specified, the arguments used in the most
recent load or reload setting of $cmdline or command-line
invocation are used again.

Usage

Breakpoints (but not watchpoints) remain set after a reload command.

13.2.42 return

The return command returns to the caller of the current procedure, passing back a
result where required.
ARM DUI 0066B Copyright © 1999, 2000 ARM Limited. All rights reserved. 13-35

Working with armsd
Syntax

The syntax of the return command is:

return {expression}

where:

expression contains the expression to be evaluated.

Usage

You cannot specify the return of a literal compound data type such as an array or record
using this command, but you can return the value of a variable, expression or compound
type.

13.2.43 step

The step command steps execution through one or more program statements.

Syntax

The syntax of the step command is:

step {in} {out} {count|w{hile} expression}

where:

in continues single-stepping into procedure calls, so that each
statement within a called procedure is single-stepped. If in is
absent, each procedure call counts as a single statement and is
executed without single stepping.

out steps out of a function to the line of originating code which
immediately follows that function.

count specifies the number of statements to be stepped through: if it is
omitted only one statement will be executed.

while continues single-stepped execution until its expression
evaluates as false (zero).

expression is evaluated after every step.

Usage

To step by instructions rather than statements:
13-36 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI 0066B

Working with armsd
• use the istep command

• or enter language none.

13.2.44 symbols

The symbols command lists all symbols defined in the given or current context, with
their type information.

Syntax

The syntax of the symbols command is:

symbols {context}

where:

context defines the program context:

• to see global variables, define context as the filename with no
path or extension

• to see internal variables, use symbols $.

Usage

The information produced is listed in the form:

name type, storage-class
ARM DUI 0066B Copyright © 1999, 2000 ARM Limited. All rights reserved. 13-37

Working with armsd
13.2.45 type

The type command types the contents of a source file, or any text file, between a
specified pair of line numbers.

Syntax

The syntax of the type command is:

type {expression1} {, {{+}expression2} {,filename} }

where:

expression1 gives the start line. If expression1 is omitted, it defaults to:

• the source line associated with the current context minus 5,
if the context has changed since the last type command was
issued

• the line following the last line displayed with the type
command, if the context has not changed.

expression2 gives the end line, in one of three ways:

• if expression2 is omitted, the end line is the start line +10

• if expression2 is preceded by +, the end line is given by
the value of the start line + expression2

• if there is no +, the end line is simply the value of
expression2.

Usage

To look at a file other than that of the current context, specify the filename required and
the locations within it.

To change the number of lines displayed from the default setting of 10, use the
$type_lines variable.
13-38 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI 0066B

Working with armsd
13.2.46 unbreak

The unbreak command removes a breakpoint.

Syntax

The syntax of the unbreak command is:

unbreak {location | #breakpoint_num}

where:

location is a source code location.

breakpoint_num is the number of the breakpoint

Usage

If there is only one breakpoint, delete it using unbreak without any arguments.

Note

A breakpoint always keeps its assigned number. Breakpoints are not renumbered when
another breakpoint is deleted, unless the deleted breakpoint was the last one set.

13.2.47 unwatch

The unwatch command clears a watchpoint.

unwatch

Syntax

The syntax of the unwatch command is:

unwatch {variable | #watchpoint_number}

where:

variable is a variable name.

variable is the number of a watchpoint (preceded by #) set using the watch
command.

Usage

If only one watchpoint has been set, delete it using unwatch without any arguments.
ARM DUI 0066B Copyright © 1999, 2000 ARM Limited. All rights reserved. 13-39

Working with armsd
13.2.48 variable

The variable command provides type and context information on the specified
variable (or structure field).

Syntax

The syntax of the variable command is:

variable variable

where:

variable specifies the variable to examine.

Usage

variable can also return the type of an expression.

13.2.49 watch

The watch command sets a watchpoint on a variable.

Syntax

The syntax of the watch command is:

watch {variable}

where:

variable names the variable to watch.

Usage

If variable is not specified, a list of current watchpoints is displayed along with their
numbers. When the variable is altered, program execution is suspended. As with break
and unbreak, these numbers can subsequently be used to remove watchpoints.

Bitfields are not watchable.

If you are debugging through JTAG/EmbeddedICE logic, ensure that watchpoints use
hardware watchpoint registers to avoid any performance penalty.
13-40 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI 0066B

Working with armsd
Note

When using the C compiler, be aware that the code produced can use the same register
to hold more than one variable if their lifetimes do not overlap. If the register variable
you are investigating is no longer being used by the compiler, you might see a value
pertaining to a completely different variable.

Adding watchpoints can make programs execute very slowly, because the value of
variables has to be checked every time they could have been altered. It is more practical
to set a breakpoint in the area of suspicion and set watchpoints once execution has
stopped.

13.2.50 where

The where command prints the current context and shows the procedure name, line
number in the file, filename and the line of code.

Syntax

The syntax of the where command is:

where {context}

where:

context specifies the program context to examine.

Usage

If a context is specified after the where command, the debugger displays the location
of that context.
ARM DUI 0066B Copyright © 1999, 2000 ARM Limited. All rights reserved. 13-41

Working with armsd
13.2.51 while

The while command is only useful at the end of a line containing one or more existing
statements. Enter multi-statement lines by separating the statements with ; characters.

Syntax

The syntax of the while command is:

statement; {statement;} while expression

where:

statement; {statement;}

represents one or more statements to be executed while the
expression is true

expression defines the expression to be evaluated.

Usage

After execution of the statements, expression is evaluated. If true, execution of the
line is repeated. This continues until expression evaluates to false (zero).
13-42 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI 0066B

Appendix A
Debug Communications Channel

This appendix explains the use of the Debug Communications Channel. It contains the
following sections:

• Introduction on page A-2

• Command-line debugging commands on page A-3

• Enabling comms channel viewing on page A-4

• Target transfer of data on page A-5

• Polled debug communications on page A-6

• Interrupt-driven debug communications on page A-12

• Access from Thumb state on page A-13

• Semihosting on page A-14.
ARM DUI 0066B Copyright © 1999, 2000 ARM Limited. All rights reserved. A-1

Debug Communications Channel
A.1 Introduction

The EmbeddedICE logic in ARM cores such as ARM7TDMI and ARM9TDMI
contains a debug communication channel. This allows data to be passed between the
target and the host debugger using the JTAG port and a protocol converter such as
Multi-ICE, without stopping the program flow or entering debug state. This appendix
examines how the debug communication channel can be accessed by a program running
on the target and by the host debugger.

Note

The EmbeddedICE logic in ARM7DI does not implement a debug communications
channel.

If the ARM-based system you are using makes use of an AMBA rev. C ARM7TDMI
wrapper, then the debug communicatiuons channel will not work. Current (Sept. 98)
versions of the Atmel AT91 suffer from this problem.

ADS provides three methods of accessing the debug communication channel:

• a command-line debugger, such as:

— armsd

— the command window in ADW

• the Channel Viewer mechanism in AXD or ADW

• Multi-ICE semihosting.

Note

If you wish to make use of the facilities described in this appendix with an
EmbeddedICE interface, ensure that you are using EmbeddedICE agent software
version 2.04 or later (2.07 is the latest version at the time of writing), and GAL version
EFI-0011C.

For further information on the debug facilities provided by EmbeddedICE on the
ARM7TDMI, see:

• the technical reference manual or datasheet for the ARM core that you are using

• other documentation supplied with ADS, as listed in the preface to this book.
A-2 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI 0066B

Debug Communications Channel
A.2 Command-line debugging commands

To access the debug communication channel from a command line, using armsd or the
command-line window in ADW, use the following commands:

ccin filename

Selects a file containing comms channel data for reading. This
command also enables host to target comms channel
communication.

ccout filename

 Selects a file where comms channel data is written. This
command also enables target to host comms channel
communication.
ARM DUI 0066B Copyright © 1999, 2000 ARM Limited. All rights reserved. A-3

Debug Communications Channel
A.3 Enabling comms channel viewing

Debug communications channel viewing is supported in both AXD and ADW.

