
Copyright © 1999, 2000 ARM Limited. All rights reserved.
ARM DUI0064B

ARM Developer Suite
Version 1.0.1

Getting Started

ii Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI0064B

Copyright © 1999 and 2000 ARM Limited. All rights reserved.

Release Information

The following changes have been made to this book.

Proprietary Notice

ARM, the ARM Powered logo, Thumb, and StrongARM are registered trademarks of ARM Limited.

The ARM logo, AMBA, Angel, ARMulator, EmbeddedICE, ModelGen, Multi-ICE, PrimeCell,
ARM7TDMI, ARM7TDMI-S, ARM9TDMI, ARM9E-S, ETM7, ETM9, TDMI, STRONG, are trademarks
of ARM Limited.

All other products or services mentioned herein may be trademarks of their respective owners.

Neither the whole nor any part of the information contained in, or the product described in, this document
may be adapted or reproduced in any material form except with the prior written permission of the copyright
holder.

The product described in this document is subject to continuous developments and improvements. All
particulars of the product and its use contained in this document are given by ARM in good faith. However,
all warranties implied or expressed, including but not limited to implied warranties of merchantability, or
fitness for purpose, are excluded.

This document is intended only to assist the reader in the use of the product. ARM Limited shall not be liable
for any loss or damage arising from the use of any information in this document, or any error or omission in
such information, or any incorrect use of the product.

Change History

Date Issue Change

October 1999 A Release 1.0

March 2000 B Release 1.0.1

ARM DUI 0064A Copyright © 1999, 2000 ARM Limited. All rights reserved. iii

Contents
Getting Started

Preface
About this book .. Preface-vi
Feedback ... Preface-ix

Chapter 1 Introduction
1.1 About the ARM Developer Suite ... 1-2
1.2 Supported platforms .. 1-6
1.3 Printed documentation .. 1-7
1.4 Help and online documentation .. 1-10

Chapter 2 Differences
2.1 Overview ... 2-2
2.2 Functionality enhancements and new functionality 2-3
2.3 Differences in default behavior ... 2-13
2.4 Changed compiler behavior .. 2-17
2.5 Changed assembler behavior ... 2-23
2.6 Changed linker behavior ... 2-26
2.7 Obsolete components and standards ... 2-28

Chapter 3 Creating an Application
3.1 Using the CodeWarrior IDE ... 3-2
3.2 Building from the command line .. 3-15

iv Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI 0064A

3.3 Using ARM libraries .. 3-27
3.4 Using your own libraries ... 3-30
3.5 Debugging the application with AXD .. 3-31

Chapter 4 FLEXlm License Manager
4.1 Installing a single node-locked license on a Windows PC 4-2
4.2 Installing a floating license for a Windows client .. 4-7
4.3 Installing a floating license for a UNIX client .. 4-9
4.4 Configuring the license server .. 4-11
4.5 Frequently asked questions about licensing ... 4-24
4.6 Information for experienced users of FLEXlm .. 4-25

ARM DUI0064B Copyright © 1999, 2000 ARM Limited. All rights reserved. Preface-v

Preface

This preface introduces the ARM Developer Suite (ADS) and its user documentation. It
contains the following sections:

• About this book on page Preface-vi

• Feedback on page Preface-ix.

Preface

Preface-vi Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI0064B

About this book

This book provides an overview of the ADS tools and documentation.

Intended audience

This book is written for all developers who are producing applications using ADS. It
assumes that you are an experienced software developer.

Using this book

This book is organized into the following chapters:

Chapter 1 Introduction

Read this chapter for an introduction to ADS. The components of ADS
and the printed and online documentation are described.

Chapter 2 Differences
Read this chapter for details of the differences between ADS and the
ARM Software Development Toolkit.

Chapter 3 Creating an application
Read this chapter for a brief overview of how to create an application
using the command-line tools or the CodeWarrior IDE.

Chapter 4 FLEXlm License Management
Read this chapter for an explanation of the FLEXlm licence management
tool for ADS.

Preface

ARM DUI0064B Copyright © 1999, 2000 ARM Limited. All rights reserved. Preface-vii

Typographical conventions

The following typographical conventions are used in this book:

typewriter Denotes text that may be entered at the keyboard, such as commands, file
and program names, and source code.

typewriter italic
Denotes arguments to commands and functions where the argument is to
be replaced by a specific value.

italic Highlights important notes, introduces special terminology, denotes
internal cross-references, and citations.

bold Highlights interface elements, such as menu names. Also used for
emphasis in descriptive lists, where appropriate, and for ARM processor
signal names.

typewriter bold
Denotes language keywords when used outside example code.

Further reading

This section lists publications from ARM Limited that provide additional information
on developing code for the ARM family of processors.

ARM periodically provides updates and corrections to its documentation. See
http://www.arm.com for current errata sheets and addenda.

See also the ARM Frequently Asked Questions list at
http://www.arm.com/DevSupp/Sales+Support/faq.html

ARM publications

Refer to the following books in the ADS document suite for information on other
components of ADS:

• CodeWarrior IDE Guide (ARM DUI 0065A)

• ADS Tools Guide (ARM DUI 0067A)

• ADS Debuggers Guide (ARM DUI 0066A)

• ADS Debug Target Guide (ARM DUI 0058A)

• ADS Developer Guide (ARM DUI 0056A).

Preface

Preface-viii Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI0064B

The following additional documentation is provided with the ARM Developer Suite:

• ARM Architecture Reference Manual (ARM DUI 0100). This is supplied in
Dynatext format, and in PDF format in
install_directory\PDF\ARM-DDI0100B_armarm.pdf.

• ARM Applications Library Programmer’s Guide (ARM DUI 0081). This is
supplied in Dynatext format, and in PDF format on the CD.

• ARM ELF specification (SWS ESPC 0003). This is supplied in PDF format in
install_directory\PDF\specs\ARM ELFA08.pdf.

• TIS DWARF 2 specification. This is supplied in PDF format in
install_directory\PDF\specs\TIS-DWARF2.pdf.

• Angel Debug Protocol. This is supplied in PDF format in
install_directory\PDF\specs\ADP ARM-DUI0052C.pdf

• Angel Debug Protocol Messages. This is supplied in PDF format in
install_directory\PDF\specs\ADP ARM-DUI0053D.pdf

In addition, refer to the following documentation for specific information relating to
ARM products:

• ARM Reference Peripheral Specification (ARM DDI 0062)

• the ARM datasheet or technical reference manual for your hardware device.

Preface

ARM DUI0064B Copyright © 1999, 2000 ARM Limited. All rights reserved. Preface-ix

Feedback

ARM Limited welcomes feedback on both the ARM Developer Suite and its
documentation.

Feedback on the ARM Developer Suite

If you have any problems with the ARM Developer Suite, please contact your supplier.
To help us provide a rapid and useful response, please give:

• details of the release you are using

• details of the platform you are running on, such as the hardware platform,
operating system type and version

• a small standalone sample of code that reproduces the problem

• a clear explanation of what you expected to happen, and what actually happened

• the commands you used, including any command-line options

• sample output illustrating the problem

• the version number of the tool, including the version number and build number.

Feedback on this book

If you have any problems with this book, please send email to errata@arm.com
giving:

• the document title

• the document number

• the page number(s) to which your comments apply

• a concise explanation of the problem.

General suggestions for additions and improvements are also welcome.

Preface

Preface-x Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI0064B

ARM DUI0064B Copyright © 1999, 2000 ARM Limited. All rights reserved. 1-1

Chapter 1
Introduction

This chapter introduces the ARM Developer Suite version 1.0.1 (ADS 1.0.1) and
describes its software components and documentation. It contains the following
sections:

• About the ARM Developer Suite on page 1-2

• Supported platforms on page 1-6

• Printed documentation on page 1-7

• Help and online documentation on page 1-10.

Introduction

1-2 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI0064B

1.1 About the ARM Developer Suite

ADS consists of a suite of applications, together with supporting documentation and
examples, that enable you to write and debug applications for the ARM family of RISC
processors.

You can use ADS to develop, build, and debug C, C++, or ARM assembly language
programs.

1.1.1 Components of ADS

ADS consists of the following major components:

• Command-line development tools

• GUI development tools on page 1-3

• Utilities on page 1-4

• Supporting software on page 1-4.

Command-line development tools

The following command-line development tools are provided:

armcc The ARM C compiler. The compiler is tested against the Plum Hall C
Validation Suite for ANSI conformance. It compiles ANSI source into
32-bit ARM code.

armcpp This is the ARM C++ compiler. It compiles ISO C++ or EC++ source
into 32-bit ARM code.

tcc The Thumb C compiler. The compiler is tested against the Plum Hall C
Validation Suite for ANSI conformance. It compiles ANSI source into
16-bit Thumb code.

tcpp This is the Thumb C++ compiler. It compiles ISO C++ or EC++ source
into 16-bit Thumb code.

armasm The ARM and Thumb assembler. This assembles both ARM assembly
language and Thumb assembly language source.

armlink The ARM linker. This combines the contents of one or more object files
with selected parts of one or more object libraries to produce an
executable program. The ARM linker creates ELF executable images.

Introduction

ARM DUI0064B Copyright © 1999, 2000 ARM Limited. All rights reserved. 1-3

armsd The ARM and Thumb symbolic debugger. This enables source level
debugging of programs. You can single-step through C or assembly
language source, set breakpoints and watchpoints, and examine program
variables or memory.

Rogue Wave C++ library
The Rogue Wave library provides an implementation of the standard C++
library as defined in the ISO/IEC 14822:1998 International Standard for
C++. For more information on Rogue Wave, see the online HTML
documentation on the CD ROM.

support library
The ARM C libraries provide additional components to enable support
for C++ and to compile code for different architectures and processors.

GUI development tools

The following Graphics User Interface (GUI) development tools are provided:

AXD The ARM Debugger for Windows and UNIX. This provides a full
Windows and UNIX environment for debugging your C, C++, and
assembly language source.

ADW The ARM Debugger for Windows. This provides a full Windows
environment for debugging your C, C++, and assembly language source.

ADU The ARM Debugger for UNIX. This provides a full GUI environment for
debugging your C, C++, and assembly language source.

CodeWarrior IDE
The project management tool for Windows. This automates the routine
operations of managing source files and building your software
development projects.

Introduction

1-4 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI0064B

Utilities

The following utility tools are provided to support the main development tools:

fromELF The ARM image conversion utility. This accepts ELF format input files
and converts them to a variety of output formats, including AIF, plain
binary, Extended Intellec Hex (IHF) format, Motorola 32-bit S-record
format, and Intel Hex 32 format.

armprof The ARM profiler displays an execution profile of a program from a
profile data file generated by an ARM debugger.

armar The ARM librarian enables sets of ELF format object files to be collected
together and maintained in libraries. You can pass such a library to the
linker in place of several ELF files.

Flash downloader
Utility for downloading binary images to Flash memory on a
development board.

Supporting software

The following support software is provided to enable you to debug your programs,
either under simulation, or on ARM-based hardware:

ARMulator The ARM core simulator. This provides instruction-accurate simulation
of ARM processors, and enables ARM and Thumb executable programs
to be run on non-native hardware. The ARMulator is integrated with the
ARM debuggers.

Angel The ARM debug monitor. Angel runs on target development hardware
and enables you to develop and debug applications running on
ARM-based hardware. Angel can debug applications running in either
ARM state or Thumb state.

Introduction

ARM DUI0064B Copyright © 1999, 2000 ARM Limited. All rights reserved. 1-5

Supported standards

The industry standards supported by ADS include:

ar UNIX-style archive files are supported by armar.

DWARF2 DWARF2 debug tables are supported by the compilers and linker. The
deprecated format DWARF1 has reduced support.

ANSI C The ARM and Thumb compilers accept ANSI C as input. The option
-strict can be used to enforce strict acceptance.

C++ The ARM and Thumb C++ compilers support a subset of the ISO C++
language.

EC++ The ARM and Thumb C++ compilers support the Embedded C++
(EC++) informal standard that is a subset of C++.

ELF The ARM tools produce ELF format files. The FromELF utility can
translate ELF files into other formats.

CodeWarrior IDE project files
The project manager for ADS is the Metrowerks CodeWarrior Integrated
Development Environment.

RDI All debug agents and targets within ADS have been upgraded to RDI
1.51, a new version of the Remote Debug Interface. The debuggers
support all the debug agents (for example ARMulator and Remote_A)
that are released as part of ADS. They also support Multi-ICE 1.4.

Introduction

1-6 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI0064B

1.2 Supported platforms

This release of the ADS is supported on the following platforms:

• Sun workstations running Solaris 2.5.1 or 2.6

• Hewlett Packard workstations running HP-UX 10.20

• IBM-compatible PCs running Windows 95, Windows 98, or Windows NT 4.

The CodeWarrior IDE is supported on IBM-compatible PCs running Windows 95,
Windows 98, and Windows NT 4.

Introduction

ARM DUI0064B Copyright © 1999, 2000 ARM Limited. All rights reserved. 1-7

1.3 Printed documentation

This section lists publications from both ARM Limited and third parties that provide
additional information on developing code for the ARM family of processors.

ARM periodically provides updates and corrections to its documentation. See
http://www.arm.com for current errata sheets and addenda.

See also the ARM Frequently Asked Questions list at:
http://www.arm.com/DevSupp/Sales+Support/faq.html

1.3.1 ARM publications

This book contains general information about ADS. Other publications included in the
suite are:

• ADS Tools Guide (ARM DUI 0067A). This book provides reference information
for ADS. It describes the command-line options to the assembler, linker,
compilers, and other ARM tools in ADS. The book also gives reference material
on the ARM implementation of the C and C++ compilers and the C libraries.

• ADS Developer Guide (ARM DUI 0056A). This book provides tutorial
information on writing code targeted at the ARM family of processors

• ADS Debuggers Guide (ARM DUI 0066A). This book has three main parts in
which all the currently supported ARM debuggers are described:

— Part A describes the graphical user interface components of ARM eXtended
Debugger (AXD), the most recent ARM debugger and part of the ARM
Developer Suite of software. Tutorial information is included to
demonstrate the main features of AXD.

— Part B describes the ARM Debugger for Windows (ADW) and the ARM
Debugger for UNIX (ADU). These earlier ARM debuggers continue to be
fully supported.

— Part C describes the ARM Symbolic Debugger (armsd).

• ADS Debug Target Guide (ARM DUI 0058A). This book provides reference and
tutorial information on the debug targets ARMulator and Angel that can be used
with the ARM debuggers.

• CodeWarrior IDE Guide (ARM DUI 0065A). This book provides tutorial and
reference information on the CodeWarrior Integrated Development Environment.
The CodeWarrior IDE is used to manage C, C++, and assembly language projects
in ADS. The CodeWarrior IDE and guide are available only on Windows.

In addition, refer to the following documentation for specific information relating to
ARM products:

Introduction

1-8 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI0064B

• ARM Reference Peripheral Specification (ARM DDI 0062)

• the ARM datasheet or technical reference manual for your hardware device

• Help and online documentation on page 1-10 describes documentation that is
available in PDF or HTML format.

1.3.2 Further reading

The ADS books are not intended to be an introduction to the ARM assembly language,
C, or C++ programming languages. They do not try to teach programming in C or C++,
and are not a reference manual for the C or C++ standards. The following books provide
general information:

General information

The following book gives general information about the ARM architecture:

• ARM System Architecture, Furber, S., (1996). Addison Wesley Longman, Harlow,
England. ISBN 0-201-40352-8.

C++ programming

The following books describe the C++ language:

• ISO/IEC 14882:1998(E), C++ Standard. Available from the national standards
body (for example, AFNOR in France or ANSI in the USA).

The following books provide general C++ programming information:

• Ellis, M.A. and Stroustrup, B., The Annotated C++ Reference Manual (1990).
Addison-Wesley Publishing Company, Reading, Massachusetts. ISBN
0-201-51459-1.

This is a reference guide to C++.

• Stroustrup, B., The Design and Evolution of C++ (1994). Addison-Wesley
Publishing Company, Reading, Massachusetts. ISBN 0-201-54330-3.

This book explains how C++ evolved from its first design to the language in use
today.

Introduction

ARM DUI0064B Copyright © 1999, 2000 ARM Limited. All rights reserved. 1-9

• Meyers, S., Effective C++ (1992). Addison-Wesley Publishing Company,
Reading, Massachusetts. ISBN 0-201-56364-9.

This provides short, specific, guidelines for effective C++ development.

• Meyers, S., More Effective C++ (1996). Addison-Wesley Publishing Company,
Reading, Massachusetts. ISBN 0-201-63371-X.

This is the sequel to Effective C++.

C programming

The following books provide general C programming information:

• Kernighan, B.W. and Ritchie, D.M., The C Programming Language (2nd edition,
1988). Prentice-Hall, Englewood Cliffs, NJ, USA. ISBN 0-13-110362-8.

This is the original C specification, updated to cover the essentials of ANSI C.

• Harbison, S.P. and Steele, G.L., A C Reference Manual (second edition, 1987).
Prentice-Hall, Englewood Cliffs, NJ, USA. ISBN 0-13-109802-0.

