
Copyright © 1999,2000 ARM Limited. All rights reserved.
ARM DUI 0067B

ARM Developer Suite
Version 1.0.1

Tools Guide



ii Copyright © 1999,2000 ARM Limited. All rights reserved. ARM DUI 0067B
 

Copyright © 1999 and 2000 ARM Limited. All rights reserved.

Release Information

The following changes have been made to this book.

Proprietary Notice

ARM, the ARM Powered logo, Thumb, and StrongARM are registered trademarks of ARM Limited.

The ARM logo, AMBA, Angel, ARMulator, EmbeddedICE, ModelGen, Multi-ICE, PrimeCell, 
ARM7TDMI, ARM7TDMI-S, ARM9TDMI, ARM9E-S, ETM7, ETM9, TDMI, STRONG, are trademarks 
of ARM Limited.

All other products or services mentioned herein may be trademarks of their respective owners.

Neither the whole nor any part of the information contained in, or the product described in, this document 
may be adapted or reproduced in any material form except with the prior written permission of the copyright 
holder.

The product described in this document is subject to continuous developments and improvements. All 
particulars of the product and its use contained in this document are given by ARM in good faith. However, 
all warranties implied or expressed, including but not limited to implied warranties of merchantability, or 
fitness for purpose, are excluded.

This document is intended only to assist the reader in the use of the product. ARM Limited shall not be liable 
for any loss or damage arising from the use of any information in this document, or any error or omission in 
such information, or any incorrect use of the product.

Change History

Date Issue Change

October 1999 A Release 1.0

March 2000 B Release 1.0.1



ARM DUI 0067B Copyright © 1999, 2000 ARM Limited. All rights reserved. iii

Contents
Tools Guide

Preface
About this book .................................................................................  Preface-ii
Feedback ........................................................................................  Preface-vii

Chapter 1 Introduction
1.1 About the ARM Developer Suite .................................................................  1-2
1.2 Supported platforms ....................................................................................  1-5

Chapter 2 C and C++ Compilers
2.1 About the C and C++ compilers ..................................................................  2-2
2.2 File usage ...................................................................................................  2-4
2.3 Command syntax ........................................................................................  2-8

Chapter 3 ARM Compiler Reference
3.1 Compiler-specific features ...........................................................................  3-2
3.2 Standard C implementation definition .......................................................  3-11
3.3 Standard C++ implementation definition ...................................................  3-30
3.4 C and C++ language extensions ...............................................................  3-33
3.5 Predefined macros ....................................................................................  3-38
3.6 Implementation limits ................................................................................  3-41
3.7 Limits for integral numbers ........................................................................  3-44
3.8 Limits for floating-point numbers ...............................................................  3-45



iv Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI 0067B

Chapter 4 The C and C++ Libraries
4.1 About the runtime libraries ..........................................................................  4-2
4.2 Building an application with the C library ....................................................  4-6
4.3 Building an application without the C library .............................................  4-13
4.4 Tailoring the C library to a new execution environment ............................  4-20
4.5 Tailoring static data access ......................................................................  4-23
4.6 Tailoring locale and CTYPE .....................................................................  4-24
4.7 Tailoring error signalling, error handling, and program exit ......................  4-47
4.8 Tailoring storage management .................................................................  4-52
4.9 Tailoring the run-time memory model .......................................................  4-60
4.10 Tailoring the input/output functions ...........................................................  4-67
4.11 Tailoring other C library functions .............................................................  4-76
4.12 ISO implementation definition ...................................................................  4-81
4.13 C library extensions ..................................................................................  4-90
4.14 Library naming conventions ......................................................................  4-96

Chapter 5 Assembler
5.1 Introduction .................................................................................................  5-2
5.2 Command syntax ........................................................................................  5-4
5.3 Format of source lines ................................................................................  5-9
5.4 Predefined register and coprocessor names ............................................  5-10
5.5 VFP directives and notation ......................................................................  5-11
5.6 Built-in variables .......................................................................................  5-12
5.7 ARM pseudo-instructions .........................................................................  5-13
5.8 Thumb pseudo-instructions ......................................................................  5-24
5.9 Symbols ....................................................................................................  5-30
5.10 Directives ..................................................................................................  5-36
5.11 Expressions, literals and operators ........................................................  5-114