A.3.1 Comms channel viewing in AXD

To enable channel viewing in AXD, refer to Control system view pop-up menus on
page 5-34.

To use a channel viewer in AXD, refer to Comms Channel processor view on page 5-25.

A.3.2 Comms channel viewing in ADW

To enable channel viewing and to use a channel viewer in ADW, refer to Channel
viewers on page 9-23.
A-4 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI 0066B

Debug Communications Channel
A.4 Target transfer of data

The debug communication channel is accessed by the target as coprocessor 14 on the
ARM core using the ARM instructions MCR and MRC.

Two registers are provided to transfer data:

Comms data read register
A 32-bit wide register used to receive data from the debugger. The
following instruction returns the read register value in Rd:

MRC p14, 0, Rd, c1, c0

Comms data write register
A 32-bit wide register used to send data to the debugger. The following
instruction writes the value in Rn to the write register:

MCR p14, 0, Rn, c1, c0
ARM DUI 0066B Copyright © 1999, 2000 ARM Limited. All rights reserved. A-5

Debug Communications Channel
A.5 Polled debug communications

In addition to the comms data read and write registers, a comms data control register is
provided by the debug communication channel.

The following instruction returns the control register value in Rd:

MRC p14, 0, Rd, c0, c0

Two bits in this control register provide synchronized handshaking between the target
and the host debugger:

Bit 1 (W bit)
Denotes whether the comms data write register is free (from the target’s
point of view):

W = 0 New data may be written by the target application.

W = 1 The host debugger can scan new data out of the write register.

Bit 0 (R bit)
Denotes whether there is new data in the comms data read register (from
the target’s point of view):

R = 1 New data is available to be read by the target application.

R = 0 The host debugger can scan new data into the read register.

Note

The debugger cannot use coprocessor 14 to access the debug communication channel
directly, as this has no meaning to the debugger. Instead, the debugger can read from
and write to the debug communication channel registers using the scan chain. The
debug communication channel data and control registers are mapped into addresses in
the EmbeddedICE logic.

A.5.1 Target to debugger communication

This is the sequence of events for an application running on the ARM core to
communicate with the debugger running on the host:

1. The target application checks if the debug communication channel write register
is free for use. It does this using the MRC instruction to read the debug
communication channel control register to check that the W bit is clear.
A-6 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI 0066B

Debug Communications Channel
2. If the W bit is clear, the debug communication write register is clear and the
application writes a word to it using the MCR instruction to coprocessor 14. The
action of writing to the register automatically sets the W bit. If the W bit is set,
the debug communication write register has not been emptied by the debugger. If
the application needs to send another word, it must poll the W bit until it is clear.

3. The debugger polls the debug communication control register via scan chain 2. If
the debugger sees that the W bit is set, it can read the debug communication
channel data register to read the message sent by the application. The process of
reading the data automatically clears the W bit in the debug communication
control register.

The following piece of target application code, supplied in file
Examples/dcc/outchan.s, shows this in action:

 AREA OutChannel, CODE, READONLY
 ENTRY
 MOV r1,#4 ; Number of words to send
 ADR r2, outdata ; Address of data to send
pollout
 MRC p14,0,r0,c0,c0 ; Read control register
 TST r0, #2
 BNE pollout ; if W set, register
 ; still full
write
 LDR r3,[r2],#4 ; Read word from outdata
 ; into r3 and update the
 ; pointer
 MCR p14,0,r3,c1,c0 ; Write word from r3
 SUBS r1,r1,#1 ; Update counter
 BNE pollout ; Loop if more words to
 ; be written
 MOV r0, #0x18 ; Angel_SWIreason_ReportException
 LDR r1, =0x20026 ; ADP_Stopped_ApplicationExit
 SWI 0x123456 ; ARM semihosting SWI
outdata
 DCB "Hello there!"
 END

4. Assemble and link this code using the following commands:

armasm -g outchan.s
armlink outchan.o -o outchan.axf

You have created an executable image in a file called outchan. Your next steps depend
on your choice of debugger. You can load the image, enable comms channel viewing,
and execute the image by using:

• armsd
ARM DUI 0066B Copyright © 1999, 2000 ARM Limited. All rights reserved. A-7

Debug Communications Channel
• AXD

• ADW.

Using armsd

If you are using armsd:

1. Load the image into armsd with the command:

armsd -li -adp -port s=1 outchan.axf

2. Enable communication and open the output file, then execute the program:

ccout output
go

3. Quit armsd when execution finishes. You should be able to view the file and see
that transfer has occurred.

Using AXD

If you are using AXD:

1. Enable channel viewing, as described in Control system view pop-up menus on
page 5-34.

2. Load the image created above into AXD.

3. Use the channel viewer in AXD, as described in Comms Channel processor view
on page 5-25.

4. In the AXD main screen, select Go from the Execute menu (or press F5) to
execute the image.

The data sent from the target (in this example, Hello there!) should now be
displayed in the Channel Viewer window.

Using ADW

If you are using ADW:

1. Enable channel viewing and load the image, as described in Channel viewers on
page 9-23.

2. In the Channel Viewer window, select Start Viewer from the Control menu.

3. In the ADW main window select Go from the Execute menu, to execute the
program.
A-8 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI 0066B

Debug Communications Channel
The data sent from the target (in this example, Hello there!) should now be
displayed in the Channel Viewer window.

A.5.2 Debugger to target communication

This is the sequence of events for message transfer from the debugger running on the
host to the application running on the core:

1. The debugger polls the debug communication control register R bit. If the R bit is
clear, the debug communication read register is clear and data can be written there
for the target application to read.

2. The debugger scans the data into the debug communication read register via scan
chain 2. The R bit in the debug communication control register is automatically
set by this.

3. The target application polls the R bit in the debug communication control register.
If it is set, there is data in the debug communication read register that can be read
by the application, using the MRC instruction to read from coprocessor 14. The R
bit is cleared as part of the read instruction.

The following piece of target application code, supplied in file
Examples/dcc/inchan.s, shows this in action:

 AREA InChannel, CODE, READONLY
 ENTRY
 MOV r1,#4 ; Number of words to read
 LDR r2, =indata ; Address to store data read
pollin
 MRC p14,0,r0,c0,c0 ; Read control register
 TST r0, #1
 BEQ pollin ; If R bit clear then loop
read
 MRC p14,0,r3,c1,c0 ; read word into r3
 STR r3,[r2],#4 ; Store to memory and
 ; update pointer
 SUBS r1,r1,#1 ; Update counter
 BNE pollin ; Loop if more words to read
 MOV r0, #0x18 ; Angel_SWIreason_ReportException
 LDR r1, =0x20026 ; ADP_Stopped_ApplicationExit
 SWI 0x123456 ; ARM semihosting SWI

 AREA Storage, DATA, READWRITE
indata
 DCB "Duffmessage#"
 END

4. Create an input file on the host containing, for example, And goodbye!.
ARM DUI 0066B Copyright © 1999, 2000 ARM Limited. All rights reserved. A-9

Debug Communications Channel
5. Assemble and link this code using the following commands:

armasm -g inchan.s
armlink inchan.o -o inchan.axf

You have created an executable image in a file called inchan. Your next steps depend
on your choice of debugger.

You can load the image, enable comms channel viewing, and execute the image by
using:

• armsd (for command-line operation)

• AXD (the latest ARM debugger)

• ADW (an earlier ARM debugger).

Issuing commands

If you are issuing commands:

1. Load the image into armsd using the following command:

armsd -li -adp -port s=1 inchan.axf

If you view the area of memory indata, you see its initial random contents:

examine indata

2. Enable communication and open the input file, then execute the program:

ccin input
go

3. When execution completes, view memory again and you can see the input has
been read in:

examine indata

Using AXD

If you are using AXD:

1. Enable channel viewing, as described in Control system view pop-up menus on
page 5-34.

2. Load the image created above into AXD.

3. Use the channel viewer in AXD, as described in Comms Channel processor view
on page 5-25.
A-10 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI 0066B

Debug Communications Channel
4. In the Send field of the Channel Viewer, type And goodbye!, and click the Send
button. The Left to Send counter should show the number of bytes stored for
sending to the target.