This is a very thorough reference guide to C, including useful information on
ANSI C.

• Koenig, A, C Traps and Pitfalls, Addison-Wesley (1989), Reading, Mass. ISBN
0-201-17928-8.

This explains how to avoid the most common traps and pitfalls in C
programming. It provides informative reading at all levels of competence in C.

• ISO/IEC 9899:1990, C Standard

This is available from ANSI as X3J11/90-013. The standard is available from the
national standards body (for example, AFNOR in France, ANSI in the USA).

Introduction

1-10 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI0064B

1.4 Help and online documentation

Additional information for ADS is available online. The online documentation consists
of online help, Dynatext files, PDF files, and HTML files.

The printed documentation for ADS is also available in Dynatext and PDF files. There
is also additional documentation available online that is not part of the printed
documentation.

1.4.1 Online help

Whenever you run a windowed component of ADS 1.0.1, the Help menu is available
in the menu bar.

Select Help→Contents to see a display of the main help topics available. (CodeWarrior
IDE does not have a Contents menu. Use the How to menu instead.).

You may navigate to a particular page of help in any one of the following ways:

• From the Contents tab of the Help Topics screen, do any of the following:

— click on a main topic to select it

— click on the Open button

— click on a sub-topic.

• From the Contents tab of the Help Topics screen either:

— double-click on a main topic book to open it (single-clicking toggles the
open or closed status)

— click on a sub-topic.

• From the Index tab of the Help Topics screen, do any of the following:

— type the first few characters of a likely index entry

— scroll down the displayed list of index entries until the entry you want is
visible

— click on the required index entry.

• From the Find tab of the Help Topics screen, do any of the following:

— type or select key words that may occur anywhere in the help text

— select a topic from the displayed list of topics that contain the specified
words.

• From any page of help that has a hypertext link to the page you want, click on the
highlighted hypertext link.

Introduction

ARM DUI0064B Copyright © 1999, 2000 ARM Limited. All rights reserved. 1-11

• Most pages of online help contain help links that can be clicked on:

— highlighted hot spots with dashed underlining display brief explanations in
pop-up boxes

— highlighted hot spots with solid underlining jump to other related pages of
help

— browse buttons display related pages of help.

Note

Most help selections can be done by key presses or mouse clicks.

Context-sensitive help

Context-sensitive help is frequently available. With the ADS 1.0.1 component running,
position the cursor on any field or button for which you need help and press the F1 key
on the keyboard. If relevant online help is available it is displayed.

An alternative method of invoking context-sensitive help is to click on the question
mark tool in the toolbar, then click on the field or button for which you need help.

1.4.2 Adobe Acrobat Reader

The manuals for ADS 1.0.1 are provided on the CD-ROM in Acrobat Portable
Document Format (PDF) files. You must have a copy of Adobe Acrobat Reader
installed before you can view them. Acrobat Reader is supplied with ADS 1.0.1, and is
also available from the Adobe web site http://www.adobe.com.

The following additional PDF documentation is provided with ADS 1.0.1:

• ARM Architecture Reference Manual (ARM DUI 0100). This is supplied in
Dynatext format and in PDF format in
install_directory\PDF\ARM-DDI0100B_armarm.pdf.

• ARM ELF specification (SWS ESPC 0003). This is supplied in PDF format in
install_directory\PDF\specs\ARM ELFA08.pdf.

• TIS DWARF 2 specification. This is supplied in PDF format in
install_directory\PDF\specs\TIS-DWARF2.pdf.

• Angel Debug Protocol. This is supplied in PDF format in
install_directory\PDF\specs\ADP ARM-DUI0052C.pdf

• Angel Debug Protocol Messages. This is supplied in PDF format in
install_directory\PDF\specs\ADP ARM-DUI0053D.pdf

Introduction

1-12 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI0064B

To consult the manuals:

1. Start Adobe Acrobat Reader.

2. Choose Open... from the File menu.

3. Move to the /pdf directory located in your installation directory, if you have
installed the online documentation. Otherwise, you can view the PDF files
directly from the CD.

4. Open the PDF files you wish to view.

For more information on using Adobe Acrobat Reader, choose Help→Reader Online
Help.

1.4.3 Dynatext

The manuals for ADS 1.0.1 are provided on the CD-ROM in Dynatext files. A viewer
for the files is installed.

To display the online documentation, either:

• select Online Books from the ARM Developer Suite v1.0.1 program group

• execute install_directory\dtext41\bin\Dtext.exe

Figure 1-1 shows the Dynatext browser that will be displayed showing a list of available
books.

Introduction

ARM DUI0064B Copyright © 1999, 2000 ARM Limited. All rights reserved. 1-13

 Figure 1-1 Dynatext browser with list of available books

Opening a book

Double-click on a title in the book list to open the book. The table of contents for the
book is displayed in the left panel and the text is displayed in the right panel (see
Figure 1-2).

Introduction

1-14 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI0064B

 Figure 1-2 Opening a book

Introduction

ARM DUI0064B Copyright © 1999, 2000 ARM Limited. All rights reserved. 1-15

Navigating through the book

Click on a section in the table of contents to display the text for that section. For
example, selecting C and C++ libraries displays the text for that section (see
Figure 1-3).

 Figure 1-3 Selecting a section from the table of contents

Introduction

1-16 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI0064B

Navigating using hyperlinks

Text in blue indicates a link that will display a different section of a book, or a different
book. Plain blue text indicates that the link is within the current chapter. Underlined
blue text indicates that the link is either to another chapter within the current book, or
to a different book. Hyperlinks behave differently depending on their target:

• if the link is within the current chapter (plain blue text), Dynatext scrolls the
current window to display the target

• if the link is to another chapter in the current book, Dynatext opens a new window
without a Table of Contents

• if the link is to another book, Dynatext opens a new window with a Table of
Contents.

Figure 1-4 shows the browser displaying the text for the linked text.

 Figure 1-4 Using text links

Introduction

ARM DUI0064B Copyright © 1999, 2000 ARM Limited. All rights reserved. 1-17

Displaying graphics

Graphics are not displayed automatically in the Dynatext browser since this might
obscure the text. If a graphic symbol is displayed, select it to display the linked graphic
in its own window. See Figure 1-5.

 Figure 1-5 Link to a figure

Clicking on the figure icon will display the figure in its own window. See Figure 1-6.

 Figure 1-6 Graphic displayed

Introduction

1-18 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI0064B

Navigating to a different book

If the blue link text refers to a different book, clicking on the link text will display the
linked book in its own window (see Figure 1-7).

 Figure 1-7 Navigating to a different book

Displaying help for Dynatext

Select Help→Reader Guide to display help on how to use Dynatext.

Introduction

ARM DUI0064B Copyright © 1999, 2000 ARM Limited. All rights reserved. 1-19

1.4.4 HTML

The manuals for the RogueWave C++ library for ADS 1.0.1 are provided on the
CD-ROM in HTML files. Use your browser software to view these files. For example,
select install_directory\Html\stdref\index.htm to display the HTML
documentation for RogueWave (see Figure 1-8).

 Figure 1-8 HTML browser

Introduction

1-20 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI0064B

ARM DUI0064B Copyright © 1999, 2000 ARM Limited. All rights reserved. 2-1

Chapter 2
Differences

This chapter describes the major differences between the ARM Developer Suite version
1.0 and the ARM Software Development Toolkit version 2.50:

• Overview on page 2-2

• Functionality enhancements and new functionality on page 2-3

• Differences in default behavior on page 2-13

• Changed compiler behavior on page 2-17

• Changed assembler behavior on page 2-23

• Changed linker behavior on page 2-26

• Obsolete components and standards on page 2-28.

Differences

2-2 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI0064B

2.1 Overview

The most important differences between ADS 1.0 and SDT 2.50 are:

• C and C++ libraries are supplied as binaries only. Selection of the appropriate
library for the build option is automatic. No rebuild kit or source code is supplied.

• The C libraries are suitable for embedded applications.

• The CodeWarrior IDE is used for project management instead of APM.

• AXD is a new debugger for Windows and UNIX. ADW for Windows and ADU
for UNIX are still supported.

• AXD supports the new RDI 1.51 release.

• armar replaces armlib as library manager and ar format replaces ALF as the
library format.

• The image format is now ELF.

• The preferred and default debug table format is now DWARF2.

• Support for ARM9E and preliminary support for ARM10.

• Major components are licence managed.

• Manuals are provided in Dynatext form for easy browsing.

• A new ARM/Thumb Procedure Call Standard (ATPCS) encompasses ARM and
Thumb on an equal basis.

• The included C++ compilers are fully integrated and improved, and include
support for Embedded C++.

• ARMulator supports RPS Interrupt Controller and Timer peripheral models.

• Clearer messages have been provided in many of the tools.

Differences

ARM DUI0064B Copyright © 1999, 2000 ARM Limited. All rights reserved. 2-3

2.2 Functionality enhancements and new functionality

This release of the ADS introduces numerous enhancements and new features. The
major changes are described in:

• Support for new processors (ARM9E and ARM10)

• Floating-point support on page 2-4

• Debuggers on page 2-6

• ARMulator on page 2-7

• Angel and Remote_A on page 2-7

• Libraries on page 2-8

• Library manager on page 2-9

• CodeWarrior IDE on page 2-9

• Linker on page 2-10

• Compilers on page 2-10

• Assembler on page 2-12

• License management on page 2-12

2.2.1 Support for new processors (ARM9E and ARM10)

ADS introduces support for the new ARM9E and ARM10 processors.

The new ARM9E instructions are supported by the assembler, the inline assembler of
the C and C++ compilers, the debuggers, and the ARMulator.

The new ARM10 instructions are supported by the assembler, the inline assembler of
the C and C++ compilers, the debuggers, and the Basic ARM Ten System (BATS)
ARMulator model. The compiler performs instruction scheduling for ARM10 code by
re-ordering machine instructions to gain maximum speed and minimize wait states. The
linker uses BLX in interworking veneers when the underlying architecture (the ARM9E
and ARM10, for example, have architecture 5) supports it.

2.2.2 New ARM/Thumb procedure call standard

The Procedure Call Standard has been redesigned to:

• give equal emphasis to ARM and Thumb

• interwork between ARM-state and Thumb-state for all variants

• reduce the number of variants

• support position independence

• produce compact code (especially with Thumb)

• be binary compatible with the previous most commonly used PCS variant.

Differences

2-4 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI0064B

The new ARM/Thumb Procedure Call Standard (ATPCS) enables a consistent ARM
and Thumb definition of Read Only Position Independence (also called Position
Independent Code), and Read Write Position Independence (also called Position
Independent Data) for both ARM and Thumb.

2.2.3 Floating-point support

Enhanced floating-point support is available in the compiler, assembler and debugger:

• The compiler, assembler and debugger support the new VFP floating-point
architecture in scalar mode.

• The compiler can generate VFP instructions for double and float operations. (The
inline assembler, however, does not support VFP.)

• The assembler supports VFP in vector mode. (New register names and directives
are available.)

• The compiler and assembler command-line option -fpu specifies the FPA
hardware, VFP hardware or software variants.

Choose -fpu fpa or -fpu softfpa to retain the old SDT 2.50 format.

Note

The order of the words in a little-endian double is different for FPA and VFP. If you
select -fpu fpa or -fpu softfpa the SDT 2.50 format is used. If you select -fpu
vfp or -fpu softvfp the new format is used.

There is no functional difference between SoftFPA and SoftVFP. Both implement IEEE
floating-point arithmetic by subroutine call, and both use the IEEE encoding of
floating-point values into 32-bit words. However, the ordering of the two halves of a
double is different for little-endian code. See Byte order of long long and double for
details.

2.2.4 Byte order of long long and double

The compilers and assembler now support industry-standard long long and double
types in both little-endian and big-endian formats. In SDT 2.50, the formats of
little-endian double and big-endian long long are nonstandard.

If a big-endian 64-bit quantity is represented as abcdefgh, with a being the most
significant byte and h the least significant byte, the standard little-endian format is
hgfedcba. SDT 2.50 used the following non-standard formats:

efghabcd For big-endian long long.

dcbahgfe For little-endian double.

Differences

ARM DUI0064B Copyright © 1999, 2000 ARM Limited. All rights reserved. 2-5

Impact

The format of long long is always industry-standard in ADS 1.0. There is no impact
if you have used little-endian long long. If you previously used big-endian long
long, you must recompile your code and ensure that it conforms to the new format.

There is no impact if you have used big-endian double. If you previously used
little-endian double and hardware floating-point (FPA), you should continue to use the
old little-endian double format and select the -fpu fpa option in ADS.

If you previously used little-endian double and software floating-point, you can choose
whether or not to change to the new format:

• Use -fpu softfpa or -fpu fpa to retain the old format

• Use -fpu softvfp or -fpu vfp to use the industry standard format. You must
recompile code that defines or references double types.

2.2.5 Remote Debug Interface

A new variant of the Remote Debug Interface (RDI 1.5.1) is introduced in ADS. The
version used in SDT 2.50 was 1.5.

The ADW debugger has been modified to function with RDI 1.0, RDI 1.5 or RDI 1.5.1
client DLLs. AXD works with RDI 1.5.1 targets only.

Debug targets that are released as part of ADS (ARMulators, Remote_A, and Gateway)
have been upgraded to RDI 1.5.1.

Impact

Third-party DLLs written to use RDI 1.5 will continue to work with the versions of
ADW and armsd shipped with ADS, but will only work with AXD if the DLL is, and
reports itself as, RDI 1.5.1 capable.

Third-party debuggers will fail to work with the ADS ARMulators, Remote_A, and
Gateway DLLs unless the debuggers conform to RDI 1.5.1.

Differences

2-6 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI0064B

2.2.6 Debuggers

A new debugger, AXD, is available for use on Windows or UNIX in addition to the
existing ADW and ADU. ADW has been enhanced.

All debug agents and targets in ADS support RDI 1.51, a new version of the Remote
Debug Interface. The debuggers support all the debug agents (for example ARMulator
and Remote_A) that are released as part of ADS. In addition, all debuggers except
armsd support Multi-ICE 1.4:

• ADW supports all ADS debug agents, Multi-ICE 1.3, and Multi-ICE 1.4

• ADU supports all ADS debug agents, and Multi-ICE 1.4

• Armsd supports all ADS debug agents

• AXD supports all ADS debug agents and Multi-ICE 1.4.

AXD

The new debugger provides a modern GUI with improved window management, data
display, and data manipulation. The debugging views have been redesigned to make the
display more relevant to the data. This includes in-place expansion, in-place editing and
validation, data sensitive formatting and editing, coloring modified data, and greater
user control over formatting and structure.

ADW

ADW enhancements are:

• Support for VFP floating-point opcodes and registers.

• Improved stack-unwinding due to the use of DWARF2 descriptions. In ADS, all
standard library functions carry DWARF frame unwinding descriptions with
them. These are always generated by ADS compilers and there is new assembler
support in ADS to facilitate their generation for hand-written assembly language.

Impact

AXD can debug RDI 1.5.1 targets only. All ARM-supplied debug targets (Multi-ICE,
ARMulator, Remote_A, and gateway) support RDI 1.5.1. For non-ARM debug targets
that support RDI 1.5 or RDI 1.0, use ADW instead of AXD.

There is no support for conversion of ADW obey files to AXD scripts. If existing obey
files are important, use ADW instead.

Differences

ARM DUI0064B Copyright © 1999, 2000 ARM Limited. All rights reserved. 2-7

2.2.7 ARMulator

The ARMulator has been enhanced to support RPS Interrupt Controller and Timer
peripheral models (as defined in ARM DDI 0062D). The ARMulator supports the
following new processor models:

• ARM9E

• ARM10T

• ARM1020T.

The ARM10 models do not support VFP.

There is also a new stack usage monitor memory model available for all processor
models except ARM10T and ARM1020T.

The ARMulator supports RDI 1.5.1.

2.2.8 Angel and Remote_A

Angel and Remote_A enhancements are:

• Remote_A connection supports RDI 1.5.1.

• Improved reliability when semihosting.

• Additional Angel ports and improved integration with uHAL.

• Improved coprocessor support, for example FPA (ARM7500) and VFP (ARM10)
coprocessors.

• Support for dynamically loaded hardware drivers for the host on Windows and
UNIX.

Hardware other than serial, parallel, or ethernet ports being can be used to
communicate with Angel. The GUI interface for Remote_A is extended into the
loaded driver.

Differences

2-8 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI0064B

2.2.9 Libraries

All Libraries (C, C++, math, and floating-point) are released as a set of object code
variants that cover all possible choices of Procedure Call Standard and all processor
architecture versions. A limited set of variants is required because the libraries have
been restructured to remove the necessity for some combinations. The compilation and
linking system has been re-engineered so that the correct library variants are
automatically linked in for the chosen compilation options. The linker is able to identify
the correct library variant from attributes embedded in the ELF. This re-engineering
makes the library variants much easier to use and removes the requirement to rebuild
different variants.