Chapter 6 The ARM Linker
6.1 About armlink ..............................................................................................  6-2
6.2 Armlink syntax ............................................................................................  6-6
6.3 Image structure .........................................................................................  6-16
6.4 Linker-defined symbols .............................................................................  6-23
6.5 Library searching, selection and scanning ...............................................  6-26
6.6 Optimizations and modifications ...............................................................  6-29
6.7 Accessing symbols in another image .......................................................  6-31
6.8 Creating simple images ............................................................................  6-34
6.9 Creating complex images with scatter loading .........................................  6-39

Chapter 7 Toolkit Utilities
7.1 Functions of the toolkit utilities ....................................................................  7-2
7.2 The fromELF utility .....................................................................................  7-3
7.3 ARM profiler ................................................................................................  7-7
7.4 ARM librarian ..............................................................................................  7-9
7.5 The Flash downloader ..............................................................................  7-13



ARM DUI 0067B Copyright © 1999, 2000 ARM Limited. All rights reserved. v

Chapter 8 Floating-point Support
8.1 About floating-point support ........................................................................  8-2
8.2 The software floating-point library, fplib ......................................................  8-3
8.3 Controlling the floating-point environment .................................................  8-10
8.4 The math library, mathlib ...........................................................................  8-26
8.5 IEEE 754 arithmetic ..................................................................................  8-32



vi Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI 0067B



ARM DUI 0067B Copyright © 1999,2000 ARM Limited. All rights reserved. Preface-i
-

Preface

This preface introduces the ARM Developer Suite (ADS) tools and reference 
documentation. It contains the following sections:

• About this book on page Preface-ii

• Feedback on page Preface-vii



Preface

Preface-ii Copyright © 1999,2000 ARM Limited. All rights reserved. ARM DUI 0067B
-

About this book

This book provides reference information for ADS. It describes the command-line 
options to the assembler, linker, compilers and other ARM tools in ADS. The book also 
gives reference material on the ARM implementation of the C and C++ compilers and 
the C libraries. 

Intended audience

This book is written for all developers who are producing applications using ADS. It 
assumes that you are an experienced software developer and that you are familiar with 
the ARM development tools as described in ADS Getting Started.

Using this book

This book is organized into the following chapters:

Chapter 1 Introduction 

Read this chapter for an introduction to ADS.

Chapter 2 C and C++ Compilers 
Read this chapter for an explanation of all command-line options 
accepted by the ARM C and C++ compilers.

Chapter 3 ARM Compiler Reference 
Read this chapter for a description of the language features provided by 
the ARM C and C++ compilers, and for information on standards 
conformance and implementation details.

Chapter 4 The C and C++ Libraries 
Read this chapter for a description of the ARM C and C++ libraries and 
instructions on re-implementing individual library functions.

Chapter 5 Assembler 
Read this chapter for an explanation of all command-line options 
accepted by the ARM assembler. In addition, this chapter documents 
features such as the directives and pseudo-instructions supported by the 
assembler.

Chapter 6 The ARM Linker 
Read this chapter for an explanation of all command-line options 
accepted by the linker, and for reference information on linker features 
such as scatter loading.



Preface

ARM DUI 0067B Copyright © 1999,2000 ARM Limited. All rights reserved. Preface-iii
-

Chapter 7 Toolkit Utilities 
Read this chapter for a description of the utility programs provided with 
ADS, including fromELF, the ARM profiler, the ARM librarian, and the 
ARM file downloaders.

Chapter 8 Floating-point Support 
Read this chapter for a description of floating-point support in ADS.

Typographical conventions

The following typographical conventions are used in this book:

typewriter Denotes text that may be entered at the keyboard, such as commands, file 
and program names, and source code.

typewriter Denotes a permitted abbreviation for a command or option. The 
underlined text may be entered instead of the full command or option 
name.

typewriter italic Denotes arguments to commands and functions where the 
argument is to be replaced by a specific value.

italic Highlights important notes, introduces special terminology, denotes 
internal cross-references, and citations.

bold Highlights interface elements, such as menu names. Also used for 
emphasis in descriptive lists, where appropriate, and for ARM processor 
signal names.

typewriter bold Denotes language keywords when used outside example code.

Further reading

This section lists publications from both ARM Limited and third parties that provide 
additional information on developing code for the ARM family of processors.