If you view the area of memory indata, you see its initial contents:

examine indata

5. In the AXD main screen, select Go from the Execute menu (or press F5) to
execute the image.

6. When execution is complete, view memory again and you can see that the input
has been read in:

examine indata

Using ADW

If you are using ADW:

1. Enable channel viewing and load the image, as described in Channel viewers on
page 9-23.

2. In the Channel Viewer window, select Start Viewer from the Control menu.

3. In the Edit box on the dialog bar of the Channel Viewer, type And goodbye!,
and click the Send button. The Left to Send counter should show the number of
bytes stored for sending to the target.

If you view the area of memory indata, you see its initial contents:

examine indata

4. In the ADW main window select Go from the Execute menu, to execute the
program.

5. When execution is complete, view memory again and you can see that the input
has been read in:

examine indata
ARM DUI 0066B Copyright © 1999, 2000 ARM Limited. All rights reserved. A-11

Debug Communications Channel
A.6 Interrupt-driven debug communications

The examples given above are polled. It is also possible to convert these to
interrupt-driven examples by connecting up COMMRX and COMMTX signals from the
ARM7TDMI core to your interrupt controller.

The read and write code given above could then be moved into an interrupt handler.

For information on writing interrupt handlers refer to the ADS Developer Guide.
A-12 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI 0066B

Debug Communications Channel
A.7 Access from Thumb state

As the Thumb instruction set does not contain coprocessor instructions, you cannot use
the debug communication channel while the core is in Thumb state.

There are three possible ways around this:

• You can write each polling routine as a SWI (Software Interrupt), which can then
be executed while in either ARM or Thumb state. Entering the SWI handler
immediately puts the core into ARM state where the coprocessor instructions are
available. Refer to the ADS Developer Guide for further information on SWIs.

• Thumb code can make interworking calls to ARM subroutines which implement
the polling. Refer to the ADS Developer Guide for further information on mixing
ARM and Thumb code.

• Use interrupt-driven communication rather than polled communication. The
interrupt handler would be written in ARM instructions, so the coprocessor
instructions can be accessed directly.
ARM DUI 0066B Copyright © 1999, 2000 ARM Limited. All rights reserved. A-13

Debug Communications Channel
A.8 Semihosting

You can use the debug communications channel for semihosting if you are using
Multi-ICE. For further information refer to the Multi-ICE User Guide.
A-14 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI 0066B

Glossary

The items in this glossary are listed in alphabetical order, with any symbols and
numerics appearing at the end.

Action Point A breakpoint or watchpoint (see Breakpoint and Watchpoint), at which a specified
debugging action occurs. The default action is to stop execution. Another typical action
you can specify is to record a diagnostic message in a log file and continue execution.

ADP See Angel Debug Protocol.

ADS See ARM Developer Suite.

ADU See ARM Debugger for UNIX.

ADW See ARM Debugger for Windows.

Angel Angel is a program that enables you to develop and debug applications running on
ARM-based hardware. Angel can debug applications running in either ARM state or
Thumb state.

Angel Debug Protocol Angel uses a debugging protocol called the Angel Debug Protocol (ADP) to
communicate between the host system and the target system. ADP supports multiple
channels and provides an error-correcting communications protocol.

AOF See ARM Object Format.
ARM DUI 0066B Copyright © 1999, 2000 ARM Limited. All rights reserved. Glossary-1

ARM Debugger for
UNIX

ARM Debugger for UNIX (ADU) and ARM Debugger for Windows (ADW) are two
versions of the same ARM debugger software, running under UNIX or Windows
respectively. This debugger was issued originally as part of the ARM Software
Development Toolkit. It is still fully supported and is now supplied as part of the ARM
Developer Suite.

ARM Debugger for
Windows

ARM Debugger for Windows (ADW) and ARM Debugger for UNIX (ADU) are two
versions of the same ARM debugger software, running under Windows or UNIX
respectively. This debugger was issued originally as part of the ARM Software
Development Toolkit. It is still fully supported and is now supplied as part of the ARM
Developer Suite.

ARM Developer Suite A suite of applications, together with supporting documentation and examples, that
enable you to write and debug applications for the ARM family of RISC processors.

ARM eXtended
Debugger

The ARM eXtended Debugger (AXD) is the latest debugger software from ARM that
enables you to make use of a debug agent in order to examine and control the execution
of software running on a debug target. AXD is supplied in both Windows and UNIX
versions.

ARM state A processor that is executing ARM (32-bit) instructions is operating in ARM state.

ARMulator ARMulator is an instruction set simulator. It is a collection of modules that simulate the
instruction sets and architecture of various ARM processors.

ARM Object Format A (now obsolete) format for object files.

armsd The ARM Symbolic Debugger (armsd) is an interactive source-level debugger providing
high-level debugging support for languages such as C, and low-level support for
assembly language. It is a command-line debugger that runs on all supported platforms.

ATPCS ARM/Thumb Procedure Call Standard.

AXD See ARM eXtended Debugger.

Backtracing See Stack backtracing and Tracing.

Basic ARM Ten System The Basic ARM Ten System (BATS) is a modelling scheme similar to but separate from
ARMulator. BATS is designed specifically to model systems based on the ARM10
processor. ARMulator models systems based on all earlier ARM processors.

BATS See Basic ARM Ten System.

Big-endian Memory organization where the least significant byte of a word is at a higher address
than the most significant byte. See also Little-endian.

Breakpoint A location in the image. If execution reaches this location, the debugger halts execution
of the image. See also Watchpoint.
Glossary-2 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI 0066B

Class A C++ class involved in the image.

Class variables
/functions

Variables or functions with scope limited to the current class. (See also Local
variables/functions and Global variables/functions.)

CLI See Command-line Interface.

Command-line
Interface

You can operate any ARM debugger by issuing commands in response to
command-line prompts. This is the only way of operating armsd, but ADW, ADU and
AXD all offer a graphical user interface in addition. A command-line interface is
particularly useful when you need to run the same sequence of commands repeatedly.
You can store the commands in a file and submit that file to the command-line interface
of the debugger.

Context The information stored in a block of registers on entry to a subroutine, and held there
until needed for restoring the information on exit from the subroutine.

Context menu See Pop-up menu.

Control Bars A control bar is a special window which is usually aligned along one side of a frame
window. Control bars can be considered containers for other windows and controls or
as a drawing area for the application.

Coprocessor An additional processor used for certain operations. Usually used for floating-point
calculations, signal processing, or memory management.

CPSR Current Program Status Register. See Program Status Register.

Debugger An application that monitors and controls the execution of a second application.
Usually used to find errors in the application program flow.

DLL See Dynamic Linked Library.

Dockable Windows A dockable window is positioned and sized automatically when you open it or dock it,
with any other docked windows already on the screen being resized if necessary. You
can change the size of a docked window, or undock it and allow it to float free on the
desktop.

Double word A 64-bit unit of information. Contents are taken as being an unsigned integer unless
otherwise stated.

DWARF Debug With Arbitrary Record Format.

Dynamic Linked
Library

A collection of programs, any of which can be called when needed by an executing
program. A small program that helps a larger program communicate with a device such
as a printer or keyboard is often packaged as a DLL.

EIDE See Integrated Drive Electronics.

ELF Executable Linkable Format.
ARM DUI 0066B Copyright © 1999, 2000 ARM Limited. All rights reserved. Glossary-3

Enhanced Program
Status Register

See Program Status Register.

EPSR Enhanced Program Status Register. See Program Status Register.

Executable image See Image.

Execution Unit A debugger object representing a thread of execution within an image.

File A disk file somehow involved in the debuggee or debugger. This will most likely be a
source file compiled/assembled into an image. However it may also be an image file or
a session file.

Floating point Convention used to represent real (as opposed to integer) numeric values. Several such
conventions exist, trading storage space required against numerical precision.

Floating point emulator Software that emulates the action of a hardware unit dedicated to performing arithmetic
operations on floating-point values.

FP See Floating point.

FPE See Floating Point Emulator.

Function A C++ method or free function.