The C library has been improved and restructured so that there is no requirement for a
separate embedded C library. The C library chapter in the ADS Tools Guide describes
in detail how to construct target-specific libraries.

New real-time (near constant time) versions of the heap management functions
malloc(), free(), realloc(), and calloc() are provided.

The floating-point libraries have improved performance and functionality. Two
versions are provided:

• The version identified by the files beginning with f_ conforms to IEEE 754
accuracy standards and meets the floating-point arithmetic requirements of the C
and Java language standards.

• The version identified by the files beginning with g_ provides selectable IEEE
rounding modes and full control of IEEE exceptions, but at some performance
cost.

The Math library has better accuracy and a wider variety of functions (for example,
gamma function, cube root, inverse hyperbolic functions).

Differences

ARM DUI0064B Copyright © 1999, 2000 ARM Limited. All rights reserved. 2-9

2.2.10 Library manager

The library manager is armar. The ARM librarian enables sets of ELF format object
files to be collected together and maintained in libraries. You can pass such a library to
the linker in place of several ELF files. armar files are compatible with the UNIX
archive format ar.

Impact

The linker supports the deprecated ALF library format. Use armar for new libraries and
migrate your existing libraries to armar.

2.2.11 CodeWarrior IDE

ARM has licensed the CodeWarrior IDE from Metrowerks and is making this available
within ADS. This replaces APM on Windows platforms. (It is not available on UNIX
platforms).

The CodeWarrior IDE provides a simple, versatile, graphical user interface for
managing your software development projects. You can use CodeWarrior for the ARM
Developer Suite to develop C, C++, and ARM assembly language code targeted at
ARM processors. The CodeWarrior IDE enables you to configure the ARM tools to
compile, assemble, and link your project code.

CodeWarrior IDE configuration dialogs

The CodeWarrior IDE dialog boxes are used to select the new features available in the
compilers, assembler, and the linker.

Each selectable option on the dialog boxes has a tool tip that displays the command-line
equivalent for the option.

Impact

Existing APM projects are not usable with CodeWarrior. There is no support for
conversion of .apj files to CodeWarrior projects. Use the CodeWarrior IDE for new
projects. Migrate your existing APM projects to use the CodeWarrior IDE.

Check the assembler, compiler, and linker options for your new or migrated projects as
the defaults for ADS 1.0 are different from the defaults for the SDT 2.50.

Differences

2-10 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI0064B

2.2.12 Linker

The major linker enhancements are:

• Support for ELF object code.

• Support for automatic selection of the correct library variant.

• Improved scatter loading features to support new execution region attributes:

— Position Independent (PI)

— Relocatable (RELOC)

— linked at a fixed address (ABSOLUTE)

— simple Overlay (OVERLAY).

• Direct support for ROPI and RWPI procedure call standard variants.

• Support for outputting symbol definitions from a link step and reading them in a
later link step (support for system code at a fixed address).

Impact

Update your projects or makefiles to link with the appropriate options. In most cases
you will not have to change your source code to use the new options.

Check the assembler, compiler, and linker options for your new or migrated projects as
the defaults for ADS 1.0 are different from the defaults for armlink in SDT 2.50.

See Changed linker behavior on page 2-26 and the ADS Tools Guide for more
information.

2.2.13 Compilers

Extensive improvements have been made to the compilers.

C compilers

The following improvements have been made to the C Compiler:

• Assembly language output generated with the -S option to the ARM and Thumb
compilers can now more easily be assembled. The compilers add ASSERT
directives for command-line options such as ATPCS variants and byte order to
ensure that compatible compiler and assembler options are used when
reassembling the output.

• The inline assembler supports the new ARM9E and ARM10 instructions.

• Instruction scheduling for ARM10 minimizes wait states.

• the new VFP architecture is supported.

Differences

ARM DUI0064B Copyright © 1999, 2000 ARM Limited. All rights reserved. 2-11

New compiler options are provided for:

• controlling warnings

• selecting optimization

• generating position-independent code and position-independent data.

C++ compilers

The C++ compilers included with ADS inherit all the benefits of the C compiler. The
following additional improvements have been introduced since C++ version 1.10:

• RogueWave Library 2.01. This includes the RogueWave iostream
implementation. The iostream implementation supplied with C++ version 1.10
has been removed. Replace references to stream.h and iostream.h with
iostream.

• Support for the EC++ informal standard

• Updated vtables to support ROPI

• Improved template handling.

In addition, improvements have been made to the C++ compilers syntax and semantic
checking in both strict and non-strict modes. If previously successful programs now fail
to compile, please check their syntax first, before concluding that there is a compiler
fault.

Other general improvements are support for:

• mutable

• explicit

• covariant return types for left-most inheritance

• pseudo-destructors

• aggregates with allow complicated initializations

• template classes with static data members

• temporary destruction order for arguments to functions

• explicit casts to private bases

• inline functions

• better overload resolution

• declarations in conditional statements.

See Changed compiler behavior on page 2-17 and the ADS Tools Guide for more
information.

Differences

2-12 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI0064B

2.2.14 Assembler

Enhancements to the assembler include:

• the assembler provides support for the latest ARM processors

• the assembler outputs ELF object code.

There are considerable changes to assembler directives. See Changed assembler
behavior on page 2-23 and the ADS Tools Guide for more information.

2.2.15 License management

ADS components are license managed by FLEXlm. (See Chapter 4 FLEXlm License
Management for more information).

Differences

ARM DUI0064B Copyright © 1999, 2000 ARM Limited. All rights reserved. 2-13

2.3 Differences in default behavior

The differences in the default behavior of ADS compared to SDT 2.50 are described in:

• Object and library compatibility on page 2-13

• Entry point used with debugger on page 2-14

• Entry point set by linker option on page 2-14

• ADW on page 2-14

• ARMulator on page 2-15

• ELF, AIF, Binary AIF, IHF and Plain Binary Image formats on page 2-15

• Floating-point exceptions on page 2-15

• Stack unwinding on page 2-16.

2.3.1 Object and library compatibility

As a consequence of the new features introduced with ADS, ADS object files and
libraries are not guaranteed to be compatible with SDT 2.50 object files and libraries.
You can link SDT 2.50 objects and libraries with ADS images, but you must ensure that
your objects are built with appropriate procedure call standard options, and that the
following restrictions are observed:

• You must choose the SDT 2.50 default Procedure Call Standard options when
using SDT 2.50 (/hardfp excluded), and the ADS 1.0 default Procedure Call
Standard options when using ADS.

• In ADS, you must use -fpu FPA, -fpu softFPA, or -fpu none. You cannot
use the default option of -fpu softVFP.

• The format of big-endian long long has changed. This means that there is no
compatibility between ADS and SDT big-endian code if you use long long.

• There is no equivalent in ADS to the SDT -apcs /nofpregargs option for
functions that return a floating-point value. Functions that are built with the
-apcs /nofpregargs option, but do not return a floating-point value, are
compatible with functions declared using the new __softfp keyword.

• An SDT 2.50 object and an ADS object will be incompatible if they map the same
datum using a struct type T, whether through use of T * pointers or extern T,
and T contains only fields of short alignment.

A field has short alignment if its type is:

— [unsigned] short [array]

— [unsigned] char [array]

— a short enum type

— a struct containing only fields of short alignment.

Differences

2-14 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI0064B

In addition, if you link with SDT 2.50 objects you cannot take advantage of some ADS
debug enhancements. In particular, you cannot unwind the stack through SDT 2.50
code.

2.3.2 Entry point used with debugger

When an image with an entry point is loaded:

• the CPSR register is set to the value corresponding to a warm boot

• the IRQ and FIQ flags are set (disabling all interrupts)

• mode is set to Supervisor

• Condition Code flags are unchanged

• the processor executes in ARM state.

If the image contains no entry point, no change is made to the CPSR.

2.3.3 Entry point set by linker option

The -entry option sets the entry point for an image. There can be only one instance of
the -entry option to the linker.

Impact

Multiple -entry settings generate an error.

2.3.4 ADW

ADW now defaults to VFP mode for the display of floating-point and double values,
and for floating-point registers.

The SDT 2.50 version of ADW allowed some debug target settings to be configured by
the debugger tab on the configuration screen (for example, ARMulator memory maps
and byte order). For ADS debug targets, this tab is greyed out and the configuration
button must be used instead. This button invokes the configuration box in the RDI
Target.

Impact

The RDI Target configuration box has been extended to handle memory maps and byte
order. The debugger tab is still available for old debug target DLLs.

Differences

ARM DUI0064B Copyright © 1999, 2000 ARM Limited. All rights reserved. 2-15

2.3.5 ARMulator

FPE is now deselected by default in ARMulator. If you need FPE support for armsd, use
the command-line option -FPE. If you need FPE support for ADW or AXD, select the
FPE option in the ARMulator configuration dialog.

Map file selection has changed since SDT 2.50. The local/global/none map file
selection dialog has been replaced with a single map file selection.

2.3.6 ELF, AIF, Binary AIF, IHF and Plain Binary Image formats

The default, and only supported, image format is ELF.

Impact

The preferred way to generate an image in a non-ELF image (such as plain binary or
AIF) is to use the fromELF tool to translate the ELF image into the required format.

2.3.7 Floating-point exceptions

The ADS tools have been changed to conform to the IEEE specification. The SDT2.50
tools set the default response to floating-point Invalid-Operation, Divide-By-Zero and
Overflow to be a trap causing program termination. This is contrary to IEEE 754 section
7, that states that “The default response to an exception shall be to proceed without a
trap.”

Impact

To restore exception handling to the SDT 2.50 default, make the call shown in Example
2-1 before using any floating-point operations. The call should preferably be at the
beginning of main().

Example 2-1

#include <fenv.h>
#define EXCEPTIONS (FE_IEEE_MASK_INVALID | FE_IEEE_MASK_DIVBYZERO | \
 FE_IEEE_MASK_OVERFLOW)
__ieee_status(EXCEPTIONS, EXCEPTIONS);

Differences

2-16 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI0064B

2.3.8 Stack unwinding

The compilers now always generate DWARF2 stack-unwinding descriptions. In SDT
2.50 they were only generated if the -g option was specified (for debug information).
The assembler generates stack-unwinding descriptions if the new frame directives are
used. The debuggers rely on the stack-unwinding descriptions for stack backtrace.

Impact

If you want to unwind stacks when debugging assembler code, ensure that you use the
new frame directives. Stack-unwinding descriptions are automatically generated by the
ADS compilers and are included in the libraries released with ADS, so you need only
change assembly language code and legacy SDT2.50 code not compiled with debug
information (-g option). You can examine disassembled output from the compilers to
see how to use the assembler frame directives correctly.

2.3.9 Source directory variable in armsd and ADW

The $sourcedir variable used by armsd and ADW defaults to NULL if no value is
specified. In addition, the delimiter used to separate multiple pathnames has been
changed from a space to a semicolon.

The variable is used only to specify alternative search paths to the debuggers. You must
use the following conventions when specifying search paths:

• Enclose the full pathname in double quotes.

• In ADW and armsd under Windows DOS, escape the backslash directory
separator with another backslash character. For example:

"c:\\mysource\\src1"

• separate multiple pathnames with a semicolon, not with a space character. For
example:

"c:\\mysource\\src1;c:\\mysource\\src2"

You can also specify long pathnames containing space characters. For example:

"c:\\my source\\src1;c:\\my source\\src2"

Differences

ARM DUI0064B Copyright © 1999, 2000 ARM Limited. All rights reserved. 2-17

2.4 Changed compiler behavior

This section describes compiler behavior that is new, changed, deprecated, or obsolete.
Obsolete features are identified explicitly. Their use is faulted in ADS. Deprecated
features will be made obsolete in future releases. Their use is warned about in ADS.

2.4.1 New compiler options

The following new warning options are available in the compilers:

-We Turn off warnings about pointer casts

-Wm Turn off warnings about multi-character char constants

-Wo Turn off warnings about implicit conversion to signed long long

-Wq Turn off warnings about C++ constructor initilization order

-Wy Turn off warnings about deprecated features.

Use -W+option to turn a warning on. For example use -W+e to turn on warnings about
pointer casts.

The following additional new options are available in the compilers:

-Ono_inline Disable inlining. This option replaces -zpdebug_inlines.

-memaccess Specifies the memory attributes of the target system.

-nostrict Enables minor extensions to the C and C++ standards.

The changes to the qualifiers to the -apcs option are listed in Table 2-1.

 Table 2-1 Procedure call standard qualifiers

ADS form SDT 2.50 equivalent

[no]interwork [no]interwork

[no]ropi Not available

[no]rwpi Not available

[no]swstackcheck [no]swstackcheck

Obsolete. Now always nofp [no]fp

No direct equivalent, use -fpu softFPA softfp

No direct equivalent, use -fpu FPA hardfp

Differences

2-18 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI0064B

Impact

Update your projects or makefiles to compile with the appropriate options. In most
cases you will not have to change your source code to use the new options.

Check the assembler, compiler, and linker options for your new or migrated projects as
the defaults for ADS 1.0 are different from the defaults for SDT 2.50.

2.4.2 Obsolete compiler pragmas

The following pragmas from the ARM Software Development Toolkit are not
supported in the compiler:

check_memory_accesses
optimise_cross_jump
optimise_cse
optimise_multiple_loads
optimise_scheduling
side_effects
continue_after_hash_error
debug_inlines
force_toplevel
include_only_once

Impact

If you are creating new applications, there is no impact. If you are recompiling existing
applications, ensure that the desired build options are specified to the compiler. Remove
any obsolete pragmas from your source code and replace them, where necessary, with
equivalent compiler options.

Not Available [no]fpregargs

Obsolete. Now always narrow. narrow, wide

No direct equivalent, use -rwpi [non]reentrant

 Table 2-1 Procedure call standard qualifiers (Continued)

ADS form SDT 2.50 equivalent

Differences

ARM DUI0064B Copyright © 1999, 2000 ARM Limited. All rights reserved. 2-19

2.4.3 Obsolete compiler options

The following options from the ARM Software Development Toolkit are not supported
in the compiler:

-zpname Select pragma from command line.

-zinumber Replaced by -Ospace and -Otime.

-gxletter Replaced by the -O[0|1|2] options.

-dwarf Use -dwarf2 (or -dwarf1).

-aof Output AOF.

-asd Output ASD format debug tables.

-MD Generate APM dependency.

-cfront Select Cfront-style C++.

-pcc Select Berkeley PCC.

-fussy Synonym for -strict.

-pedantic Synonym for -strict.

-fw Make string literals writable.

-zanumber Use -memaccess instead. The default behavior for ADS 1.0 is for LDR
to access only word-aligned addresses (-za1).

-zt Fault tentative declarations. This is now the default unless -strict is
specified.

-zznumber Default is -zzt0.

-zztnumber Combines the -zt and -zz options.

-zap Specify whether pointers to structures are assumed to be aligned on at
least the minimum byte alignment boundaries set by -zas. The behavior
for ADS 1.0 is -zap0.

-zat Default is -zat1.

-zrnumber Set the number of register values transferred by LDM and STM
instructions. The compilers never generate LDM or STM instructions that
transfer more than nine register values for either ARM code or Thumb
code.

-fz This is now the default.

Impact

If you are creating new applications, there is no impact. If you are recompiling existing
applications, ensure that the desired build options are specified to the compiler. Remove
any obsolete options from your make files and replace them, where necessary, with
equivalent options. Check the assembler, compiler, and linker options for your new or
migrated projects as the defaults for ADS 1.0 are different from the defaults for the SDT
2.50.

Differences

2-20 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI0064B

2.4.4 Deprecated compiler options

The following options are deprecated and will not be supported in future versions of the
compiler:

-dwarf1 Use -dwarf2.

-proc, -arch Select processor or architecture. Use -cpu instead.

-zasnum Align structures on at least a num-byte boundary (1, 2, 4, or 8).
The default is now 1 (align only as strictly as the contents of the
structure require).

Impact

You can still output DWARF1 debug tables. However, the functionality of these output
files when used with the new debuggers might be reduced. Use DWARF2 format for
new projects and update your existing tools to use the DWARF2 format.

2.4.5 Obsolete ARM-specific language extensions

The following language extensions are obsolete:

__global_freg

This language extension is not required.

___weak (three underscores)

This was a synonym for __weak (two underscores) in SDT 2.50. Use
__weak.

__softfp This is a storage class specifier you can use in the declaration of a
function to indicate that the function has a software floating-point
interface (a double parameter passed in two integer registers, a double
result returned in a0, a1) even though its implementation may use
floating-point instructions. Use this to create ARM-state, VFP-using (or
FPA-using) functions that you can call directly from Thumb state (in
which floating-point instructions are inaccessible).

Differences

ARM DUI0064B Copyright © 1999, 2000 ARM Limited. All rights reserved. 2-21

2.4.6 Obsolete and new predefined macros

The obsolete predefined macros are listed in Table 2-2.