ARM periodically provides updates and corrections to its documentation. See 
http://www.arm.com for current errata sheets and addenda. 

See also the ARM Frequently Asked Questions list at: 
http://www.arm.com/DevSupp/Sales+Support/faq.html

ARM publications

This book contains reference information that is specific to development tools supplied 
with ADS. Other publications included in the suite are:



Preface

Preface-iv Copyright © 1999,2000 ARM Limited. All rights reserved. ARM DUI 0067B
-

• Getting Started (ARM DUI 0064A)

• ADS Developer Guide (ARM DUI 0056A)

• ADS Debuggers Guide (ARM DUI 0066A)

• ADS Debug Target Guide (ARM DUI 0058A)

• CodeWarrior IDE Guide (ARM DUI 0065A).

The following additional documentation is provided with the ARM Developer Suite:

• ARM Architecture Reference Manual (ARM DUI 0100). This is supplied in 
Dynatext format, and in PDF format in 
install_directory\PDF\ARM-DDI0100B_armarm.pdf.

• ARM Applications Library Programmer’s Guide (ARM DUI 0081). This is 
supplied in Dynatext format, and in PDF format on the CD.

• ARM ELF specification (SWS ESPC 0003). This is supplied in PDF format in 
install_directory\PDF\specs\ARM ELFA08.pdf.

• TIS DWARF 2 specification. This is supplied in PDF format in 
install_directory\PDF\specs\TIS-DWARF2.pdf.

• Angel Debug Protocol. This is supplied in PDF format in 
install_directory\PDF\specs\ADP ARM-DUI0052C.pdf

• Angel Debug Protocol Messages. This is supplied in PDF format in 
install_directory\PDF\specs\ADP ARM-DUI0053D.pdf

In addition, refer to the following documentation for specific information relating to 
ARM products:

• ARM Reference Peripheral Specification (ARM DDI 0062)

• the ARM datasheet or technical reference manual for your hardware device.

Other publications

This book is not intended to be an introduction to the ARM assembly language, C, or 
C++ programming languages. It does not try to teach programming in C or C++, and it 
is not a reference manual for the C or C++ standards. Other books provide general 
information about programming.



Preface

ARM DUI 0067B Copyright © 1999,2000 ARM Limited. All rights reserved. Preface-v
-

The following book gives general information about the ARM architecture:

• ARM System Architecture, Furber, S., (1996). Addison Wesley Longman, Harlow, 
England. ISBN 0-201-40352-8.

The following books describe the C++ language:

• ISO/IEC 14882:1998(E), C++ Standard. Available from the national standards 
body.

The following books provide general C++ programming information:

• Ellis, M.A. and Stroustrup, B., The Annotated C++ Reference Manual (1990). 
Addison-Wesley Publishing Company, Reading, Massachusetts. ISBN 
0-201-51459-1.

This is a reference guide to C++.

• Stroustrup, B., The Design and Evolution of C++ (1994). Addison-Wesley 
Publishing Company, Reading, Massachusetts. ISBN 0-201-54330-3.

This book explains how C++ evolved from its first design to the language in use 
today.

• Meyers, S., Effective C++ (1992). Addison-Wesley Publishing Company, 
Reading, Massachusetts. ISBN 0-201-56364-9.

This provides short, specific, guidelines for effective C++ development.

• Meyers, S., More Effective C++ (1996). Addison-Wesley Publishing Company, 
Reading, Massachusetts. ISBN 0-201-63371-X.

The sequel to Effective C++.

The following books provide general C programming information:

• Kernighan, B.W. and Ritchie, D.M., The C Programming Language (2nd edition, 
1988). Prentice-Hall, Englewood Cliffs, NJ, USA. ISBN 0-13-110362-8.

This is the original C bible, updated to cover the essentials of ANSI C.

• Harbison, S.P. and Steele, G.L., A C Reference Manual (second edition, 1987). 
Prentice-Hall, Englewood Cliffs, NJ, USA. ISBN 0-13-109802-0.

This is a very thorough reference guide to C, including useful information on 
ANSI C.



Preface

Preface-vi Copyright © 1999,2000 ARM Limited. All rights reserved. ARM DUI 0067B
-

• Koenig, A, C Traps and Pitfalls, Addison-Wesley (1989), Reading, Mass. ISBN 
0-201-17928-8.