Global variables
/functions

Variables or functions with global scope within the image. (See also Class
variables/functions and Local variables/functions.)

Halfword A 16-bit unit of information. Contents are taken as being an unsigned integer unless
otherwise stated.

Host A computer which provides data and other services to another computer.

ICE In-circuit Emulator.

IDE See Integrated Development Environment.

Image An file of executable code which can be loaded into memory on a target and executed
by a processor there.

Integrated
development
environment

CodeWarrior is an example of an IDE, offering facilities for automating image-building
and file-management processes.

JTAG Joint Test Access Group. Many debug and programming tools use a JTAG interface port
to communicate with processors. For further information refer to IEEE Standard, Test
Access Port and Boundary-Scan Architecture specification 1149.1 (JTAG).

Little-endian Memory organization where the least significant byte of a word is at a lower address
than the most significant byte. See also Big-endian.
Glossary-4 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI 0066B

Local variables
/functions

Variables or functions with local scope. (See also Class variables/functions and Global
variables/functions.)

MDI See Multiple Document Interface.

Memory management
unit

Hardware that controls caches and access permissions to blocks of memory, and
translates virtual to physical addresses.

MMU See Memory Management Unit.

Multi-ICE Multi-processor in-circuit emulator. ARM registered trademark.

Multiple document
interface

A feature of MS Windows allowing the simultaneous display of a number of windows.

PID A platform-independent development board designed and supplied by ARM Ltd.

PIE A platform-independent evaluator card designed and supplied by ARM Ltd.

Pop-up menu Also known as Context menu. A menu that is displayed temporarily, offering items
relevant to your current situation. Obtainable in most ADS windows by right-clicking
with the mouse pointer inside the window. In some windows the pop-up menu can vary
according to the line the mouse pointer is on and the tabbed page that is currently
selected.

Processor An actual processor, real or emulated running on the target. A processor always has at
least one context of execution.

Processor Status
Register

See Program Status Register.

Profiling Accumulation of statistics during execution of a program being debugged, to measure
performance or to determine critical areas of code.

Call-graph profiling provides great detail but slows execution significantly. Flat
profiling provides simpler statistics with less impact on execution speed.

For both types of profiling you can specify the time interval between
statistics-collecting operations.

Program Status
Register

Program Status Register (PSR), containing some information about the current
program and some information about the current processor. Often, therefore, also
referred to as Processor Status Register.

Is also referred to as Current PSR (CPSR), to emphasize the distinction between it and
the Saved PSR (SPSR). The SPSR holds the value the PSR had when the current
function was called, and which will be restored when control is returned.

An Enhanced Program Status Register (EPSR) contains an additional bit (the Q bit,
signifying saturation) used by some ARM processors, including the ARM9E.
ARM DUI 0066B Copyright © 1999, 2000 ARM Limited. All rights reserved. Glossary-5

Program image See Image.

PSR See Program Status Register.

Register A processor register.

RDI The Remote Debug Interface (RDI) is an open ARM standard procedural interface
between a debugger and the debug agent. The widest possible adoption of this standard
is encouraged. RDI gives the debugger a uniform way to communicate with:

• a debug agent running on the host (for example, ARMulator)

• a debug monitor running on ARM-based hardware accessed through a
communication link (for example, Angel)

• a debug agent controlling an ARM processor through hardware debug support
(for example, Multi-ICE).

Remote_A A communications protocol used, for example, between debugger software such as
ARM eXtended Debugger (AXD) and a debug agent such as Angel.

Saved Program Status
Register

See Program Status Register.

Scope The range within which it is valid to access such items as a variable or a function. See
also Class, Global and Local variables/functions.

Script A file specifying a sequence of debugger commands that you can submit to the
command-line interface using the obey command. This saves you from having to enter
the commands individually, and is particularly helpful when you need to issue a
sequence of commands repeatedly.

SDT Software Development Toolkit (SDT) is an ARM product still supported but superseded
by ARM Developer Suite (ADS).

Semihosting A mechanism whereby the target communicates I/O requests made in the application
code to the host system, rather than attempting to support the I/O itself.

Source File A file which is processed as part of the image building process. Source files are
associated with images.

SPSR Saved Program Status Register. See Program Status Register.

Stack backtracing Examining the list of currently active subroutines in a halted executing program to help
establish how current settings have arisen.

Tabbed A GUI mechanism to overlay several pages in a single window, allowing page selection
by clicking on a named tab.

Target The target processor (real or simulated), on which the target application is running.
Glossary-6 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI 0066B

The fundamental object in any debugging session. The basis of the debugging system.
The environment in which the target software will run. It is essentially a collection of
real or simulated processors.

TC See Transaction Control.

Thread A thread of execution on a processor.

A context of execution on a processor. A thread is always related to a processor and may
or may not be associated with an image.

Thumb state A processor that is executing Thumb (16-bit) instructions is operating in Thumb state.

Tracing Recording diagnostic messages in a log file, to show the frequency and order of
execution of parts of the image. The text strings recorded are those that you specify
when defining a breakpoint or watchpoint. See Breakpoint and Watchpoint. See also
Stack backtracing.

Variable A named memory location of an appropriate size to hold a specific data item.

Views Windows showing the data associated with a particular debugger/target object. These
may consist of a single, simple GUI control such as an edit field or a more complex
multi-control dialog implemented as an ActiveX.

The Processor Views menu allows you to select views associated with a specific
processor, while the System Views menu allows you to select system-wide views.

Watchpoint A location in the image that is monitored. If the value stored there changes, the
debugger halts execution of the image. See also Breakpoint.

Word A 32-bit unit of information. Contents are taken as being an unsigned integer unless
otherwise stated.
ARM DUI 0066B Copyright © 1999, 2000 ARM Limited. All rights reserved. Glossary-7

Glossary-8 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI 0066B

Index

The items in this index are listed in alphabetical order, with symbols and numerics appearing at the end. The
references given are to page numbers.
A
About this book viii
Accelerator keys 2-13
Access protection

in ADW and ADU expressions
10-11

in AXD expressions 4-5
Accessing

host peripherals 1-7, 7-6
online help 1-9, 7-4, 13-21

Addsourcedir AXD command 6-11
ADW and ADU 7-2

adding watches 10-9
adw.exe 10-2
adw_cpp.dll library 10-2
buttons 10-2
changing variables 10-8
class view 10-3
closing down 8-6
command-line operation 9-21
configuring 9-25
expressions 10-9

formatting watch items 10-7
menus 10-2
starting 8-4
viewing code 10-4
watches, recalculating 10-9

ADW and ADU windows
backtrace 8-14
breakpoints 8-14
command 8-13
console 8-12
debugger internals 8-15
disassembly 8-15
execution 8-11
expression 8-15
function names 8-15
globals 8-16
locals 8-16
low level symbols 8-16
memory 8-17
RDI log 8-17
registers 8-17
search paths 8-18
source file 8-18

source files list 8-18
watch 10-5
watchpoints 8-18

Agent, debug 1-2, 7-8
Analysis of processor time 4-12, 9-18
Angel 1-8, 7-7

configuring 5-61, 9-34
Debug Protocol (ADP) 2-6, 8-5,

9-35, 11-4
Applying for a software license 2-2
Arguments, command-line 5-38, 8-4,

9-20, 11-3
ARM core 1-6, 7-6
ARM debuggers 1-8

ADW and ADU 7-2
ADW and ADU with C++ 10-1
armsd 11-2
AXD 2-1

ARM disassembly mode 5-55, 6-6,
9-16

armsd 11-1
address constants 12-6
armsd.ini file 11-2
ARM DUI 0066B Copyright © 1999, 2000 ARM Limited. All rights reserved. Index-1

Index
ARMulator 11-4
backtrace 13-3
big-endian memory 11-3
breakpoints 12-3, 13-2
character constants 12-6
clock speed 11-4
command-line arguments for

debugee 13-24
command-line options 11-3
communications channel 12-17
configuring 11-2
constants 12-6
context of variables 12-2
coprocessor register display 13-4
displaydesc argument 13-14
duration of simulation 12-7
echoing commands 12-7
EmbeddedICE commands 12-15
EmbeddedICE variables 12-9
execution options 11-3
expressions as arguments 12-4
floating-point emulator 11-3
formatting output 12-11
getting started 12-1
help on 11-3
high-level language variables 12-2
high-level languages 13-22
initialization file 11-2
input from named file 11-3
internal variables 12-9
invoking 11-3
let command 12-10
list of variables 12-7
little-endian memory 11-3
loading debug information only