 Table 2-2 Obsolete predefined macros

Predefine Status Comments

__CLK_TCK Obsolete C library use only.

__APCS_32 Obsolete Relates to obsolete APCS/TPCS. No ATPCS equivalent.

__APCS_FPREGARGS Obsolete Relates to obsolete APCS/TPCS. No ATPCS equivalent.

__APCS_NOFP Obsolete Relates to obsolete APCS/TPCS. No ATPCS equivalent.

__APCS_REENT Obsolete Relates to obsolete APCS/TPCS. No ATPCS equivalent.

__APCS_NOSWST Obsolete Relates to obsolete APCS/TPCS. Use new __APCS_SWST.

__CFRONT_LIKE Obsolete The option -cfront is now obsolete.

__DIALECT_PCC Obsolete The option -pcc is now obsolete.

__DIALECT_FUSSY Obsolete The option -fussy is now obsolete.

Differences

2-22 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI0064B

The new predefined macros are listed in Table 2-3.

 Table 2-3 New predefined macros

Predefine Status Comments

__CC_ARM New Always defined.

__STRICT_ANSI__ New Set by -strict.

__embedded_cplusplus New Set by -embeddedcplusplus.

__APCS_ROPI New Set by -apcs /ropi.

__APCS_RWPI New Set by -apcs /rwpi.

__APCS_SWST New Set by -apcs /swst.

__FEATURE_SIGNED_CHAR New Set by -zc.

__OPTIMISE_SPACE New Set by -Ospace.

__OPTIMISE_TIME New Set by -Otime.

__TARGET_FPU New Target Floating Point Unit

__TARGET_FEATURE_DSPMUL New Set if ARM9E multiplier available.

Differences

ARM DUI0064B Copyright © 1999, 2000 ARM Limited. All rights reserved. 2-23

2.5 Changed assembler behavior

This section describes assembler behavior that is changed, deprecated, or obsolete.
Obsolete features are identified explicitly. Their use is faulted in ADS. Deprecated
features will be made obsolete in future releases. Their use is warned about in ADS.

2.5.1 New assembler options

The following enhancements and changes are available in the assembler:

• The assembler provides new ATPCS command-line options similar to those for
the compilers.

• The default floating-point option is -fpu softvfp.

• A new default software stack checking option of -swstna is introduced for code
that is compatible with both software stack checking code and non software stack
checking code. This option makes explicit the behavior of the assembler. There is
no change to the default behavior.

• The assembler always outputs ELF object code. AOF is no longer supported.

• The new -memaccess option specifies the memory attributes of the target
system.

• The -list option now accepts an argument of - to select stdout.

• DWARF2 stack-unwinding descriptions can be, and are recommended to be,
produced by the use of new directives.

• The assembler supports the new ARM9E and ARM10 instructions. Use one of
ARM9E, ARM10TDMI, ARM1020T, or ARM10200 with the -cpu option.

• Support is provided for VFP in both scalar and vector mode.

• New directives DCQ and DCQU define a 64-bit integer value. DCQ is aligned to a
32-bit boundary while DCQU is unaligned (byte boundary).

• The DCFD, DCFDU, DCFS and DCFSU directives now also accept a hex-constant
form of operand that specifies the IEEE bit-pattern of the value.

• There are new synonyms FIELD and SPACE for # and % directives.

• Directives are now accepted in all upper case, or all lower case, but not a mixture.
Previously, only the upper case form was accepted.

• The EXPORT directive may have a new attribute, WEAK. This defines the exported
symbol as a WEAK symbol in ELF.

Differences

2-24 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI0064B

• The semantics of the EXTERN and IMPORT directives have changed and they are
no longer synonyms. An unused IMPORT will generate an undefined global
symbol, whereas an unused EXTERN will generate no symbol. (In SDT 2.50 an
unused EXTERN or IMPORT symbol was made WEAK).

• The AREA directive has a new attribute, ASSOC= area_name) that requires this
AREA to be included in a link step whenever the associate area (named by the
ASSOC=area_name) is included. The assembler implements the requirement by
generating an R_ARM_NONE relocation at offset 0 of area area_name, relative to
the section symbol for the area defined by the AREA directive.

• The new directive REQUIREarea_name requires area_name. to be included in
any link step that includes the requiring section. The assembler implements the
requirement by generating an R_ARM_NONE relocation in the current section to the
required area_name.

• The DCD directive now accepts expressions evaluating the difference between a
label in another section and a position in the current section.

• The DCW and DCB directives now accept expressions including an external
symbol.

• The new DCDO directive treats label operands as sb-relative.

• The literal-using, pseudo-instruction forms of load and store instructions (for
example, LDR rx,=yyy) can now take external symbols as immediate values
(yyy).

• The ARM instructions of the form data-processing-op rd,rn,#sym can
now take external symbols as immediate operands.

• ARM and Thumb SWI instructions can now take external symbols as immediate
operands.

• If you select a cpu or architecture that does not support Thumb, an attempt to
generate Thumb code will generate an error message. For example armasm -cpu
4 will not accept Thumb instructions but armasm -cpu 4T will.

2.5.2 Features of the SDT assembler not supported

The following assembly language features are no longer supported and are faulted:

• AREA directive with attribute ABS, BASED, A32bit, HALFWORD, INTERWORK,
PIC, REENTRANT

Differences

ARM DUI0064B Copyright © 1999, 2000 ARM Limited. All rights reserved. 2-25

— ABS has been withdrawn because it conflicts with the linker scatter loading
mechanism. An AREA previously declared ABS should now be placed using
a scatter-loading description

— BASED has been withdrawn because it was needed only for the old shared
library mechanism that is now obsolete. No workaround is necessary.

— A32bit has been withdrawn as it was needed only to distinguish 32 bit
mode code from 26 bit mode code and 26 bit mode is now obsolete.

— INTERWORK and PIC have been withdrawn as the ATPCS and architecture
are now always specified on the command line. Any occurrences of these
attributes should be deleted, and replaced by the corresponding new -apcs
command line qualifiers.

• value 32 as operand to the ALIGN area attribute. The assembler accepted 32 as
operand to ALIGN even though it was not useful. The only address that satisfies
ALIGN=32 is 0, and if that is the desired behavior it can be expressed by using a
scatter-loading description to place the AREA at address 0

• IMPORT directive with attribute FPREGARGS. The FPREGARGS attribute had no
effect and has been removed.

• EXPORT directive with attribute FPREGARGS, and LEAF.

— The FPREGARGS attribute had no effect. The workaround is to delete it from
assembly source.

— The LEAF attribute was needed only for the old shared library mechanism
that is now obsolete. The workaround is to remove it.

• ADR pseudo-instructions with out-of-area symbol operands. The workaround is to
load out-of-area addresses into registers using LDR.

2.5.3 Deprecated assembler options

The following options are deprecated and will not be supported in future versions of the
assembler:

-dwarf1 DWARF1 debug tables will not be supported in future versions.

-proc Select processor (use -cpu instead).

-arch Select architecture (use -cpu instead).

Impact

Use DWARF2 format for new projects and update your existing tools to use the
DWARF2 format.

Differences

2-26 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI0064B

2.6 Changed linker behavior

This section describes linker behavior that is changed, deprecated, or obsolete. Obsolete
features are identified explicitly. Their use is faulted in ADS. Deprecated features will
be made obsolete in future releases. Their use is warned about in ADS.

2.6.1 New or changed linker behavior

The following new or significantly changed options are available in the linker:

• The linker is now an ELF-only linker.

• The syntax of the -remove command has been expanded to include section
attribute qualifiers. This is backwardly compatible with SDT 2.50.

The linker now has -remove as its default option. The SDT 2.50 default was
-noremove. The -remove option is strongly recommended with C++ in order to
reduce code size. Use the new linker option -keep if you want to keep sections
that are not referenced.

• The syntax of -first and -last has been changed to identify both object and
section name, not just section name as in SDT 2.50. There is no backward
compatibility with SDT 2.50.

• The syntax of the -entry command has been changed to allow more flexible
selection. Only one entry point can be specified to the linker. There is some
backward compatibility with SDT 2.50.

• The veneers argument has been added to the -info option.

The following new armlink options have been added:

-partial Generate a partially-linked ELF object

-ropi RO execution region is position-independent

-rwpi RW execution region is position-independent

-split Image has two load regions

-keep Specify sections to be retained even if unused

-locals Add local symbols to image symbol table

-nolocals Remove local symbols from image symbol table

-xreffrom List section cross references in image from a section

-xrefto List section cross references in image to a section

-strict Strict compliance to build attribute rules

-symdefs Create, or read, a list of symbol definitions.

Differences

ARM DUI0064B Copyright © 1999, 2000 ARM Limited. All rights reserved. 2-27

2.6.2 Obsolete linker options

The following options from the ARM Software Development Toolkit are not supported
in the linker:

-aof Create output in AOF format

-aif Create output in AIF format

-aif -bin Create output in AIF BIN format

-bin Create output in BIN format

-base Alias for ro-base

-data Alias for rw-base

-dupok Allow multiple definitions

-[no]case Case sensitive/insensitive matching

-match Symbol matching options

-nozeropad Do not include ZI section in binary images

-info interwork

Output information on interworking

-u Match all unresolved symbols.

Impact

If you are creating new applications, there is no impact. If you are relinking existing
applications and libraries, ensure that the desired build options are specified to the
assembler, compiler and linker. Remove any obsolete options from your make files and
replace them, where necessary, with equivalent options. Check the assembler, compiler,
and linker options for your new or migrated projects as the defaults for ADS 1.0 are
different from the defaults for the SDT 2.50.

Differences

2-28 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI0064B

2.7 Obsolete components and standards

This section describes components of SDT 2.50 that are not available in ADS.

2.7.1 APM

APM is not provided.

Impact

Use the CodeWarrior IDE or a make utility.

2.7.2 Armmake

Armmake is not provided. There is no longer a need to rebuild the C Libraries, therefore
the ARM-specific make utility has been removed.

Impact

None. Use nmake, make, or gnumake if you want to use a make utility.

2.7.3 Armlib

The ARM librarian, armlib is not provided. It has been replace by a new utility, armar,
that creates ELF ar files. armar provides similar functionality to armlib, but supports
ELF instead of AOF.

2.7.4 Decaof and Decaxf

Decaof and decaxf are not provided.

Impact

The fromELF utility provides equivalent functionality for ELF formats

2.7.5 DWARF1

The compilation tools produce DWARF2 debug table formats by default. The compiler
and assembler can still produce DWARF1 for compatibility with third party tools that
require DWARF1, although DWARF1 will only support debugging for C compiler
images produced with the -O0 option and will not support debugging of C++ images.

DWARF1 is deprecated and will be removed in a future release of ADS

Differences

ARM DUI0064B Copyright © 1999, 2000 ARM Limited. All rights reserved. 2-29

Impact

Use DWARF2 format.

2.7.6 26-bit addressing

ADS does not support 26-bit addressing. Removal of 26-bit support has enabled a more
efficient ATPCS to be designed.

Impact

Continue to use SDT2.50 if you need 26-bit support.

2.7.7 AOF, AIF, IHF, and Plain Binary image formats

The SDT 2.50 linker gave warnings when asked to generate an AIF image, a binary AIF
image, an IHF image or a plain binary image. The ADS linker refuses to generate these
images and is now a pure ELF linker. Although the linker is capable of inputting AOF
files, you are strongly recommended not to link with old AOF files because of changes
to both the Procedure Call Standard and changes to debug tables.

Impact

Use the fromelf tool to translate the ELF image into non-ELF formats such as AIF, Plain
binary, Extended Intellec Hex (IHF), Motorola 32 bit S-record, Intel Hex 32.

Future releases of the linker will not allow AOF input files.

2.7.8 RDI 1.50

A new variant of the Remote Debug Interface (RDI 1.5.1) is introduced in ADS. The
version used in SDT 2.50 was 1.5. See Debuggers on page 2-6 for details of RDI 1.51.

Differences

2-30 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI0064B

ARM DUI0064B Copyright © 1999, 2000 ARM Limited. All rights reserved. 3-1

Chapter 3
Creating an Application

This chapter describes how to create an application using ADS. This chapter contains:

• Using the CodeWarrior IDE on page 3-2

• Building from the command line on page 3-15

• Using ARM libraries on page 3-27

• Using your own libraries on page 3-30

• Debugging the application with AXD on page 3-31.

Creating an Application

3-2 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI0064B

3.1 Using the CodeWarrior IDE

The CodeWarrior IDE provides a simple, versatile, graphical user interface for
managing your software development projects. You can use CodeWarrior for the ARM
Developer Suite to develop C, C++, and ARM assembly language code targeted at
ARM processors. The CodeWarrior IDE enables you to configure the ARM tools to
compile, assemble, and link your project code.

The CodeWarrior IDE enables you to organize source code files, library files, other
files, and configuration settings into a project. Each project enables you to create and
manage multiple build targets. A build target is the collection of build settings and files
that determines the output that is created when you build your project. Build targets can
share files in the same project, while using their own build settings.

Note

A build target is distinct from a target system, such as an ARM development board. For
example, you can compile a debugging build target and an optimized build target of
code targeted at hardware based on an ARM7TDMI.

CodeWarrior for the ARM Developer Suite provides preconfigured Project stationery
files for common project types, including:

• ARM Executable Image

• ARM Object Library

• Thumb Executable Image

• Thumb Object Library

• Thumb/ARM Interworking Image.

You can use the project stationery as a template when you create your own projects.

The non-interworking ARM project stationery files define three build targets. The
Interworking project stationery defines an additional three build targets to compile
Thumb-targeted code. The basic build targets for each of the stationery projects are:

Debug This build target is configured to build output binaries that are fully
debuggable, at the expense of optimization.

Release This build target is configured to build output binaries that are fully
optimized, at the expense of debug information.

DebugRel This build target is configured to build output binaries that provide
adequate optimization, and give an adequate debug view.

For more information on using the CodeWarrior IDE to create complex, dependent
build target relationships, see the CodeWarrior IDE Guide.

Creating an Application

ARM DUI0064B Copyright © 1999, 2000 ARM Limited. All rights reserved. 3-3

3.1.1 Creating and building a simple project

Note

This example assumes that you installed the example code supplied with ADS 1.0, and
that you have installed in the default installation directory. Example code is installed by
default unless you have chosen a minimal install or a custom install.

This section describes how to create and build a simple project. It uses source files from
the dhryansi example supplied with ADS 1.0 to give an introduction to configuring
tool options and using build targets in the CodeWarrior IDE.

The following sections give a summary of how to:

• Create a new project using ARM project stationery

• Add source files to your project

• Configure the build target settings for your project

• Compile and link an executable image.

• Execute the AXD debugger to debug your image.

Creating a new project from ARM project stationery

To create a new project, and compile and link an application using the CodeWarrior
IDE:

1. Select Programs → ARM Developer Suite → CodeWarrior for ARM
Developer Suite v1.0 from the Windows Start menu to start the CodeWarrior
IDE.

2. Select New… from the File menu. A New dialog is displayed (Figure 3-1 on
page 3-4).

Creating an Application

3-4 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI0064B

 Figure 3-1 New dialog

3. Ensure that the Project tab is selected. The available ARM project stationery is
listed in the left of the dialog (see Figure 3-1 on page 3-4), together with the
Empty Project stationery and the Makefile Importer wizard.

See the CodeWarrior IDE Guide for more information on using empty projects
and the Makefile Importer wizard.

4. Select ARM Executable Image from the list of project stationery.

5. Click the Set… button next to the Location field. A Create New Project dialog is
displayed (Figure 3-2 on page 3-5).

Creating an Application

ARM DUI0064B Copyright © 1999, 2000 ARM Limited. All rights reserved. 3-5

 Figure 3-2 Create New Project dialog

6. Navigate to the directory where you want to save the project and enter a project
name, for example My_Project. Leave the Create folder checkbox selected.

7. Click Save. The CodeWarrior IDE sets the Project Name field and Location path
in the New dialog box. The Location path is used as a default when you create
additional projects.

8. Click OK. The CodeWarrior IDE creates a new project based on the ARM
Executable Image project stationery, and displays a new project window with the
Files view selected (Figure 3-3).

 Figure 3-3 New project

Creating an Application

3-6 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI0064B

Adding source files to the project

Projects created from ARM project stationery do not contain source files. This section
describes how to add the source files from the dhryansi example.

To add source files to a project:

1. Ensure that the project window is the active window.

2. Select Add Files… from the Project menu. A Select files to add… dialog is
displayed.

3. Navigate to the dhryansi directory in the install_directory\Examples
directory and Shift-click on dhry_1.c and dhry_2.c to select them
(Figure 3-4).

 Figure 3-4 Select files to add… dialog

4. Click Add. The CodeWarrior IDE displays an Add Files dialog (Figure 3-5 on
page 3-7). The dialog contains a checkbox for each build target defined in the
current project. In this example, the dialog contains three checkboxes
corresponding to the three build targets defined in the ARM Executable Image
project stationery.

Creating an Application

ARM DUI0064B Copyright © 1999, 2000 ARM Limited. All rights reserved. 3-7

 Figure 3-5 Add Files

5. Leave all the build target checkboxes selected and click OK. The CodeWarrior
IDE adds the source files to each target in the project and displays a Project
messages window to inform you that the directory containing the source files has
been added to the access paths for each build target (Figure 3-6).