This explains how to avoid the most common traps and pitfalls in C 
programming. It provides informative reading at all levels of competence in C.

• ISO/IEC 9899:1990, C Standard

This is available from ANSI as X3J11/90-013. The standard is available from the 
national standards body (for example, AFNOR in France, ANSI in the USA).



Preface

ARM DUI 0067B Copyright © 1999,2000 ARM Limited. All rights reserved. Preface-vii
-

Feedback

ARM Limited welcomes feedback on both ADS and the documentation.

Feedback on the ARM Developer Suite

If you have any problems with ADS, please contact your supplier. To help them provide 
a rapid and useful response, please give:

• your name and company

• the serial number of the product

• details of the release you are using

• details of the platform you are running on, such as the hardware platform, 
operating system type and version

• a small stand-alone sample of code that reproduces the problem

• a clear explanation of what you expected to happen, and what actually happened

• the commands you used, including any command-line options

• sample output illustrating the problem

• the version number of the tools, including the version number and build numbers.

Feedback on this book

If you have any problems with this book, please send email to errata@arm.com 
giving:

• the document title

• the document number

• the page number(s) to which your comments apply

• a concise explanation of the problem.

General suggestions for additions and improvements are also welcome.



Preface

Preface-viii Copyright © 1999,2000 ARM Limited. All rights reserved. ARM DUI 0067B
-



ARM DUI 0067B Copyright © 1999,2000 ARM Limited. All rights reserved. 1-1
-

Chapter 1 
Introduction

This chapter introduces the ARM Developer Suite (ADS). It contains the following 
sections:

• About the ARM Developer Suite on page 1-2

• Supported platforms on page 1-5.



Introduction

1-2 Copyright © 1999,2000 ARM Limited. All rights reserved. ARM DUI 0067B
-

1.1  About the ARM Developer Suite

ADS consists of a suite of applications, together with supporting documentation and 
examples, that enable you to write and debug applications for the ARM family of RISC 
processors.

You can use ADS to develop, build, and debug C, C++, and ARM assembly language 
programs.

1.1.1  Components of the toolkit

ADS toolkit consists of the following major components:

• command-line development tools

• GUI development tools

• utilities

• supporting software.

These are described in more detail below.

Command-line development tools

The following command-line development tools are provided:

armcc The ARM C compiler. The compiler is tested against the Plum Hall C 
Validation Suite for ANSI conformance. It compiles ANSI source into 
32-bit ARM code in ELF object format.

armcpp This is the ARM C++ compiler. It compiles ANSI C++ or EC++ source 
into 32-bit ARM code in ELF object format.

tcc The Thumb C compiler. The compiler is tested against the Plum Hall C 
Validation Suite for ANSI conformance. It compiles ANSI source into 
16-bit Thumb code in ELF object format.

tcpp This is the Thumb C++ compiler. It compiles ANSI C++ or EC++ source 
into 16-bit Thumb code in ELF object format.

armasm The ARM and Thumb assembler. This assembles both ARM assembly 
language and Thumb assembly language source into ELF object format.

armlink The ARM and Thumb linker. This combines the contents of one or more 
object files with selected parts of one or more object libraries to produce 
an executable program. The ARM linker creates ELF executable images.



Introduction

ARM DUI 0067B Copyright © 1999,2000 ARM Limited. All rights reserved. 1-3
-

armsd The ARM and Thumb command-line debugger. This enables 
source-level debugging of programs. You can single step through C or 
assembly language source, set breakpoints and watchpoints, and examine 
program variables or memory.

Rogue Wave C++ library 
The Rogue Wave library provides standard C++ functions and objects 
such as cout(). For more information on Rogue Wave, see the online 
documentation.

support libraries 
The ARM C libraries provide additional components to enable support 
for C++ and to compile code for different architectures and processors.

See Chapter 2 C and C++ Compilers, Chapter 5 Assembler, and Chapter 6 The ARM 
Linker for more information on the command-line development tools. See Chapter 4 
The C and C++ Libraries for more information on the libraries.

GUI development tools

The following GUI development tools are provided:

AXD The new ARM Debugger for Windows and UNIX. This provides a full 
Windows environment for debugging your C, C++, and assembly 
language source.

ADW The old ARM Debugger for Windows. This provides a full Windows 
environment for debugging your C, C++, and assembly language source.