11-3
low-level debugging 12-12, 13-3
low-level symbols 12-12, 12-14
Multi-ICE variables 12-9
multi-statement lines 13-42
names of variables 12-2
operating system commands 13-5
output to file 11-3
overview 11-2
predefined symbols 12-13
print command 12-10
procedure names 12-3
processor type 11-3
profiling data 13-5

program line numbers 12-4
program locations 12-3
prompts 13-5
registers 12-14
remote debugging using ADP 11-4
search paths 11-4
setting the psr 12-14
source-level objects 12-2
starting debugee 13-3
starting debugger 11-3
statements within a line 12-4
stopping debugee 13-2
stopping debugger 13-5, 13-33
subscripting of pointers and arrays

12-5
symbols 11-3
syntax overview 11-3
variables 12-7
watchpoints 13-3

armsd commands
alias 13-5, 13-9
arguments 13-2, 13-10
backtrace 13-3, 13-10
break 13-2, 13-11
call 13-2, 13-12
ccin 12-17
ccout 12-17
comment 13-5, 13-8
context 13-3, 13-15
coproc 13-4, 13-13
cregdef 13-4, 13-16
cregisters 13-4, 13-15
cwrite 13-4, 13-16
examine 13-4, 13-17
find 13-4, 13-17
fpregisters 13-4, 13-18
getfile 13-3, 13-20
go 13-3, 13-20
help 13-5, 13-21
in 13-3, 13-21
istep 13-3, 13-22
language 13-3, 13-22
let 12-14, 13-23
list 13-4, 13-26
listconfig 12-15
load 13-3, 13-27
loadagent 12-15
loadconfig 12-15
log 13-5, 13-28

lsym 13-4, 13-29
obey 13-5, 13-29
out 13-3, 13-30
pause 13-5, 13-30
print 12-14, 13-5, 13-30
profclear 13-5, 13-31
profoff 13-5, 13-31
profon 13-5, 13-32
profwrite 13-5, 13-32
putfile 13-3, 13-32
quit 13-5, 13-33
readsyms 13-34
registers 13-4, 13-34
reload 13-3, 13-35
return 13-3, 13-36
selectconfig 12-16
step 13-3, 13-36
symbols 13-37
type 13-5, 13-38
unbreak 13-3, 13-39
unwatch 13-3, 13-39
variable 13-2, 13-40
watch 13-3, 13-40
where 13-3, 13-41
while 13-42
! 13-5, 13-8
| 13-5, 13-8

ARMulator 1-7, 7-6
configuring 5-56, 9-31

ASIC 1-7, 7-6
Audience, intended viii
AXD

CLI window 6-2
closing down 2-3
command-line operation 5-44, 6-2
commands 6-11
configuring 5-55
displays 2-9
execute menu 5-51
file menu 5-5
help menu 5-67
menus 2-11, 5-2
options menu 5-55
processor views menu 5-13
search menu 5-11
starting 2-3
status bar 5-4
system views menu 5-33
toolbars 5-2
Index-2 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI 0066B

Index
tools 2-13
window menu 5-65

AXD CLI commands
addsourcedir 6-11
backtrace 6-12
break 6-12
cclasses 6-13
cfunctions 6-13
classes 6-14
clear 6-14
clearbreak 6-14
clearwatch 6-15
comment 6-15
context 6-16
convariables 6-16
cvariables 6-17
dbginternals 6-17
disassemble 6-18
examine 6-18
files 6-18
fillmem 6-19
findstring 6-19
findvalue 6-20
format 6-20
functions 6-21
getfile 6-21
go 6-21
help 6-21
images 6-21
imgproperties 6-22
list 6-22
load 6-22
loadbinary 6-23
loadsymbols 6-23
log 6-24
lowlevel 6-24
memory 6-24
obey 6-25
parse 6-25
processors 6-26
procproperties 6-26
putfile 6-26
quitdebugger 6-27
readsyms 6-27
record 6-27
regbanks 6-27
registers 6-28
reload 6-28
run 6-28

runmode 6-29
runtopos 6-29
savebinary 6-30
script 6-30
setimgprop 6-30
setmem 6-31
setpc 6-31
setproc 6-31
setprocprop 6-32
setreg 6-33
setsourcedir 6-33
setwatch 6-34
source 6-34
sourcedir 6-35
stackentries 6-35
stackin 6-36
stackout 6-36
step 6-36
stop 6-37
type 6-37
unbreak 6-37
unwatch 6-37
variables 6-37
watch 6-38
watchpt 6-38
where 6-39

AXD processor views 5-13
backtrace 5-19
comms channel 5-25
console 5-27
disassembly 5-27
low-level symbols 5-24
memory 5-21
registers 5-14
source... 5-29
variables 5-18
watch 5-16

AXD system views 5-33
command-line interface 5-44
control 5-33
debugger internals 5-46
output 5-43
registers 5-40
watch 5-41

B
Backtrace

ADW and ADU window 8-14, 9-9
AXD view 5-19

Backtrace AXD command 6-12
Base classes

in ADW and ADU 10-6, 10-10
in AXD 4-5

Basic ARM Ten System (BATS) 1-7
configuring 5-60, 9-38

Books, related x
Book, about this viii
Break AXD command 6-12
Breakpoints

demonstration of setting 3-4
in ADW and ADU 8-14, 9-2, 9-4
in armsd 12-3, 13-2
in AXD 5-52

C
CClasses AXD command 6-13
Cfunctions AXD command 6-13
Changing values of variables

in ADW and ADU 8-9
in AXD 5-18

Characters, special 9-17
Class view window 10-3
Classes AXD command 6-14
Clear AXD command 6-14
Clearbreak AXD command 6-14
Clearwatch AXD command 6-15
Closing

ADW and ADU 8-6
armsd 13-33
AXD 2-3

Code, ARM/Thumb 5-55, 6-6, 9-16
Command ADW and ADU window

8-13
Command-line arguments for debugee

in ADW and ADU 9-20
in armsd 11-3
in AXD 5-38

Command-line arguments for debugger
ADW and ADU 8-4
armsd 11-3
AXD 2-3

Command-line operation
of ADW and ADU 9-21
of armsd 13-6
ARM DUI 0066B Copyright © 1999, 2000 ARM Limited. All rights reserved. Index-3

Index
of AXD 5-44, 6-2
Commands

in ADW and ADU 9-21
in armsd 13-1
in AXD 6-11

Comment AXD command 6-15
Comments

in script files 13-8
on ADS xii
on documentation xii

Comms channel AXD view 5-25
Concepts 1-2, 7-8, 8-1
Configuring

ADW and ADU debuggers 9-25
armsd debugger 11-2
ARMulator 5-56, 9-31
AXD debugger 5-55
BATS 5-60, 9-38
EmbeddedICE 9-39
Multi-ICE 5-58, 9-37
Remote_A 5-61, 9-34

Console
ADW and ADU window 8-12
AXD view 5-27

Contents iii
Context AXD command 6-16
Context of program 6-36, 13-21, 13-30
Control AXD view 5-33
Convariables AXD command 6-16
Conventions used in this book x
Coprocessor register

changing contents 13-16
displaying contents 13-16

Cvariables AXD command 6-17
C++

adds features to ADW and ADU
10-3

and ARM debuggers 1-8
menu 10-2

D
Dbginternals AXD command 6-17
Debug

agent 1-2, 7-8
communications channel 5-25, 9-23
monitor 1-8, 7-7
protocol (ADP) 2-6, 8-5, 9-35, 11-4

Debugger internals
ADW and ADU window 8-15
AXD view 5-46

Debuggers
closing down 2-3, 8-6, 13-33
currently supported 1-8
starting program execution 5-51,