 Figure 3-6 Project messages window

The access paths for each build target define the directories that will be searched
for source and header files. See the CodeWarrior IDE Guide for details.

Note

You do not need to explicitly add the header files for the dhryansi project
because the CodeWarrior IDE will locate them in the newly added access path.
However, you can add header files explicitly if you want.

Creating an Application

3-8 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI0064B

6. Ensure that the Files tab is selected in the project window. The project window
displays all the source files in the project. (Figure 3-7). See the CodeWarrior IDE
Guide for more information on what is displayed when you click the Link Order
tab and the Targets tab.

 Figure 3-7 Source files in Files view

Configuring the project build targets

This section describes how to configure your example project so that the example
dhryansi files will compile, and the project build settings are the same as those in the
supplied dhryansi example project. It describes one way of selecting build targets, and
shows how different build target settings can be used in the same project. See the
CodeWarrior IDE Guide for a complete description of build targets.

Build target settings must be selected separately for each build target in your project. To
set build target options for the dhryansi example:

1. Ensure that the DebugRel build target is currently selected. By default, the
DebugRel build target is selected when you create a new project based on the
ARM project stationery. The currently selected build target is displayed in the
Build Target pop-up menu in the project toolbar (Figure 3-8 on page 3-9).

Creating an Application

ARM DUI0064B Copyright © 1999, 2000 ARM Limited. All rights reserved. 3-9

 Figure 3-8 Currently selected build target

2. Select DebugRel Settings… from the Edit menu. The name of this menu item
changes depending on the name of the currently selected build target. The
CodeWarrior IDE displays the DebugRel Target settings panel (Figure 3-9 on
page 3-10). All the target-specific settings are accessible through configuration
panels listed at the left of the panel.

Note

Many configuration options are optional, however you should review the target
settings for each build target in your project to ensure that they are appropriate for
your target hardware, and your development requirements. See the chapter on
configuring a build target in the CodeWarrior IDE Guide for configuration
recommendations.

��������	�
������
��	����������	��
����	�	�����	�����	���
������
��	��

Creating an Application

3-10 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI0064B

 Figure 3-9 DebugRel Settings

3. Click the ARM C compiler entry in the Target Settings Panels list to display the
configuration panel for the C compilers. The Target and Source panel is displayed
(Figure 3-10). The panel consists of a number of tabbed panes containing groups
of configuration options. For this example, the dhryansi source requires a
predefined macro be set before it will compile.

 Figure 3-10 ARM C compiler panel

Creating an Application

ARM DUI0064B Copyright © 1999, 2000 ARM Limited. All rights reserved. 3-11

4. Click the Preprocessor tab to display a list of predefined macros (Figure 3-11).

 Figure 3-11 ARM C compiler preprocessor pane

5. Type MSC_CLOCK into the text field beneath the List of #DEFINES and click Add
to define the MSC_CLOCK macro. The CodeWarrior IDE adds MSC_CLOCK to the
List of #DEFINES. The Equivalent Command Line text box displays the
compiler command-line option required to define MSC_CLOCK (Figure 3-12).

 Figure 3-12 MSC_CLOCK defined

6. Click Save to save your changes and close the DebugRel Settings panel.

At this point you have defined the MSC_CLOCK macro for the DebugRel build target
only. You must also define the MSC_CLOCK macro for the Release and Debug build
targets if you want to use them. To select the Release build target:

1. Ensure that the Project window is currently active.

2. Click the Current Target pop-up menu to display the list of defined build targets
(see Figure 3-8 on page 3-9).

3. Select Release from the list of build targets to change the current build target.

Creating an Application

3-12 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI0064B

4. Apply the steps you followed above to define MSC_CLOCK the Release build
target.

Note

You can also cut and paste build target settings into the Command Line
Equivalent text box. Press the Enter key to set the options and update the panel
controls. Be careful not to copy command-line options that are inappropriate,
such as the optimization and debug settings, from one build target to another.

Leave the Release Target settings panel open after you have saved your changes.

5. Click on the Debug/Opt tab to display Debug and Optimization options for the
Release build target (Figure 3-13).

 Figure 3-13 Debug/Opt configuration panel

6. Select the For time Optimization Criterion button. The Equivalent Command
Line text box reflects the change.

7. Click Save to save your settings.

8. Define MSC_CLOCK in the Debug build target in the same way as you have for the
DebugRel and Release build targets.

Your project is now equivalent to the dhryansi example project supplied with
the ARM Developer Suite.

Creating an Application

ARM DUI0064B Copyright © 1999, 2000 ARM Limited. All rights reserved. 3-13

Note

This example has shown how to use the configuration dialogs to set options for
individual build targets. There are configuration panels available for most of the ADS
toolchain, including the linker, fromELF, and the assembler. You can use the
configuration panels to specify most options available in the tools, including:

• procedure call options

• the structure of output images

• the linker and postlinker to use.

• the ARM debugger to call from the CodeWarrior IDE.

See the chapter on configuring a build target in the CodeWarrior IDE Guide for a
complete description of build target options.

Building the project

The Project menu contains a number of commands to compiler, or compile and link
your project files. These commands apply only to the current build target. To compile
and link the example project:

1. Ensure that the project window is the currently active window.

2. Select the build target you want to build (see Figure 3-8 on page 3-9). For this
example, select the DebugRel build target.

3. Select Make from the Project menu. The CodeWarrior IDE builds the project by:

• compiling newly added, modified, and touched source files to produce ELF
object files

• linking object files and libraries to produce an ELF image file, or a partially
linked object

• performing any postlink operations that you have defined for your build
target, such as calling fromELF to convert an ELF image file to another
format.

Note

In the dhryansi example there is no postlink operation.

If the project has already been compiled using a command such as Bring Up To
Date or Compile, the Make command performs only the link and postlink steps.

The compiler displays build information, errors, and warning for the build in a
messages window.

Creating an Application

3-14 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI0064B

Debugging the project

By default, the ARM project stationery is configured to call the AXD debugger to debug
and run images built from the CodeWarrior IDE. You can configure the debugger to be
called using the ARM Debugger configuration panels for each build target. See the
CodeWarrior IDE Guide for details.

To execute and debug your example project:

1. Ensure that the project window is the currently active window.

2. Select the build target you want to debug. The Debug command applies only to
the current build target.

3. Select Debug from the Project menu. The CodeWarrior IDE compiles and links
any source files that are not up to date, and calls the AXD debugger to load and
execute the image. See Debugging the application with AXD on page 3-31 for
more information on using AXD.

Creating an Application

ARM DUI0064B Copyright © 1999, 2000 ARM Limited. All rights reserved. 3-15

3.2 Building from the command line

This section describes how to build an application from the command line. From the
command line, you can access:

• the compilers

• the assembler

• the linker

• the CodeWarrior IDE.

3.2.1 Using the compilers from the command line

There are four compiler variants as shown in Table 3-1:

Compiler syntax

The command for invoking the ARM compilers is:

compiler [PCS-options] [source-language] [search-paths]

[preprocessor-options] [output-format] [target-options]

[debug-options] [code-generation-options] [warning-options]

[additional-checks] [error-options] [source]

Refer to the ADS Tools Guide and ADS Developer Guide for more information.

 Table 3-1 Compiler variants

Compiler name Compiler variant
Source
language

Compiler output

armcc C C 32-bit ARM code

tcc C C 16-bit Thumb code

armcpp C++ C or C++ 32-bit ARM code

tcpp C++ C or C++ 16-bit Thumb code

Creating an Application

3-16 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI0064B

Building an example

Sample C source code for a simple application is in
install_directory\Examples\rom\embed\main.c.

To build the example from the command line:

1. Compile the C file main.c with the following command with either:

armcc -g -O1 -c main.c (for ARM)

tcc -g -O1 -c main.c (for Thumb)

where:

-g Tells the compiler to add debug tables.

-O1 Tells the compiler select minimum optimization.

-c Tells the compiler to compile only (not to link).

2. Link the image using the following command:

armlink main.o -o embed.axf

where:

-o Specifies the output file as embed.axf.

3. Use ARMulator to test the image or download the image to a development board
and use Multi-ICE.

For more information on using assembly language, C, C++ and the linker to create
applications, see the ADS Developer Guide and ADS Tools Guide.

Creating an Application

ARM DUI0064B Copyright © 1999, 2000 ARM Limited. All rights reserved. 3-17

3.2.2 Using the CodeWarrior IDE from the command line

In some cases you might not require the Graphical User Interface of the CodeWarrior
IDE, for example, when a project is part of a larger system that needs to be built
automatically without user interaction.

CMDIDE.EXE is a console window program that can be started from the command line
to build project files that have been created and edited with the CodeWarrior IDE.
CMDIDE.EXE invokes the CodeWarrior IDE, passes the proper parameters to produce a
build, and waits for the IDE to finish its operation.

The command-line arguments are:

Projectname
Specifies the project to use

/tTargetname
Specifies a target to become the current target

/r Removes the objects of the current target before building

/b Builds the current target

/c Closes the project after building

/q Quits the IDE after building

/v[y|n|a] Option for converting projects on open:

y Convert without asking

n Do not convert

a Ask whether to convert.

/s Forces the command line to be processed in a new instance of the IDE
(rather than using a current instance).

If more than one project document is specified to be opened in the command line, the
/t target and /b build command flags apply to the first project document found in the
list of documents. If no project is specified in the command line, it will use the usual
logic in the IDE (front project or default project) to select the project to build.

For example, to build the dhryansi project change directory to the dhryansi example
directory and type:

cmdide dhryansi.mcp /t DebugRel /c /b

If no target is specified it uses whatever the current target is for that project.

Creating an Application

3-18 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI0064B

All build commands are executed in a different process from the one launched from the
command line. The original process will return as soon as the command line has been
completely processed and the build has completed.

The following codes are returned and can be tested using the IF ERRORLEVEL
instruction in a batch file:

0 No error

1 Error opening file

2 Project is not open

3 IDE is already building

4 Invalid target name (for /t flag)

5 Error changing current target

6 Error removing objects

7 Build was cancelled

8 Build failed

9 Process aborted.

Note

Though IDE.EXE understands the same parameters as CMDIDE.EXE, it is particularly
important on Windows 95 or Windows 98 to use CMDIDE.EXE to ensure that builds are
correctly serialized rather than executed all at once.

3.2.3 Debugging from the command line

You can use the ARM symbolic debugger (armsd) to debug applications from the
command line.

AXD can also be driven from the command line. This is useful for batch testing, for
example.

See the ADS Debuggers Guide for more information on using the debuggers.

Creating an Application

ARM DUI0064B Copyright © 1999, 2000 ARM Limited. All rights reserved. 3-19

3.2.4 Using the assembler from the command line

The basic syntax to use the ARM assembler (armasm) from the command-line is:

armasm -list listingfile inputfile

For example, to assemble the code in a file called myfile.s, type:

armasm -list myfile.lst myfile.s

This produces an object file called myfile.o, and a listing file called myfile.lst.

For full details of the command-line options and syntax, refer to the Assembler chapter
in ADS Tools Guide.

Example 3-1 shows a small ARM assembly language program. You can use it to explore
the use of the assembler, linker, and the ARM symbolic debugger.

Example 3-1

 AREA AddReg,CODE,READONLY ; Name this block of code.
 ENTRY ; Mark first instruction to call.
main
 ADR r0, ThumbProg + 1 ; Generate branch target address and set bit 0
 ; hence arrive at target in Thumb state.
 BX r0 ; Branch and exchange to ThumbProg.
 CODE16 ; Subsequent instructions are Thumb code.
ThumbProg
 MOV r2, #2 ; Load r2 with value 2.
 MOV r3, #3 ; Load r3 with value 3.
 ADD r2, r2, r3 ; r2 = r2 + r3
 ADR r0, ARMProg ; Generate branch target address with bit 0 zero.
 BX r0 ; Branch and exchange to ARMProg.
 CODE32 ; Subsequent instructions are ARM code.
ARMProg
 MOV r4, #4
 MOV r5, #5
 ADD r4, r4, r5
stop MOV r0, #0x18 ; angel_SWIreason_ReportException
 LDR r1, =0x20026 ; ADP_Stopped_ApplicationExit
 SWI 0x0123456 ; ARM semihosting SWI

 END ; Mark end of this file.

Creating an Application

3-20 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI0064B

Building the example

To build the example:

1. Enter the code using any text editor and save the file in your current working
directory as addreg.s.

2. Type armasm -list addreg.lst addreg.s at the command prompt to
assemble the source file.

3. Type armlink addreg.o -o addreg to link the file.

Running the example in the debugger

To load and run the example in the debugger:

1. Type armsd addreg to load the module into the command-line debugger.

2. Type step to step through the rest of the program one instruction at a time. After
each instruction, you can type reg to display the registers.

When the program terminates, to return to the command line, type quit.

This example contains both ARM and Thumb code. As you step through the program
you can see the T-bit in the Current Program Status Register (CPSR) changing between
a lowercase t and an uppercase T. This indicates the change between ARM and Thumb
state.

For further details on ARM and Thumb assembly language instructions, see the ARM
Architecture Reference Manual.

For further details on ARM and Thumb assembler pseudo-instructions and directives,
see the assembler chapter in ADS Tools Guide.

For tutorial information on ARM and Thumb assembly language, see the assembly
language chapter in ADS Developer Guide.

3.2.5 Setting linker options from the command line

The ARM linker, armlink, enables you to:

• link a collection of objects and libraries into an executable image

• partially link a collection of objects into an object that can be used as input for a
future link step

• specify where the code and data will be located in memory

Creating an Application

ARM DUI0064B Copyright © 1999, 2000 ARM Limited. All rights reserved. 3-21

• produce debug and reference information about the linked files.

Objects consist of input sections that contain code, initialized data, or the locations of
memory that must be set to zero. Input sections can be read-only (RO), read/write
(RW), or zero-initialized (ZI) These attributes are used by armlink to group input
sections into bigger building blocks called output sections, regions and images. Output
sections are approximately equivalent to ELF segments.

The default output from the linker is a non-relocatable image where the code starts at
0x8000 and the data section is placed immediately after the code. You can specify
exactly where the code and data sections are located by using linker options or a
scatter-load file.

Linker input and output

Input to armlink consists of:

• One or more object files in ELF Object Format.

• Optionally, one or more libraries created by armar.

Output from a successful invocation of armlink is one of the following:

• an executable image in ELF executable format

• a partially linked object in ELF object format.

For simple images, ELF executable files contain segments that are approximately
equivalent to RO and RW output sections in the image. An ELF executable file also has
ELF sections that contain the image output sections.

An executable image in ELF executable format can be converted to other file formats
by using the fromELF utility.

Linker syntax

The complete linker command syntax is:

armlink [-help] [-vsn] [-partial] [-output file] [-elf]

[-ro-base address] [-ropi] [-rw-base address] [-rwpi] [-split]

[-scatter file] [-debug|-nodebug] [-remove (RO/RW/ZI)|-noremove]

[-entry location] [-keep section-id] [-first section-id]

[-last section-id] [-libpath pathlist] [-scanlib|-noscanlib]

[-locals|-nolocals] [-info topics] [-map] [-symbols]

[-symdefs file] [-xref] [-xreffrom object(section)]

[-xrefto object(section)] [-errors file] [-list file] [-verbose]

[-via file] [-strict] [-unresolved symbol] [input-file-list]

Creating an Application

3-22 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI0064B

See the linker chapter in the ADS Tools Guide for more information on the linker
options.

Using linker options to position sections

The following linker options control how sections are arranged in the final image and
whether the code and data can be moved to a new location after the application starts:

-ropi This option makes the load and execution region containing the RO
output section position-independent. If this option is not used the region
is marked as absolute.

-ro-base address

This option sets the execution addresses of the region containing the RO
output section at address. The default address is 0x8000

-rw-base address

This option sets the execution addresses of the region containing the RW
output section at address. The default address is at the end of the RW
section.

-rwpi This option makes the load and execution region containing the RW and
ZI output section position-independent. If this option is not used the
region is marked as absolute. The -rwpi option is ignored if -rw-base
is not also used. Usually each writable input section must be read-write
position-independent.

-split When used with -ro-base or -rw-base, this option splits the default
load region, that contains the RO and RW output sections, into two load
regions.

If you want more control over how the sections are placed in an image, use the
-scatter option and place the positioning information in a scatter-load file.

Using scatter-load files for a simple image

The command-line options (-ro-base, -rw-base, -split, -ropi, and -rwpi)
create simple image types.

You can create the same image types by using the -scatter command-line option and
a file containing a corresponding scatter load descriptions .

The simplest image type consists of a single load region in the load view and three
execution regions in the execution view. The execution regions are placed contiguous
in the memory map.

Creating an Application

ARM DUI0064B Copyright © 1999, 2000 ARM Limited. All rights reserved. 3-23

-ro-base address is used to specify the load and execution address of the region
containing the RO output section. The scatter load description equivalent to using
-ro-base 0x040000 is:

LR_1 0x040000 ; define the load region name as LR_1
 ; region starts at 0x040000
{ ; start of execution region descriptions
 ER_RO +0 ; first execution region is called ER_RO
 ; region starts at end of previous region
 ; since there was no previous region,
 ; address is 0x040000
 {
 *(+RO) ; all RO sections go into this region
 ; they are placed consecutively
 }
 ER_RW +0 ; second execution region is called ER_RW
 ; region starts at end of previous region
 ; address is 0x040000 + size of ER_RO region
 {
 *(+RW) ; all RW sections go into this region
 ; they are placed consecutively
 }
 ER_ZI +0 ; last execution region is called ER_ZI
 ; region starts at end of previous region at
 ; 0x040000 + size of ER_RO + size of ER_RW regions
 {
 *(+ZI) ; All ZI region are created here
 ; they are placed consecutively
 }
}

This description creates an image with one load region called LR_1, whose load address
is 0x040000.

The image has three execution regions, named ER_RO, ER_RW and ER_ZI, that contain
the RO, RW and ZI output sections respectively. The execution address of ER_RO is
0x040000. All three execution regions are placed contiguously in the memory map by
using the +offset form of the base-designator for the execution region description.
This allows an execution region to be placed immediately following the end of the
preceding execution region.

For more information on the linker and scatter-load files, see the ADS Tools Guide.

Creating an Application

3-24 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI0064B

Using a scatter load file for a more complex image

The code in install_directory\Examples\rom\embed shows how to create a
complex scatter-loading application. This application uses memory remapping to
exchange the ROM and RAM regions after the application has started.

The example uses:

• Flash is at 0x04000000. An aliased copy of the FLASH appears at 0x0 on reset

• After remapping, fast SSRAM is at 0x00000000 to hold the exception vectors
and the exception handlers

• After remapping, SRAM is at 0x00002000 for the storage of program variables.

The scatter-loading description file shown in Example 3-2 defines one load region
(Flash) and three execution regions:

• FLASH (at 0x04000000)

• SSRAM (at 0x00000000)

• SRAM (at 0x00002000).

Example 3-2 scat_d.txt

FLASH 0x04000000 0x080000
{
 FLASH 0x04000000 ;
 {
 init.o (Init, +First)
 *(+RO)
 }
 SSRAM 0x0000 ; the code in vectors.o is located at 0x0
 {
 vectors.o (Vect, +First)
 }
 SRAM 0x2000
 {
 * (+RW,+ZI)
 }
}

The program code and data is placed in Flash that normally resides at 0x04000000. On
reset, an aliased copy of Flash is remapped by hardware to address 0x0. Program
execution starts at AREA Init in init.s. The +First option is used to place this code
first in the image. After reset the first few instructions of init.s remap 32-bit RAM to
address 0x0. The ARM Development (PID) Board remaps its Flash in this way.

Creating an Application

ARM DUI0064B Copyright © 1999, 2000 ARM Limited. All rights reserved. 3-25

Most of the RO code will execute from Flash. The RO execution address is the same as
its load address (0x04000000), so it does not have to be moved.

SSRAM might be fast 32-bit on-chip RAM. Fast RAM is typically used for the stack
and code that must be executed quickly. The exception vectors (AREA Vect in
vectors.s) get relocated from Flash to 32-bit RAM at address 0x0 for speed. The
Vect code is placed first in the region.

SRAM might be slower 16-bit off-chip DRAM. Slower RAM is typically used for less
frequently accessed RW variables and ZI data. The RW data will get relocated from
Flash to 16-bit RAM at 0x2000 The ZI data will be created in 16-bit RAM above the
RW data.

Example 3-3 illustrates the use of initialization code (init.s) to perform ROM/RAM
remapping. The portion of the initialization code that handles remapping is also listed.

Example 3-3 ROM/RAM remapping

; --- Perform ROM/RAM remapping, if required
IF :DEF: ROM_RAM_REMAP
; On reset, an aliased copy of ROM is at 0x0.
; Continue execution from ’real’ ROM rather than aliased copy

LDR pc, =Instruct_2
; Remap by writing to ClearResetMap in the RPS Remap and Pause Controller

MOV r0, #0
LDR r1, =ClearResetMap
STRB r0, [r1]

; RAM is now at 0x0.
; The exception vectors (in vectors.s) must be copied from ROM to the RAM
; The copying is done later by the C library code inside __main
ENDIF

The initialization code in the C library copies the RO and RW execution regions from
their load addresses to their execution addresses before creating any zero-initialized
areas.

Creating an Application

3-26 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI0064B

To build the example, use a batch file or makefile containing the following:

armasm -g vectors.s
armasm -g -PD "ROM_RAM_REMAP SETL {TRUE}" init.s
armcc -c -g -O1 main.c -DEMBEDDED -DROM_RAM_REMAP
armcc -c -g -O1 retarget.c
armlink vectors.o init.o main.o retarget.o
 -scatter scat_d.scf -o embed.axf
 -info totals -entry 0x04000000
 -info unused
fromelf embed.axf -bin embed.bin

The indented lines are a continuation of the single line above.

This creates:

• an ELF debug image (embed.axf) for loading into an ARM debugger

• a binary ROM image (embed.bin) suitable for downloading into the Flash
memory of the ARM development boards.

Creating an Application

ARM DUI0064B Copyright © 1999, 2000 ARM Limited. All rights reserved. 3-27

3.3 Using ARM libraries

The following runtime libraries are provided to support compiled C and C++:

ANSI C The C libraries consist of:

• The functions defined by the ISO C library standard.

• Target-dependent functions used to implement the C library
functions in the semihosted execution environment. You can
redefine these functions in your own application.

• Helper functions used by the C and C++ compilers.

C++ The C++ libraries contain the functions defined by the ISO C++ library
standard. The C++ library depends on the C library for target-specific
support and there are no target dependencies in the C++ library. This
library consists of:

• the Rogue Wave Standard C++ Library version 2.0.1

• helper functions for the C++ compiler

• additional C++ functions not supported by the Rogue Wave library.

As supplied, the ANSI C libraries use the standard ARM semihosted environment to
provide facilities such as file input/output. This environment is supported by the
ARMulator, Angel, Multi-ICE, and EmbeddedICE. You can use the ARM development
tools in ADS to develop applications, and then immediately run and debug the
applications under the ARMulator or on a development board. See the description of
semihosting in the ADS Debug Target Guide for more information on the debug
environment.

You can re-implement any of the target-dependent functions of the C library as part of
your application. This lets you tailor the C library, and therefore the C++ library, to your
own execution environment.

The libraries are installed in two subdirectories within install_directory\lib:

armlib Contains the variants of the ARM C library, the floating-point arithmetic
library, and the math library. The accompanying header files are in
install_directory\include.

cpplib Contains the variants of the Rogue Wave C++ library and supporting C++
functions. The Rogue Wave and supporting C++ functions are
collectively referred to as the ARM C++ Libraries. The accompanying
header files are installed in install_directory\include.

Creating an Application

3-28 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI0064B

Note

• The ARM C libraries are supplied in binary form only.

• The ARM libraries should not be modified. If you want to create a new
implementation of a library function, place the new function in an object file, or
your own library, and include it when you link the application. Your version of
the function will be used instead of the standard library version.

• Normally, only a few functions in the ANSI C library require re-implementation
in order to create a target-dependent application.

• The source for the Rogue Wave Standard C++ Library is not freely distributable.
It can be obtained from Rogue Wave Software Inc., or through ARM Ltd, for an
additional licence fee. See the Rogue Wave online documentation in
install_directory\Html for more about the C++ library.

3.3.1 Using the ARM libraries in a semihosted environment

If you are developing an application that will run in a semihosted environment for
debugging, you must have an execution environment that supports the ARM and
Thumb semihosting SWIs and has sufficient memory.

The execution environment can be provided by either:

• using the standard semihosting functionality that is present by default in, for
example, ARMulator, Angel, and Multi-ICE

• implementing your own SWI handler for the semihosting SWI.

You do not need to write any new functions or include files if you are using the default
semihosting functionality of the library.

3.3.2 Using the ARM libraries in a non-semihosted environment

If you do not want to use any semihosting functionality, you must ensure that either no
calls are made to any function that uses semihosting or that such functions are replaced
by your own non-semihosted functions.

To build an application that does not use semihosting functionality:

1. Create the source files to implement the target-dependent features.

2. Add the __use_no_semihosting_swi() guard to the source.

3. Link the new objects with your application.

4. Use the new configuration when creating the target-dependent application.

Creating an Application

ARM DUI0064B Copyright © 1999, 2000 ARM Limited. All rights reserved. 3-29

You must re-implement functions that the C library uses to insulate itself from target
dependencies. For example, if you use printf() you will need to re-implement
fputc(). If you do not use the higher level input/output functions like printf(), you
do not need to re-implement the lower level functions like fputc().

If you are building an application for a different execution environment, you can
re-implement the target-dependent functions (functions that use the semihosting SWI
or that depend on the target memory map). There are no target-dependent functions in
the C++ library. See the chapter on libraries in the ADS Tools Guide for more
information.

3.3.3 Building an application without the ARM libraries

Creating an application that has a main() function causes the C library initialization
functions to be included.

If your application does not have a main() function, the C library will not be initialized
and the following features will not be available in your application:

• software stack checking

• low-level stdio

• signal-handling functions, signal() and raise() in signal.h

• atexit()

• alloca().

You can create an application that consists of customized startup code instead of the
library initialization code and still use many of the library functions. You must either:

• avoid functions that require initialization

• provide the initialization and low-level support functions.

These applications will not automatically use the full C run-time environment provided
by the C library. Even though you are creating an application without the library, some
helper functions from the library must be included. There are also many library
functions that can be made available with only minor re-implementations. See the
chapter on libraries in the ADS Tools Guide for more information.

Creating an Application

3-30 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI0064B

3.4 Using your own libraries

The ARM librarian, armar, enables sets of ELF object files to be collected together and
maintained in libraries. Such a library can then be passed to armlink in place of several
object files. However, linking with an object library file does not necessarily produce
the same results as linking with all the object files collected into the object library file.
This is because armlink processes the input list and libraries differently:

• each object file in the input list appears in the output unconditionally, although
unused areas are eliminated if the armlink -remove option is specified

• a member of library file is only included in the output if it is referred to by an
object file or a previously processed library file.

To create a new library called my_lib and add all the object files in the current
directory, type:

armar -create my_lib *.o

To delete all objects from the library that have a name starting with sys_, type:

armar -d my_lib sys_*

To replace, or add, three objects in the library with the version located in the current
directory, type:

armar -r my_lib obj1.o obj2.o obj3.o

For more information on armar, see the Utilities chapter in the ADS Tools Guide.

Note

The ARM libraries should not be modified. If you want to create a new implementation
of a library function, place the new function in an object file or your own library. Include
your object or library when you link the application. Your version of the function will
be used instead of the standard library version.

Creating an Application

ARM DUI0064B Copyright © 1999, 2000 ARM Limited. All rights reserved. 3-31

3.5 Debugging the application with AXD

AXD enables you to run and debug your ARM-targeted image using any of the
following debugging systems:

• ARMulator (the default)

• Basic ARM Ten System (BATS)

• Multi-ICE

• EmbeddedICE

• Angel debug monitor.

If you are using the CodeWarrior IDE, you can start the debuggers by selecting Run.
You can also start the debuggers directly and load an image to debug.

If you prefer command-line debugging, you can use armsd or control AXD from a
command-line interface.

See the ADS Debuggers Guide for more information on using the debuggers.

3.5.1 Starting AXD

Start AXD in any of the following ways:

• If you are running under UNIX, either:

— from any directory type the full path and name of the debugger, for
example, /opt/arm/axd

— change to the directory containing the debugger and type its name, for
example, ./axd

• If you are working in the CodeWarrior IDE, open a project and select Edit →
target Settings... → Debugger → ARM Debugger to ensure that AXD is the
default debugger and other settings are as you require, then click the Run/Debug
button or select Debug from the Project menu.

• If you are running Windows 95 or Windows 98, click on the AXD Debugger icon
in the ARM Developer Suite v1.0 program folder or select Start → Programs
→ ARM Developer Suite 1.0 → AXD Debugger.

• If you are running Windows NT4, double-click on the axd.exe icon in the ARM
Developer Suite\Bin Program group or select Start → Programs → ARM
Developer Suite v1.0 → AXD Debugger.

Creating an Application

3-32 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI0064B

• If you are using DOS, launch AXD with arguments. The possible arguments
(which must be in lower case) for AXD are:

-debug ImageName

Load ImageName for debugging.

-exec ImageName

Load and run ImageName.

-logo Show splash screen (this is the default).

-nologo Suppress splash screen.

For example, to launch AXD and load dhryansi.axf for debugging, type:

axd -debug dhryansi.axf

Loading an image

If you start AXD from the CodeWarrior IDE or use the appropriate parameters on the
DOS command line, an image is already loaded into AXD. If you start AXD without
specifying an image, use File→Load Image to load a new image (Figure 3-14).

 Figure 3-14 Loading an image

Creating an Application

ARM DUI0064B Copyright © 1999, 2000 ARM Limited. All rights reserved. 3-33

Stepping through an application

Use Execute→Step to step through the application (Figure 3-15).

 Figure 3-15 The Execute menu

The disassembled code is displayed and a pointer indicates the current position
(Figure 3-16). Use Step (F10) to execute the next instruction.

 Figure 3-16 Code

Creating an Application

3-34 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI0064B

Processor view

Use the Processor Views menu to monitor the program data during the debug
(Figure 3-17).

 Figure 3-17 Processor Views menu

For example, use Processor Views→Register to display a dialog showing the register
contents (Figure 3-18).

 Figure 3-18 Viewing register contents

Creating an Application

ARM DUI0064B Copyright © 1999, 2000 ARM Limited. All rights reserved. 3-35

3.5.2 Configuring ARMulator for AXD

If you install ADS and run AXD, an ARMulator debugging session starts by default,
with ARMulator configured by settings held in a default configuration file.

For information on reconfiguring ARMulator, returning to ARMulator after using
another debug target, and selecting and configuring other debug targets, refer to the
ADS Debuggers Guide.

Creating an Application

3-36 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI0064B

ARM DUI0064B Copyright © 1999, 2000 ARM Limited. All rights reserved. 4-1

Chapter 4
FLEXlm License Manager

You need a license file to run ADS 1.0 components. This chapter describes how to use
the FLEXlm license manager to install a license file to your Windows or UNIX
workstation:

• Installing a single node-locked license on a Windows PC on page 4-2

• Installing a floating license for a Windows client on page 4-7

• Installing a floating license for a UNIX client on page 4-9

• Configuring the license server on page 4-11

• Frequently asked questions about licensing on page 4-24

• Information for experienced users of FLEXlm on page 4-25.

FLEXlm License Manager

4-2 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI0064B

4.1 Installing a single node-locked license on a Windows PC

A node-locked license is a license for running ADS on a single PC. All software is
installed on the machine and the software does not have to contact a separate license
server to validate the license.

4.1.1 Installing a temporary license

Install a temporary license to get you working quickly while you are waiting for the full
license:

1. Select License Installation Wizard from ARM Developer Suite in the program
menu. The help file for the license wizard is displayed (Figure 4-1).

 Figure 4-1 License Wizard help

FLEXlm License Manager

ARM DUI0064B Copyright © 1999, 2000 ARM Limited. All rights reserved. 4-3

2. The dialog in Figure 4-2 is displayed that allows you to install a license file.

 Figure 4-2 License Installation Wizard

3. Your temporary license can be found on a label that is stuck to the box containing
the ARM Developer Suite software. The label contains the following style text

armlmd-ads-xxxxx-xxxxx-xxxxx-xxxxx-xxxxx-xxxxx-xxxxx

where each x represents a numeric digit.

4. Type this information into the entry field, located next to the Install Temp button,
exactly as it appears on the box.

Do not add any extra spaces, and remember to include the minus – characters.

5. Click the Install Temp button.

6. Click the Close button.

7. The license should now be installed, and you can now use the ARM Developer
Suite while you are waiting for your full license.

This is a temporary license that will last for a maximum of 45 days. You must follow
the instructions in Generating a license request for a node locked license on page 4-4
to get a full license from ARM.

FLEXlm License Manager

4-4 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI0064B

4.1.2 Generating a license request for a node locked license

Use the Generate License Request box to gather the information required by ARM for
a full license file:

1. Select License Installation Wizard from ARM Developer Suite in the program
menu. A dialog is displayed that allows you to install a license file.

2. Click the Generate button. A new dialog box will appear (Figure 4-3).

 Figure 4-3 Generate request

3. Enter all of your details into the fields on this new window then click the
Generate Request button.

The License Wizard will produce a file called license-request.txt in the
top-level directory where you installed the ARM Developer Suite.

4. E-mail or fax this file to one of the addresses listed within the file.Your full license
file should be returned to you within two working days.

Please ensure that your E-mail program sends this file as ASCII text, not as
HTML.