8-7, 13-20
starting up 2-3, 8-4, 11-3

Deleting breakpoints
in ADW and ADU 9-2
in armsd 13-39
in AXD 5-52

Demonstration programs 3-2
Disassemble AXD command 6-18
Disassembly

ADW and ADU window 8-15
AXD view 5-27
mode 5-55, 9-16

Display formats 9-13
Documentation feedback xii

E
Editing breakpoints

in ADW and ADU 9-2
in AXD 5-52

Email address xii
EmbeddedICE 1-7, 7-6

configuring 9-39
Enquiries xii
E-PSR, setting, in AXD 5-15
Evaluating expressions 10-9
Examine AXD command 6-18
Examining

memory 5-21, 8-10, 9-15
search paths 9-11
source files 5-11, 5-29, 9-12
variables 5-18, 9-12

Examples 3-2
breakpoint setting 3-4
changing memory contents 3-14
examining registers 3-10, 3-12
examining variables 3-6
updating a program 3-16

Exceptions intercepted 5-36
Execute AXD menu 5-51
Execution

ADW and ADU window 8-11
stopping and stepping 4-2, 9-2

Exiting debugger 2-3, 8-6, 13-33
Expressions

ADW and ADU window 8-15
evaluating, in ADW and ADU 10-9
formatting watches 10-7
guidelines for using 4-4, 10-10
regular 9-16
sample 4-5
setting watches in ADW and ADU

10-5
specifying 4-4

F
Feedback

on ADS xii
on documentation xii

File AXD menu 5-5
Files

armsd.ini 11-2
AXD command 6-18
memory map 9-29

Fillmem AXD command 6-19
Findstring AXD command 6-19
Findvalue AXD command 6-20
Flash download 5-9, 9-22
Floating-point

returning values from armsd 12-8
Format

AXD command 6-20
of displayed variables 5-19, 5-55,

9-13
Function names ADW and ADU

window 8-15, 9-17
Functions

AXD command 6-21
stepping into/out of 5-52, 6-7, 9-10

G
Getfile AXD command 6-21
Global hierarchy, in ADW and ADU

10-3
Global memory map file 9-29
Globals ADW and ADU window 8-16
Index-4 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI 0066B

Index
Glossary Glossary-1
Go AXD command 6-21

H
Halfwords, reading/writing

in ADW and ADU 9-21
in armsd 13-25

Help
AXD command 6-21

Help, online 1-9, 5-67, 7-4, 13-21
High-level

languages and armsd 12-2
symbols 4-9, 9-17

Host peripherals, accessing 1-7, 7-6
HP workstation 7-2

I
Image

loading 5-5, 6-22, 8-7, 13-27
reloading 5-7, 6-28, 8-7, 13-35
stepping through 5-52, 6-36, 9-9,

13-36
Images AXD command 6-21
Imgproperties AXD command 6-22
Indicators, @ and ^ 4-10, 9-18
Indirection 9-15
Intended audience viii
Intercepted exceptions 5-36
Interfacing with targets 1-5
Interval, profiling 5-6, 9-27

J
JTAG 1-7, 7-6

L
Library file adw_cpp.dll 10-2
License-managed software 2-2
Line, stepping to next 5-52, 6-36, 9-9
List AXD command 6-22
Load AXD command 6-22
Loadbinary AXD command 6-23

Loading an image 5-5, 6-22, 8-7, 13-27
Loadsymbols AXD command 6-23
Local memory map file 9-30
Locals ADW and ADU window 8-16
Log AXD command 6-24
Low-level

debugging in armsd 12-12
symbols 4-9, 9-17
symbols ADW and ADU window

8-16
symbols AXD view 5-24
symbols list order 8-17

Lowlevel AXD command 6-24

M
Matching strings 9-16
Member functions

in ADW and ADU expressions
10-10

in AXD expressions 4-5
Memory

ADW and ADU window 8-17
AXD command 6-24
AXD view 5-21
demonstration of changing contents

3-14
examining 8-10, 9-15
Flash 9-22
map files 9-29
reading/writing, in ADW and ADU

9-21
reading/writing, in armsd 13-25
reading/writing, in AXD 5-24

Menu bar 8-2
Menus

ADW and ADU window-specific
8-11

AXD 2-11, 5-2
C++ 10-2
pop-up 2-11

Mode, disassembly 9-16
Modifying debugger variables 5-18,

8-9
Monitor, debug 1-8, 7-7
Multi-ICE 1-7, 5-58, 9-37

O
Obey AXD command 6-25
Online help 1-9, 7-4, 13-21
Operating system

accessing from armsd 13-8
Operators

in ADW and ADU expressions
10-10

in AXD expressions 4-4
Options AXD menu 5-55
Output AXD view 5-43
Overloaded functions

in ADW and ADU expressions
10-10

in AXD expressions 4-4

P
Parse AXD command 6-25
Paths, search 9-11
Peripherals, accessing 1-7, 7-6
Pop-up menus 2-11
Problem solving xii
Procedures, tutorial 3-2
Processor time analysis 4-12, 9-18
Processor Views AXD menu 5-13
Processors AXD command 6-26
Processors, simulated 1-7, 7-6
Procproperties AXD command 6-26
Product feedback xii
Profiling 4-12, 9-18, 13-32

interval, setting 5-6, 5-38, 9-27,
13-32

Program
context 6-36, 13-21, 13-30
demonstration 3-2
executing in armsd 13-20
reloading 5-7, 8-7
stopping and stepping 4-2, 9-9
updating 3-16

Properties of variables 9-15
Protocol, Angel Debug (ADP) 2-6, 8-5,

9-35, 11-4
PSR, setting

in ADW and ADU 8-17
in armsd 12-14
in AXD 5-14
ARM DUI 0066B Copyright © 1999, 2000 ARM Limited. All rights reserved. Index-5

Index
Publications, related x
Putfile AXD command 6-26

Q
Queries xii
Quitdebuger AXD command 6-27
Quitting

ADW and ADU 8-6
armsd 13-33
AXD 2-3

R
RDI (Remote Debug Interface)

log window 9-16
Readsyms AXD command 6-27
Record AXD command 6-27
Regbanks AXD command 6-27
Registers

ADW and ADU window 8-17
AXD command 6-28
AXD processor view 5-14
AXD system view 5-40
demonstration of viewing 3-10,

3-12
halt if changed 5-52, 9-6

Regular expressions 9-16
Related publications x
Reload AXD command 6-28
Reloading an image 5-7, 6-28, 8-7,

13-35
Remote debug information 9-16
Remote_A 1-8, 7-7

configuring 5-61, 9-34
Run AXD command 6-28
Run to cursor 5-52, 9-10
Runmode AXD command 6-29
Running a demonstration program 3-2
Runtopos AXD command 6-29

S
Savebinary AXD command 6-30
Script AXD command 6-30
Search AXD menu 5-11

Search paths
ADW and ADU window 8-18
viewing 9-11

Semihosting mode 5-37
Setimgprop AXD command 6-30
Setmem AXD command 6-31
Setpc AXD command 6-31
Setproc AXD command 6-31
Setprocprop AXD command 6-32
Setreg AXD command 6-33
Setsourcedir AXD command 6-33
Setting up targets 2-4
Setwatch AXD command 6-34
Simulated processors 1-7
Software, license-managed 2-2
Source AXD command 6-34
Source files

ADW and ADU window 8-18
examining 9-12

Source files list ADW and ADU
window 8-18

Sourcedir AXD command 6-35
Source... AXD view 5-29
Special characters 9-17
Specifying strings 9-16
Sprintf() format string in ADW and

ADU 10-8
Stackentries AXD command 6-35
Stackin AXD command 6-36
Stackout AXD command 6-36
Starting

ADW and ADU 8-4
armsd 11-3
AXD 2-3

Status bar
in ADW and ADU 8-2
in AXD 5-4

Step AXD command 6-36
Stepping through an image 4-2, 6-36,

9-9, 13-36
Stop AXD command 6-37
Stopping

ADW and ADU 8-6
armsd 13-33
AXD 2-3

Strings
specifying and matching 9-16

Structure of this book viii
Sun workstation 7-2

Symbolic debugger (armsd) 11-1
Symbols, high- and low-level 4-9, 9-17
System Views AXD menu 5-33