5. Click the Close button.

FLEXlm License Manager

ARM DUI0064B Copyright © 1999, 2000 ARM Limited. All rights reserved. 4-5

4.1.3 Installing a permanent node locked license

When you receive your license file, you must run the license installation wizard to
install the full license:

1. Save the license file to disk as an ASCII text file. It does not matter what you
name the file. This file will typically look something like:

PACKAGE ads armlmd 1.0 E6A74AF344C6 COMPONENTS="armasm \
 compiler bats armulate axd adwu"
INCREMENT ads armlmd 1.000 permanent uncounted DBF6C33DB1 \
 HOSTID=00105a733bd0 PLATFORMS=i86_n ISSUER= \
 "ARM Limited"
 ck=117

NOTE : This file should be copied into the "licenses"
sub-directory of each ADS installation.

Generated for: User Name
Company: Company Name
Date: Fri Jan 14 11:36:27 2000

2. Select License Installation Wizard from ARM Developer Suite in the program
menu. A License Installation Wizard dialog is displayed (see Figure 4-2 on
page 4-3).

3. Identify the path and file name of the license file by either:

• entering the name of the disk file into the Install Full entry field.

• clicking the Browse button and browse until you find the file on disk then
click the Open button to copy the file name into the Install Full entry field
(Figure 4-4).

 Figure 4-4 Open license file

FLEXlm License Manager

4-6 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI0064B

4. Click the Install Full button. The license wizard takes the full license file and
installs it so that you can use the product. You will be prompted to delete any
temporary, or expired license files from your license directory.

5. Click the Close button.

The license wizard saves all the license files it installs using the following naming
convention:

armlmdYYYYMMDD-SSS.lic

where:

armlmd Is the name of the ARM vendor daemon.

YYYY Is the year.

MM Is the month.

DD Is the day.

SSS Is the sequence number.

For example, the first license file installed on December 16 1999 is saved in the file
armlmd19991216-001.lic.

Note

FLEXlm requires a hostid to identify specific machines that are licensed to run ADS.
For node-locked licenses, the license wizard uses the following as the hostid for the
license file requested for your machine:

• the network card ID of your machine, if a network card is installed

• the hard disk serial number, if you do not have a network card installed.

This means that:

• for machines with a network card, you must use the license wizard to request a
new license file for your machine if you change the network card

• for machines without a network card, you must use the license wizard to request
a new license file for the machine if you reformat your drive c: partition, or
change the primary hard disk.

For a floating license, the hostid is determined from the network card for the server.

FLEXlm License Manager

ARM DUI0064B Copyright © 1999, 2000 ARM Limited. All rights reserved. 4-7

4.2 Installing a floating license for a Windows client

A floating license is a license that allows any user on the same local network as the
license server to run ADS. The license server counts how many concurrent users of the
software there are. When a user on the network uses the software, one of the floating
licenses is allocated to the user. The ADS software must be installed on each PC and the
local license files must identify the location of the license server. You can have more
clients with ADS installed than you have licenses, but the number of concurrent users
is limited by the license count.

4.2.1 Installing a temporary license

You can install a temporary license to get you working quickly while you are waiting
for the system administrator to install the full license on the server:

1. Select License Installation Wizard from ARM Developer Suite in the program
menu. The help file for the license wizard is displayed.

2. A dialog is displayed that allows you to install a license file.

3. Your temporary license can be found on a label that is stuck to the box containing
the ARM Developer Suite software. The label contains the following style text

armlmd-ads-xxxxx-xxxxx-xxxxx-xxxxx-xxxxx-xxxxx-xxxxx

where each x represents a numeric digit.

4. Type this information into the entry field, located next to the Install Temp button,
exactly as it appears on the box.

Do not add any extra spaces, and remember to include the minus – characters.

5. Click the Install Temp button.

6. Click the Close button.

7. The license should now be installed, and you can now use ADS while you are
waiting for your full license. This is a temporary license that will last for a
maximum of 45 days.

8. Contact your system administrator and ask for a permanent license to be installed
on the license server. See Configuring the license server on page 4-11 for
information on server licenses.

FLEXlm License Manager

4-8 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI0064B

4.2.2 Requesting a full floating license

Floating licenses require that a machine is set up to run the license server software. The
task of requesting floating licenses and setting up the license server is usually handled
by system administration. In this case, contact you system administrator.

If you are responsible for system administration, or are responsible for administering
your own FLEXlm license management, refer to Configuring the license server on
page 4-11 for information on configuring license servers for ADS.

4.2.3 Installing a permanent license

After the license file has been installed on the license server, use the License Installation
Wizard to install the same license file on all ADS client installations:

1. Select License Installation Wizard from ARM Developer Suite in the program
menu. A dialog is displayed that allows you to install a license file.

2. Identify the path and file name of the license file by either:

• enter the name of the server directory and disk file into the entry field next
to the Install Full button.

• click the Browse button and browse until you find the file on the server then
click the Open button to copy the file name into the entry field.

3. Click the Install Full button. The license wizard will now take the location of the
full license file so that you can use the product.

The server that has the full license installed must be accessible when you run ADS
on your client PC.

4. Click the Close button.

FLEXlm License Manager

ARM DUI0064B Copyright © 1999, 2000 ARM Limited. All rights reserved. 4-9

4.3 Installing a floating license for a UNIX client

A floating license is a license that allows any user on the same local network as the
license server to run ADS. The license server counts how many concurrent users of the
software there are. When a user on the network uses the software, one of the floating
licenses is allocated to the user. The ADS software must be installed on the UNIX
workstation and the local license files must identify the location of the license server.
You can have more clients with ADS installed than you have licenses, but the number
of concurrent users is limited by the license count.

4.3.1 Installing a temporary license (UNIX)

You can install a temporary license to get you working quickly while you are waiting
for the system administrator to install the full license on the server:

1. Install ADS on the client machine.

2. Change into the $ARMHOME/licenses directory.

3. Run the install utility by typing:

lmutil lminstall

4. When asked to "Enter path to output license file", press Return to
accept the default filename. The default filename is based on the current date.

5. At the : prompt, enter your temporary license number. The license number looks
similar to:

armlmd-ads-05876-54321-21098-76543-21098-76543-32109-9876

6. Press Return. The message Good should be displayed.

7. Press Return twice. The data has been converted into a license file.

8. You should now be able to use the license-managed software.

9. Follow the instructions in Using a permanent license on a remote server on
page 4-10 to obtain a permanent license.

This is a temporary license that will last for a maximum of 45 days. You must follow
the instructions in Generating a license request for a node locked license on page 4-4
to get a full license from ARM.

FLEXlm License Manager

4-10 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI0064B

4.3.2 Using a permanent license on a remote server

When the permanent license file is installed on the license server, you must copy the file
to each client machine. The client machine uses the license file to identify the location
of the license server.

Using the default location for the license file

The license-managed software searches $ARMHOME/licenses/ for the license files.
All files in this directory with an extension of .lic are examined for licenses.
($ARMHOME is the top-level directory where the software was installed.) Any existing
temporary licenses should be removed from this directory when you install the full
license.

If the license file is copied into the default location on each client machine, no
additional steps are required to enable the client to run the software.

Changing the location of the license file

The default address can be overridden by setting the environment variable
ARMLMD_LICENSE_FILE to an appropriate value. The way you identify the location
depends on the machine holding the full license and how that machine is reached from
the client.

4.3.3 Using a permanent license on the client workstation

If you are installing a single floating license, you might want ADS and the license server
to be on the same workstation. The workstation is then managing itself. You must either
copy the license file to the default location, or identify it using the
ARMLMD_LICENSE_FILE environment variable.

FLEXlm License Manager

ARM DUI0064B Copyright © 1999, 2000 ARM Limited. All rights reserved. 4-11

4.4 Configuring the license server

Licensing is controlled by a license file that describes the software you can use and how
many copies of it you can run concurrently.

You must specify one or more computers to act as a license server, on which license
management software runs. Any computer running FLEXlm licensed software must
either be a license server or have access to a license server.

The license server can be any one of:

• your local machine where the ADS software is installed

• a remote machine

• several remote machines.

If you choose to use more than one, you must use three license server machines. These
communicate with one another, and co-ordinate the licensing. The advantage of this is
that if one of the license server machines fails to operate correctly the other two will
continue to allow licensed software to be used. This arrangement is known as a 3-server
redundant set.

Remote license servers do not need to be running on the same hardware platform as the
software they are controlling. For example, a Solaris UNIX machine can act as the
license server for PC clients.

You must install the FLEXlm software on a license server. See Installing FLEXlm
software on the server on page 4-12.

Once you have installed the software, you can modify your license and use the FLEXlm
utilities:

• Requesting and installing floating licenses on page 4-13

• Starting the server software on page 4-16

• UNIX FLEXlm license management utilities on page 4-18.

FLEXlm License Manager

4-12 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI0064B

4.4.1 Installing FLEXlm software on the server

License management software for various platforms is supplied on the CD-ROM of any
ARM license-managed software.

Installing the license software on a Windows server

For Windows 95/98 and Windows NT, the software is located in flexlm\win32.

Note

Use of a Windows 95/98 machine as a license server is strongly discouraged.

Before applying for a license file you must install the FLEXlm license management
software, as follows:

1. Copy flexlm.cpl into your system directory. This is typically:

• c:\winnt\system32 on Windows NT

• c:\windows\system on Windows 95/98.

2. Copy the other files into a directory in your PATH.

Installing the license software on UNIX server

The following list shows the minimum versions of UNIX platforms supported, and the
subdirectory containing the appropriate software for each:

Solaris 2.5 flexlm/solaris

HP-UX 9.x flexlm/hpux

SunOS 4.1.4 flexlm/sunos

Each directory contains the software in TAR file format, in a file called flexlm.tar.

Before applying for a license file you must install the FLEXlm license management
software, as follows:

1. Copy the TAR file from the appropriate directory onto each license server
machine. The destination directory must be included in your PATH.

2. On each license server machine, unTAR the file using the command:

tar xvf flexlm.tar

3. When you have unTARed the software you need to run the makelinks.sh
script. Change into the directory containing the unTARed software and type:

sh makelinks.sh

FLEXlm License Manager

ARM DUI0064B Copyright © 1999, 2000 ARM Limited. All rights reserved. 4-13

4. Follow the instructions in Requesting and installing floating licenses, below, to
obtain a permanent license.

4.4.2 Requesting and installing floating licenses

This section describes how to obtain and install your floating licenses.

Obtaining your floating licenses

The installation directory contains a license application form in a file called
license_request_form.txt. Please fill in your details on this form and return it to
ARM Limited, either by email or by Fax. A permanent floating license will be sent to
you.

What to do with your license file

Make a copy of the license file on each of your license servers, as follows:

• If you receive the license file by email you can either copy the license file section
out of the message, or save the entire message to disk. The license server ignores
all lines except those that start with SERVER, VENDOR, USE_SERVER, DAEMON.
FEATURE, INCREMENT, and PACKAGE.

• If you receive the license file by fax you must create a text file and key in the
information using an editor of your choice. When data entry is complete, you can
use the lmutil lmcksum utility to check that you typed everything in correctly.
Instructions for using lmcksum are given under UNIX FLEXlm license
management utilities on page 4-18.

• You can save the license file in any directory on each license server. However, it
is strongly recommended that this be on a locally mounted file system.

• The license file you receive contains the following line that gives the name of the
ARM vendor daemon:

VENDOR armlmd

FLEXlm searches the following directories to find the ARM vendor daemon:

1. the current directory

2. the directories in the PATH environment variable

3. the directory that the license server daemon (lmgrd) was started from.

FLEXlm License Manager

4-14 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI0064B

You must add the full pathname to the armlmd program as the second parameter
on the VENDOR line. For example:

Windows
VENDOR armlmd c:\flexlm\programs\armlmd.exe

UNIX VENDOR armlmd /opt/flexlm/tools/armlmd

See the enduser.pdf FLEXlm documentation in the flexlm directory of your
ADS installation disk for full details of the options you can specify on the VENDOR
line of your license file.

See Customizing your license file on page 4-14 for more information.

Customizing your license file

Your license file contains information similar to that shown in one of the following
examples:

Example 4-1: Typical 1-server license file

PACKAGE ads armlmd 1.0 E9AB4AD388E7 COMPONENTS="armasm compiler bats \
 armulate axd adwu"
SERVER jupiter 00107702f746 27000
VENDOR armlmd
USE_SERVER
INCREMENT ads armlmd 1.000 permanent 1 4BD7E161B142FF3 DUP_GROUP=UHD \
 ISSUER="ARM Limited" ck=79

Example 4-2: Typical 3-server license file

SERVER jupiter 00107702f746 27000
SERVER saturn 80af8111f3 27000
SERVER uranus 8187362243 27000
VENDOR armlmd
USE_SERVER
INCREMENT ads armlmd 1.000 permanent 1 4BD7E161B142FF3 DUP_GROUP=UHD \
 ISSUER="ARM Limited" ck=79

FLEXlm License Manager

ARM DUI0064B Copyright © 1999, 2000 ARM Limited. All rights reserved. 4-15

Although you must not change INCREMENT lines, you might need to change the SERVER
and VENDOR lines in your license file.

You might need to change SERVER and VENDOR lines for the following reasons:

Hostname on SERVER line
You might need to change the hostname of a license server. If you change
the hostname, you must change the hostname in all copies of the license
file that refer to that server.

If you supplied three hostnames on the license request form, there are
three SERVER lines in the license file.

TCP port on SERVER line
It is possible to specify on a SERVER line the TCP port that the license
manager uses to communicate with the licensed software. If not specified
the license manager will use the next available port in the range
27000-27009. When connecting to a server, an application tries all the
ports in the range 27000-27009.

A port number must be specified on each SERVER line if a 3-server
license is in use.

Daemon path on VENDOR line
FLEXlm searches the following directories to find the ARM vendor
daemon:

1. the current directory

2. the directories in the PATH environment variable

3. the directory that the license server daemon (lmgrd) was started
from.

If the armlmd program is not in one of these places, you must edit this
line to specify the location of the program. You must add the full
pathname to the armlmd program as the second parameter on the VENDOR
line. For example:

Windows
VENDOR armlmd c:\flexlm\programs\armlmd.exe

UNIX VENDOR armlmd /opt/flexlm/tools/armlmd

See the enduser.pdf FLEXlm documentation in the flexlm directory
of your ADS installation disk for full details of the options you can
specify on the VENDOR line of your license file.

FLEXlm License Manager

4-16 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI0064B

Increment lines

Increment lines describe the licenses that are available, and must not be altered. If they
are altered the license is invalidated and the feature no longer operates.

Each Increment line specifies the feature name, the vendor daemon name, the feature
version, the expiration date of the license (a year of 0 means the license never expires),
the number of concurrent licenses available, and the license key.

4.4.3 Starting the server software

The license management software on the license server must be running to handle
requests for license validation from client machines.

UNIX

To start the license server software on each machine, go to the directory containing the
license server software and type:

nohup lmgrd -c license_file_name -l logfile_name &

where:

license_file_name
Specifies the fully qualified pathname of the license file

logfile_name
Specifies the fully qualified pathname to a log file.

When you have started the license server, you can type:

cat logfile_name

to see the output from the license server.

Windows

To start the license server software on each machine:

1. Open the Control Panel on the license server machine.

2. Start the FLEXlm License Manager application.

3. Click the Setup tab. Fill in the fields on the page that is displayed.

4. Click the Control tab.

5. When prompted to save changes, select Yes.

FLEXlm License Manager

ARM DUI0064B Copyright © 1999, 2000 ARM Limited. All rights reserved. 4-17

6. Click the Start button.

7. The license server will start running.

Running your application

Copy the license file into the ADS licenses subdirectory of each client machine that
will use the license server. This file must be given a .lic filename extension. You can
now run the license managed software in ADS.

4.4.4 Using FLEXlm with more than one product

FLEXlm is a widely used product for license management, so it is possible that you
have more than one product using FLEXlm.

Detailed information on FLEXlm is provided in the file enduser.pdf located in the
flexlm subdirectory of the installation CD.

The latest version of the FLEXlm software will always work with vendor daemons built
using previous versions. Consequently you must always use the latest version of lmgrd
and the FLEXlm utilities.

Note

The FLEXlm software currently shipped by ARM is FLEXlm version 6.1g.

If you have multiple products using FLEXlm you might encounter two situations:

• all the products use the same license server

• all the products use different license servers.

All products use the same server

If the license files for every product contain exactly the same SERVER lines, ignoring
different TCP port numbers, then there are two possible solutions:

• Start a separate lmgrd daemon for each license file. There are no real
disadvantages with this approach, as the separate daemons consume very little
system resources or CPU time.

• Combine the license files together. Take the SERVER line from one of the license
files then add all of the other lines, that is the DAEMON/VENDOR and
FEATURE/INCREMENT lines, to create a new license file.

You must store the new combined license file in

/usr/local/flexlm/licenses/license.lic

FLEXlm License Manager

4-18 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI0064B

or give its location using the LM_LICENSE_FILE environment variable.

Now start lmgrd using the new license file. Remember that you must use the
latest version of lmgrd that is used by any of the products. You can use the
command lmgrd -v or lmver lmgrd to find out the version of each lmgrd.