T
Table of contents iii
Target

interfacing with 1-5
setting up 2-4, 9-25

Terminology 1-2, 7-8, 8-1, Glossary-1
Thumb

breakpoint setting 5-54, 9-4
channel viewer 5-25, 9-23
disassembly mode 5-55, 8-15, 9-16

Time analysis 4-12, 9-18
Toolbar

ADW and ADU 8-2
AXD 5-2

Tools, AXD 2-13
Tutorial examples 3-2
Type AXD command 6-37
Typographical conventions x

U
Unbreak AXD command 6-37
Unwatch AXD command 6-37

V
Variables

AXD command 6-37
AXD view 5-18
changing contents of, in ADW and

ADU 10-8
changing contents of, in AXD 5-18
demonstration of viewing 3-6
formatting watches 10-7
halt if changed 5-52, 9-6
in armsd 12-7
in specific function activation 12-3
properties of 9-15
referenced from armsd 12-2
setting watches, in ADW and ADU

10-5
Index-6 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI 0066B

Index
setting watches, in AXD 5-16
viewing 9-12

Vector catch variable in AXD 5-36

W
Watch

ADW and ADU window 10-5
AXD command 6-38
AXD processor view 5-16
AXD system view 5-41

Watchpoints
ADW and ADU window 8-18
clearing in armsd 13-39
in ADW and ADU 9-6, 9-7
in AXD 5-52
setting 13-40

Watchpt AXD command 6-38
Where AXD command 6-39
Who should read this book viii
Width, memory access 5-24
Window menu in AXD 5-65
Windows, ADW and ADU

backtrace 9-9
breakpoints 9-2
function names 9-17
RDI log 9-16
watch 10-5

Symbols
@ and ^ indicators 4-10, 9-18
ARM DUI 0066B Copyright © 1999, 2000 ARM Limited. All rights reserved. Index-7

	Preface
	About this book
	Intended audience
	Using this book
	Typographical conventions
	Further reading

	Feedback
	Feedback on the ARM Developer Suite
	Feedback on this book

	Contents
	About AXD
	1.1 Debugger concepts
	1.1.1 Debugger
	1.1.2 Debug target
	1.1.3 Debug agent
	1.1.4 Remote debug interface
	1.1.5 Single-processor hardware
	1.1.6 Multi-processor hardware
	1.1.7 Contexts
	1.1.8 Scope

	1.2 Interfacing with targets
	1.2.1 Debugging an ARM application
	1.2.2 Debugging systems
	1.2.3 Availability and compatibility

	1.3 Online help
	1.3.1 Displaying online help

	Getting Started in AXD
	2.1 License-managed software
	2.2 Starting and closing AXD
	2.2.1 Starting AXD
	2.2.2 AXD arguments
	2.2.3 Closing AXD

	2.3 Debugger target
	2.3.1 ARMulator
	2.3.2 BATS
	2.3.3 Multi-ICE unit and target board
	2.3.4 Angel or EmbeddedICE
	2.3.5 Gateway DLL

	2.4 AXD displays
	2.4.1 Views
	2.4.2 Multi-document interface
	2.4.3 Docked and floating windows
	2.4.4 Tabbed pages
	2.4.5 Dialogs

	2.5 AXD menus
	2.5.1 Menu bar menus
	2.5.2 Pop-up menus

	2.6 Tool icons, status bar, keys, and commands
	2.6.1 Toolbars
	2.6.2 Tooltips
	2.6.3 Status bar
	2.6.4 Keyboard shortcuts
	2.6.5 In-place editing
	2.6.6 Command-line interface

	Working with AXD
	3.1 Running a demonstration program
	3.2 Setting a breakpoint
	3.3 Examining the contents of variables
	3.3.1 Contents of variables
	3.3.2 Addresses and contents of variables

	3.4 Examining the contents of registers
	3.5 Examining the contents of memory
	3.6 Locating and changing values and verifying changes
	3.7 Creating a revised version of the program

	AXD Facilities
	4.1 Stopping and stepping
	4.1.1 Breakpoint
	4.1.2 Watchpoint
	4.1.3 Stepping through a program

	4.2 Expressions
	4.2.1 Using expressions
	4.2.2 Expression rules
	4.2.3 Expression examples

	4.3 Viewing and editing
	4.3.1 Control
	4.3.2 Source files
	4.3.3 Disassembled code
	4.3.4 Registers
	4.3.5 Watch
	4.3.6 Variables
	4.3.7 Memory
	4.3.8 Remote debug information
	4.3.9 High-level and low-level symbols
	4.3.10 Debugger internals
	4.3.11 Backtrace
	4.3.12 Communications channel
	4.3.13 Semihosting

	4.4 Profiling

	AXD Desktop
	5.1 Menus, toolbars and status bar
	5.1.1 Menus
	5.1.2 Toolbars
	5.1.3 Status bar

	5.2 File menu
	5.2.1 Load Image...
	5.2.2 Load Debug Symbols...
	5.2.3 Reload Current Image
	5.2.4 Open File...
	5.2.5 Load Memory From File...
	5.2.6 Save Memory To File...
	5.2.7 Flash Download...
	5.2.8 Recent Files
	5.2.9 Recent Images
	5.2.10 Exit

	5.3 Search menu
	5.3.1 Source...
	5.3.2 Memory...

	5.4 Processor Views menu
	5.4.1 Registers processor view
	5.4.2 Watch processor view
	5.4.3 Variables processor view
	5.4.4 Backtrace processor view
	5.4.5 Memory processor view
	5.4.6 Low Level Symbols processor view
	5.4.7 Comms Channel processor view
	5.4.8 Console processor view
	5.4.9 Disassembly processor view
	5.4.10 Source... processor view

	5.5 System Views menu
	5.5.1 Control system view
	5.5.2 Registers system view
	5.5.3 Watch system view
	5.5.4 Output system view
	5.5.5 Command Line Interface system view
	5.5.6 Debugger Internals system view

	5.6 Execute menu
	5.6.1 Go
	5.6.2 Stop
	5.6.3 Step
	5.6.4 Step In
	5.6.5 Step Out
	5.6.6 Run To Cursor
	5.6.7 Show Execution Context
	5.6.8 Watch/Breakpoints...
	5.6.9 Toggle Breakpoint
	5.6.10 Set Watchpoint
	5.6.11 Delete All Breakpoints

	5.7 Options menu
	5.7.1 Disassembly Mode
	5.7.2 Configure Interface...
	5.7.3 Configure Target...
	5.7.4 Status Bar
	5.7.5 Profiling
	5.7.6 Source Path...

	5.8 Window menu
	5.8.1 Cascade
	5.8.2 Tile
	5.8.3 Arrange Icons
	5.8.4 List of relevant windows

	5.9 Help menu
	5.9.1 Contents
	5.9.2 Using help
	5.9.3 Online Books
	5.9.4 About AXD
	5.9.5 Toolbar icons

	AXD Command-line Interface
	6.1 Command Line Window
	6.1.1 As an alternative to the GUI
	6.1.2 To automate repetitive tasks
	6.1.3 CLI pop-up menu

	6.2 Parameters and prefixes
	6.2.1 # parameters
	6.2.2 | parameters
	6.2.3 @ parameters
	6.2.4 $ parameters
	6.2.5 + parameters

	6.3 Commands with list support
	6.4 Predefined command parameters
	6.4.1 runmode
	6.4.2 format
	6.4.3 asm
	6.4.4 instr
	6.4.5 step
	6.4.6 memory
	6.4.7 scope
	6.4.8 toggle

	6.5 Definitions
	6.6 Commands
	6.6.1 addsourcedir
	6.6.2 backtrace
	6.6.3 break
	6.6.4 cclasses
	6.6.5 cfunctions
	6.6.6 classes
	6.6.7 clear
	6.6.8 clearbreak
	6.6.9 clearwatch
	6.6.10 comment
	6.6.11 context
	6.6.12 convariables
	6.6.13 cvariables
	6.6.14 dbginternals
	6.6.15 disassemble
	6.6.16 examine
	6.6.17 files
	6.6.18 fillmem
	6.6.19 findstring
	6.6.20 findvalue
	6.6.21 format
	6.6.22 functions
	6.6.23 getfile
	6.6.24 go
	6.6.25 help
	6.6.26 images
	6.6.27 imgproperties
	6.6.28 let
	6.6.29 list
	6.6.30 load
	6.6.31 loadbinary
	6.6.32 loadsymbols
	6.6.33 log
	6.6.34 lowlevel
	6.6.35 memory
	6.6.36 obey
	6.6.37 parse
	6.6.38 print
	6.6.39 processors
	6.6.40 procproperties
	6.6.41 putfile
	6.6.42 quitdebugger
	6.6.43 readsyms
	6.6.44 record
	6.6.45 regbanks
	6.6.46 registers
	6.6.47 reload
	6.6.48 run
	6.6.49 runmode
	6.6.50 runtopos
	6.6.51 savebinary
	6.6.52 script
	6.6.53 setimgprop
	6.6.54 setmem
	6.6.55 setpc
	6.6.56 setproc
	6.6.57 setprocprop
	6.6.58 setreg
	6.6.59 setsourcedir
	6.6.60 setwatch
	6.6.61 source
	6.6.62 sourcedir
	6.6.63 stackentries
	6.6.64 stackin
	6.6.65 stackout
	6.6.66 step
	6.6.67 stop
	6.6.68 type
	6.6.69 unbreak
	6.6.70 unwatch
	6.6.71 variables
	6.6.72 watch
	6.6.73 watchpt
	6.6.74 where

	About ADW and ADU
	7.1 About the ADW and ADU debuggers
	7.1.1 Minimum requirements for UNIX

	7.2 Online help
	7.3 Debugging an ARM application
	7.4 Debugging systems
	7.4.1 ARMulator
	7.4.2 Multi-ICE and EmbeddedICE
	7.4.3 Angel debug monitor

	7.5 Debugger concepts
	7.5.1 Debug agent
	7.5.2 Remote debug interface

	Getting Started in ADW and ADU
	8.1 The ADW and ADU desktop
	8.1.1 Menu bar, toolbar, mini toolbar and status bar

	8.2 Starting and closing ADW and ADU
	8.2.1 Starting ADW
	8.2.2 Starting ADU
	8.2.3 ADW and ADU arguments
	8.2.4 Closing ADW and ADU

	8.3 Loading, reloading, and executing a program image
	8.3.1 Loading an image
	8.3.2 Reloading an image
	8.3.3 Executing an image

	8.4 Examining and setting variables, registers, and memory
	8.4.1 Variables
	8.4.2 Registers
	8.4.3 Memory

	8.5 ADW and ADU desktop windows
	8.5.1 Execution window
	8.5.2 Console window
	8.5.3 Command window
	8.5.4 Backtrace window
	8.5.5 Breakpoints window
	8.5.6 Debugger Internals window
	8.5.7 Disassembly window
	8.5.8 Expression window
	8.5.9 Function Names window
	8.5.10 Locals/Globals window
	8.5.11 Low Level Symbols window
	8.5.12 Memory window
	8.5.13 RDI Log window
	8.5.14 Registers window
	8.5.15 Search Paths window
	8.5.16 Source File window
	8.5.17 Source Files List window
	8.5.18 Watchpoints window

	Working with ADW and ADU
	9.1 Breakpoints, watchpoints, backtracing and stepping
	9.1.1 Breakpoints
	9.1.2 Watchpoints
	9.1.3 Backtrace
	9.1.4 Stepping through an image

	9.2 ADW and ADU further details
	9.2.1 Working with source files
	9.2.2 Working with variables
	9.2.3 Displaying disassembled and interleaved code
	9.2.4 Remote debug information
	9.2.5 Using regular expressions
	9.2.6 High-level and low-level symbols
	9.2.7 Profiling
	9.2.8 Saving an area of memory to disk
	9.2.9 Loading an area of memory from disk
	9.2.10 Specifying command-line arguments for your program
	9.2.11 Using command-line debugger instructions
	9.2.12 Changing the data width for reads and writes
	9.2.13 Flash download

	9.3 Channel viewers
	9.3.1 ThumbCV channel viewer

	9.4 Configurations
	9.4.1 Debugger configuration
	9.4.2 ARMulator configuration
	9.4.3 Remote_A connection
	9.4.4 Multi-ICE configuration
	9.4.5 BATS configuration
	9.4.6 EmbeddedICE configuration

	Using ADW and ADU with C++
	10.1 About ADW and ADU for C++
	10.2 Using the C++ debugging tools
	10.2.1 Using the Class View window
	10.2.2 Using the Watch window
	10.2.3 Evaluating expressions

	About armsd
	11.1 About armsd
	11.1.1 Selecting a debugger
	11.1.2 Automatic command execution on startup

	11.2 Command syntax
	11.2.1 Command-line options

	Getting Started in armsd
	12.1 Specifying source-level objects
	12.1.1 Variable names and context
	12.1.2 Program locations
	12.1.3 Expressions
	12.1.4 Constants

	12.2 armsd variables
	12.2.1 Summary of armsd variables
	12.2.2 Accessing variables
	12.2.3 Formatting printed results
	12.2.4 Specifying the base for input of integer constants

	12.3 Low-level debugging
	12.3.1 Low-level symbols
	12.3.2 Predefined symbols

	12.4 armsd commands for EmbeddedICE
	12.4.1 listconfig
	12.4.2 loadagent
	12.4.3 loadconfig
	12.4.4 selectconfig

	12.5 Accessing the debug communications channel
	12.5.1 ccin
	12.5.2 ccout

	Working with armsd
	13.1 Groups of armsd commands
	13.1.1 Symbols
	13.1.2 Controlling execution
	13.1.3 Reading and writing memory
	13.1.4 Program context
	13.1.5 Low-level debugging
	13.1.6 Coprocessor support
	13.1.7 Profiling commands
	13.1.8 Miscellaneous commands

	13.2 Alphabetical list of armsd commands
	13.2.1 Annotating the command syntax
	13.2.2 Names used in syntax descriptions
	13.2.3 ! command
	13.2.4 | command
	13.2.5 alias
	13.2.6 arguments
	13.2.7 backtrace
	13.2.8 break
	13.2.9 call
	13.2.10 coproc
	13.2.11 context
	13.2.12 cregisters
	13.2.13 cregdef
	13.2.14 cwrite
	13.2.15 examine
	13.2.16 find
	13.2.17 fpregisters
	13.2.18 go
	13.2.19 getfile
	13.2.20 help
	13.2.21 in
	13.2.22 istep
	13.2.23 language
	13.2.24 let
	13.2.25 list
	13.2.26 load
	13.2.27 log
	13.2.28 lsym
	13.2.29 obey
	13.2.30 out
	13.2.31 pause
	13.2.32 print
	13.2.33 profclear
	13.2.34 profoff
	13.2.35 profon
	13.2.36 profwrite
	13.2.37 putfile
	13.2.38 quit
	13.2.39 readsyms
	13.2.40 registers
	13.2.41 reload
	13.2.42 return
	13.2.43 step
	13.2.44 symbols
	13.2.45 type
	13.2.46 unbreak
	13.2.47 unwatch
	13.2.48 variable
	13.2.49 watch
	13.2.50 where
	13.2.51 while

	Debug Communications Channel
	A.1 Introduction
	A.2 Command-line debugging commands
	A.3 Enabling comms channel viewing
	A.3.1 Comms channel viewing in AXD
	A.3.2 Comms channel viewing in ADW

	A.4 Target transfer of data
	A.5 Polled debug communications
	A.5.1 Target to debugger communication
	A.5.2 Debugger to target communication

	A.6 Interrupt-driven debug communications
	A.7 Access from Thumb state
	A.8 Semihosting

	Glossary
	Index
	A
	B, C
	D, E, F, G
	H, I, J, L, M, O, P
	Q, R, S, T, U, V
	W, Symbols