If the version of lmgrd is earlier than any of the vendor daemons, you see error
reports such as: Vendor daemon cannot talk to lmgrd (invalid data
returned from license server)

Leave a symbolic link to the new license file in all the locations that held the
original license files.

All products use different license servers

If all the products use different hosts to run the license managers, then you must keep
separate license files for each product.

Set the LM_LICENSE_FILE environment variable to point to the locations of all the
license files, for example:

setenv LM_LICENSE_FILE license_file1:license_file2:
...:license_filen

Note

FLEXlm version 6.1 allows each software vendor to have an individual environment
variable for finding the license file for their products. The environment variable name
is xxx_LICENSE_FILE where xxx is the name of the vendor license daemon. In the
case of software from ARM Limited the vendor daemon is called ARMLMD, therefore the
environment variable for ARM software is ARMLMD_LICENSE_FILE. FLEXlm vendor
daemons always look for the vendor-specific environment variable, ahead of the
LM_LICENSE_FILE environment variable.

4.4.5 UNIX FLEXlm license management utilities

The flexlm directory on your product CD-ROM contains subdirectories holding the
license manager utilities and the ARM vendor daemon (armlmd) for various platforms.

Installing FLEXlm software on the server on page 4-12 describes how to install the
software on your (one or three) UNIX license server machines.

All the license tools are actually contained within the single executable lmutil, the
behavior of the program is determined by the value of its argv[0].

FLEXlm License Manager

ARM DUI0064B Copyright © 1999, 2000 ARM Limited. All rights reserved. 4-19

Using the utilities on UNIX

Running the script makelinks.sh allows you to execute the utilities using their short
names, for example you can type lmver instead of lmutil lmver.

The lmdown, lmremove, and lmreread commands are privileged. If you started
lmgrd with the -p 2 switch then you must be a license administrator to run any of these
three utilities.

A license administrator is a member of the UNIX lmadmin group or, if that group does
not exist, a member of group 0.

In addition, lmgrd -x can disable lmutil lmdown and lmutil lmremove.

All utilities take the following arguments:

-v print version and exit.

-c license_file
operate on a specific license file.

FLEXlm License Manager

4-20 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI0064B

lmcksum

lmutil lmcksum [-k] [-c license_file_name]

The lmutil lmcksum utility performs a checksum of a license file. Use it to check for
data entry errors in your license file. lmutil lmcksum prints a line-by-line checksum
for the file as well as an overall file checksum. If the license file contains cksum=nn
attributes, the bad lines are indicated automatically.

This utility is particularly useful if you receive your license by fax and typed the file,
because of the possibility of data entry errors.

Use the -k switch to force the checksum to be case-sensitive.

By default lmutil lmcksum checks the contents of license.dat in the current
directory. Use the -c switch to check a different file.

lmdiag

lmutil lmdiag [-c license_file_list] [-n] [feature]

This utility allows you to check for problems when you cannot check out a license.

-c license_file_list

Check file(s) on path. If there is more than one file, use a colon separator.

-n Run in non-interactive mode.

feature Diagnose this feature only. If you do not specify a feature, all lines of the
license file are checked.

The lmdiag program first tries to check the feature. If this fails, the reason for failure
is printed.

If the check failed because lmutil lmdiag could not connect to the license server then
you can run extended connection diagnostics. These diagnostics try to check the
validity of the port number in the license file. lmutil lmdiag displays the port
numbers of all ports that are listening and indicates the ones that are lmgrd processes.
If lmutil lmdiag finds the armlmd daemon for the for feature being tested, it displays
the correct port number to use in the license file.

FLEXlm License Manager

ARM DUI0064B Copyright © 1999, 2000 ARM Limited. All rights reserved. 4-21

lmdown

lmutil lmdown [-c license_file_list] [-vendor name] [-q]

The program allows you to shut down gracefully all license daemons on all nodes (both
lmgrd and all vendor daemons).

-c license_file_list

Path to file(s) to be shut down. If more than one file, use a colon
separator.

-vendor name

If you specify a vendor name, only that vendor daemon is shut down and
lmgrd is not shut down.

-q Do not issue the Are you sure? prompt.

You should restrict the execution of lmutil lmdown to license administrators, by
starting lmgrd with the -p -2 switch, as shutting down the server causes loss of
licenses.

To disable lmdown, the license administrator can use lmgrd -x lmdown.

To stop and restart a single vendor daemon, use lmutil lmdown -vendor name, then
lmreread -vendor name.

lmremove

lmutil lmremove [-c license_file_list] feature user host display

This utility allows you to remove a single user license for a specific feature. For
example, when a user is running the software and the host crashes, the user license is
sometimes left checked out and unavailable to other users. lmremove frees the license
and makes it available to other users.

-c license_file_name

The full pathname of the license file to be used. If this is omitted the
LM_LICENSE_FILE environment variable is used instead.

feature The name of the feature the user has checked out.

user The name of the user.

host The name of the host the user was logged into.

display The name of the display where the user was working.

You can obtain the user, host, and display information from the output of lmutil
lmstat -a.

If the application is active when its license is removed by lmremove, it checks out the
license again at the next application heartbeat.

FLEXlm License Manager

4-22 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI0064B

lmhostid

lmutil lmhostid

This program returns the correct host ID on any computer supported by FLEXlm.

lmreread

lmutil lmreread [-vendor name] [-c license_file_list]

This utility causes the license daemon to reread the license file, and start any new
vendor daemons that have been added. All the existing daemons are signalled to reread
the license file to check for any changes in their licensing information.

-vendor name

If you specify a vendor name, only that vendor daemon rereads the
license file. If the vendor daemon is not running, lmgrd starts it.

To disable lmutil lmreread, the license administrator can use lmgrd -x
lmreread.

lmutil lmreread does not cause server host names or port numbers to be reread from
the license file. To make any changes to those items effective, you must restart lmgrd.

To stop and restart a single vendor daemon, use lmutil lmdown -vendor name, then
lmutil lmreread -vendor name.

FLEXlm License Manager

ARM DUI0064B Copyright © 1999, 2000 ARM Limited. All rights reserved. 4-23

lmstat

lmstat [-a] [-A] [-c license_file_list] [-f [feature]] [-i

[feature]] [-s [server]] [-S [daemon]] [-t value]

This utility helps you to monitor the status of all network licensing activities, including:

• the daemons that are running

• users of individual features

• users of features served by specific daemons.

The optional arguments are:

-a Displays all information.

-A Lists all active licenses.

-c license_file_list

Uses all the license files listed.

-f [feature]

Lists users of a specific feature.

-i [feature]

Prints information about the named feature, or all features if feature is
omitted.

-s [server]

Displays status of server node(s).

-S [daemon]

Lists all users and features of a specific daemon.

-t value Sets the lmstat timeout to value.

lmver

lmutil lmver [filename]

This utility reports the FLEXlm version of a specific library or binary file.

FLEXlm License Manager

4-24 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI0064B

4.5 Frequently asked questions about licensing

Q Why can I not find the LMHOSTID program?

A If you are using UNIX, you have not run the makelinks.sh script that
is in the directory that you unTARed the FLEXlm software into. This
script creates a series of links to the lmutil program, one of which is for
lmhostid.

If you are using Windows, this command is not available. Instead, type
lmutil lmhostid.

Q How does an ADS application find its license file?

A ADS applications look in the directory $ARMHOME\licenses for any
files that have a .lic filename extension. These files are searched in an
order that is determined by the operating system until a valid license is
found.

The value of $ARMHOME is set by the installation program to be the
top-level directory that contains the ADS software. Under Windows, this
value is stored in the registry.

Q How can I store my license files in a different location?

A The location of the ADS license files can be overridden by setting the
environment variables $ARMLMD_LICENSE_FILE or
$LM_LICENSE_FILE. You can set these environment variables to
contain one or more filenames, or directory names. The files and
directories are searched in order until a valid license is found. If a
directory name is found then each file within the directory that has a .lic
extension is searched. The contents of $ARMLMD_LICENSE_FILE are
searched before the contents of the $LM_LICENSE_FILE.
$ARMLMD_LICENSE_FILE is read only by ARM licensed software.
$LM_LICENSE_FILE is read by all license managed software.

Q Do I need to have the license file on each client machine?

A In general, yes you do. However, if you have a single floating license
server you can specify the port and server name of the license server
using the ARMLMD_LICENSE_FILE environment variable.

For example, set ARMLMD_LICENSE_FILE to 7000@licserver1 to
specify that the license server is running on the machine licserver1
and is using port number 7000.

FLEXlm License Manager

ARM DUI0064B Copyright © 1999, 2000 ARM Limited. All rights reserved. 4-25

4.6 Information for experienced users of FLEXlm

If you are an experience user of FLEXlm then you will need to know the following
information about the ARM implementation of this software.

• The version of FLEXlm used by ARM is 6.1g.

• The ARM-specific environment variable used for specifying the location of
license files is called ARMLMD_LICENSE_FILE.

• The ARM vendor daemon program is called:

Windows armlmd.exe

UNIX armlmd

• You can run your ADS PC or UNIX licenses on a license server that is running
on either platform, however you will not be able to run your UNIX ADS software
using PC ADS licenses.

• The default location that is searched for ARM license files is:

Windows $ARMHOME\licenses

UNIX $ARMHOME/licenses

ARMHOME is the top-level directory that ADS was installed into. (Under Windows
the value for ARMHOME is stored in the registry under
HKEY_LOCAL_MACHINE\Software\ARM Limited\ARM Developer

Suite\v1.0)

• All files with a .lic extension in this directory are searched for licenses.

FLEXlm License Manager

4-26 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI0064B

ARM DUI 0064A Copyright © 1999, 2000 ARM Limited. All rights reserved. Index-1

Index

The items in this index are listed in alphabetical order, with symbols and numerics appearing at the end. The
references given are to page numbers.

A
ANSI C library

ISO C standard 3-27
armar 3-30
ARMulator

configuring for AXD 3-35
Assembler

differences 2-12, 2-23
enhancements 2-12, 2-23
mode changing 3-19

AXD
debugging 3-31
starting 3-31
using 3-31

B
Books

CodeWarrior IDE Guide 1-7
Debug Target Guide 1-7
Debuggers Guide 1-7, 1-12

Developer Guide 1-7
further reading 1-8
HTML 1-19
Tools Guide 1-7

C
CodeWarrior IDE

new project 3-3
Command line

arguments for AXD 3-32
CodeWarrior IDE 3-17
debugging 3-18
linker options 3-20

Compilers
enhancements 2-17
invoking 3-15

Components 1-2
Contents iii
C++ library 3-27

Rogue Wave 3-28
source 3-28

D
Debuggers

AXD 2-6, 3-31
enhancements 2-6
starting AXD 3-31

Differences 2-2
ADW 2-14
AIF 2-15
ARMulator 2-15
compiler 2-17
debugger 2-6
default behavior 2-13
enhancements 2-3
entry point 2-14
floating point 2-15
librarian 2-9
project manager 2-9
stack unwinding 2-16

Index

Index-2 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI 0064A

E
Entry point

debugger 2-14
differences 2-14
linker 2-14

F
FLEXlm 4-16

configuring the license server 4-11
customizing license 4-14
floating license for PC 4-7, 4-9
installing 4-12
multiple licenses 4-17
permanent license for PC 4-8
permanent PC license 4-5
requesting a PC license 4-4
starting the software 4-16
temporary license for PC 4-7
temporary PC license 4-2
typical license file 4-14
utilities 4-18
versions 4-17

I
Installing

FLEXlm 4-12
node-locked license on PC 4-2
permanent license on UNIX 4-10
temporary license on UNIX 4-9

Invoking the compiler 3-15

L
Librarian 3-30

enhancements 2-9
Libraries

ARM 3-27
armar 3-30
custom 3-30
C++ 3-27
embedded 3-28
non-hosted environment 3-28
programing without 3-29

RogueWave 3-27
semihosting 3-28
semihosting dependencies 3-29

License file
see FLEXlm

License management questions 4-24
License server software

see FLEXlm
Licenses, multiple 4-17
Linker options

syntax 3-21
lmchecksum utility 4-20
lmdiag utility 4-20
lmdown utility 4-21
lmhostid utility 4-22
lmremove utility 4-21
lmreread utility 4-22
lmstat utility 4-23
lmver utility 4-23

O
Obsolete

assembler options 2-24
compiler macros 2-21
compiler options 2-19
components 2-28
file formats 2-29
linker options 2-27
standards 2-28

P
Platforms, supported 1-6
Project manager

enhancements 2-9

R
Rogue Wave C++ library 3-27

S
Scatter loading 3-22

file examples 3-24

Standards 1-5
obsolete 2-28

Starting
CodeWarrior IDE 3-3
license server software 4-16

T
Table of contents iii

	Preface
	About this book
	Intended audience
	Using this book
	Typographical conventions
	Further reading

	Feedback
	Feedback on the ARM Developer Suite
	Feedback on this book

	Contents
	Introduction
	1.1 About the ARM Developer Suite
	1.1.1 Components of ADS

	1.2 Supported platforms
	1.3 Printed documentation
	1.3.1 ARM publications
	1.3.2 Further reading

	1.4 Help and online documentation
	1.4.1 Online help
	1.4.2 Adobe Acrobat Reader
	1.4.3 Dynatext
	1.4.4 HTML

	Differences
	2.1 Overview
	2.2 Functionality enhancements and new functionality
	2.2.1 Support for new processors (ARM9E and ARM10)
	2.2.2 New ARM/Thumb procedure call standard
	2.2.3 Floating-point support
	2.2.4 Byte order of long long and double
	2.2.5 Remote Debug Interface
	2.2.6 Debuggers
	2.2.7 ARMulator
	2.2.8 Angel and Remote_A
	2.2.9 Libraries
	2.2.10 Library manager
	2.2.11 CodeWarrior IDE
	2.2.12 Linker
	2.2.13 Compilers
	2.2.14 Assembler
	2.2.15 License management

	2.3 Differences in default behavior
	2.3.1 Object and library compatibility
	2.3.2 Entry point used with debugger
	2.3.3 Entry point set by linker option
	2.3.4 ADW
	2.3.5 ARMulator
	2.3.6 ELF, AIF, Binary AIF, IHF and Plain Binary Image formats
	2.3.7 Floating-point exceptions
	2.3.8 Stack unwinding
	2.3.9 Source directory variable in armsd and ADW

	2.4 Changed compiler behavior
	2.4.1 New compiler options
	2.4.2 Obsolete compiler pragmas
	2.4.3 Obsolete compiler options
	2.4.4 Deprecated compiler options
	2.4.5 Obsolete ARM-specific language extensions
	2.4.6 Obsolete and new predefined macros

	2.5 Changed assembler behavior
	2.5.1 New assembler options
	2.5.2 Features of the SDT assembler not supported
	2.5.3 Deprecated assembler options

	2.6 Changed linker behavior
	2.6.1 New or changed linker behavior
	2.6.2 Obsolete linker options

	2.7 Obsolete components and standards
	2.7.1 APM
	2.7.2 Armmake
	2.7.3 Armlib
	2.7.4 Decaof and Decaxf
	2.7.5 DWARF1
	2.7.6 26-bit addressing
	2.7.7 AOF, AIF, IHF, and Plain Binary image formats
	2.7.8 RDI 1.50

	Creating an Application
	3.1 Using the CodeWarrior IDE
	3.1.1 Creating and building a simple project

	3.2 Building from the command line
	3.2.1 Using the compilers from the command line
	3.2.2 Using the CodeWarrior IDE from the command line
	3.2.3 Debugging from the command line
	3.2.4 Using the assembler from the command line
	3.2.5 Setting linker options from the command line

	3.3 Using ARM libraries
	3.3.1 Using the ARM libraries in a semihosted environment
	3.3.2 Using the ARM libraries in a non-semihosted environment
	3.3.3 Building an application without the ARM libraries

	3.4 Using your own libraries
	3.5 Debugging the application with AXD
	3.5.1 Starting AXD
	3.5.2 Configuring ARMulator for AXD

	FLEXlm License Manager
	4.1 Installing a single node-locked license on a Windows PC
	4.1.1 Installing a temporary license
	4.1.2 Generating a license request for a node locked license
	4.1.3 Installing a permanent node locked license

	4.2 Installing a floating license for a Windows client
	4.2.1 Installing a temporary license
	4.2.2 Requesting a full floating license
	4.2.3 Installing a permanent license

	4.3 Installing a floating license for a UNIX client
	4.3.1 Installing a temporary license (UNIX)
	4.3.2 Using a permanent license on a remote server
	4.3.3 Using a permanent license on the client workstation

	4.4 Configuring the license server
	4.4.1 Installing FLEXlm software on the server
	4.4.2 Requesting and installing floating licenses
	4.4.3 Starting the server software
	4.4.4 Using FLEXlm with more than one product
	4.4.5 UNIX FLEXlm license management utilities

	4.5 Frequently asked questions about licensing
	4.6 Information for experienced users of FLEXlm

	Index
	A, B, C, D
	E, F, I, L, O, P, R, S, T