ADU The old ARM Debugger for UNIX. This provides a full GUI environment 
for debugging your C, C++, and assembly language source.

CodeWarrior IDE 
The project manager for Windows. This is a graphical user interface tool 
that automates the routine operations of managing source files and 
building your software development projects. The CodeWarrior IDE 
helps you to construct the environment, and specify the procedures 
needed to build your software.

See the ADS Debuggers Guide and the CodeWarrior IDE Guide for more information 
on the development tools.

Utilities

The following utility tools are provided to support the main development tools:



Introduction

1-4 Copyright © 1999,2000 ARM Limited. All rights reserved. ARM DUI 0067B
-

fromELF The ARM image conversion utility. This accepts ELF format input files 
and converts them to a variety of output formats, including AIF, plain 
binary, Extended Intellec Hex (IHF) format, Motorola 32-bit S-record 
format, and Intel Hex 32 format. The utility can also produce textual 
information about the input file, code disassembly for example.

armprof The ARM profiler displays an execution profile of a program from a 
profile data file generated by an ARM debugger.

armar The ARM librarian enables sets of ELF files to be collected together and 
maintained in libraries. You can pass such a library to the linker in place 
of several ELF object files. 

Flash downloader 
The Flash downloader enables you to download binary images to the 
flash memory of supported ARM development and evaluation boards. 

See Chapter 7 Toolkit Utilities for more information on the utilities.

Supporting software

The following support software is provided to enable you to debug your programs, 
either under emulation, or on ARM-based hardware.

ARMulator The ARM core emulator. This provides instruction-accurate emulation of 
ARM processors, and enables ARM and Thumb executable programs to 
be run on non-native hardware. The ARMulator is integrated with the 
ARM debuggers.

Angel The ARM debug monitor. Angel runs on target development hardware 
and enables you to develop and debug applications running on 
ARM-based hardware. Angel can debug applications running in either 
ARM state or Thumb state.

See the ADS Debuggers Guide and the ADS Debug Target Guide for more information 
on the supporting software.

The ARM debuggers also support the hardware emulation tools Multi-ICE and 
EmbeddedICE. These products are available separately.



Introduction

ARM DUI 0067B Copyright © 1999,2000 ARM Limited. All rights reserved. 1-5
-

1.2  Supported platforms

This release of the ADS is supported on the following platforms:

• Sun workstations running Solaris 2.5.1 or 2.6

• Hewlett Packard workstations running HP-UX 10.20

• IBM-compatible PCs running Windows 95, Windows 98, or Windows NT 4.

The CodeWarrior IDE is supported on IBM-compatible PCs running Windows 95, 
Windows 98, and Windows NT 4.



Introduction

1-6 Copyright © 1999,2000 ARM Limited. All rights reserved. ARM DUI 0067B
-



ARM DUI 0067B Copyright © 1999,2000 ARM Limited. All rights reserved. 2-1
-

Chapter 2 
C and C++ Compilers

This chapter provides details of the command-line options to the ARM and Thumb, C 
and C++ compilers. Although equivalent functionality is available from Windows 
dialogs, this chapter assumes you are familiar with command-line software 
development tools such as those provided with ADS. For an introduction to 
command-line development, see the ADS Developer Guide.

This chapter contains the following sections:

• About the C and C++ compilers on page 2-2

• File usage on page 2-4

• Command syntax on page 2-8.



C and C++ Compilers

2-2 Copyright © 1999,2000 ARM Limited. All rights reserved. ARM DUI 0067B
-

2.1  About the C and C++ compilers

Wherever possible, the compilers adopt widely used command-line options familiar 
both to users of UNIX and to users of Windows/MS-DOS.

The ARM C and C++ compilers compile ANSI C. 

The ARM C++ compilers expect C++ that conforms to the ISO/IEC 14822 :1998 
International Standard for C++. See Standard C++ implementation definition on 
page 3-30 for a detailed description of ARM C++ language support. 

The ARM C++ compilers can also compile the subset of standard C++ known as 
Embedded C++ (EC++). EC++ is a subset of standard C++ that provides efficient code 
for use in embedded systems. The EC++ amendment to the ISO standard is still 
evolving. The proposed definition can be found on the web at 
http://www.caravan.net/ec2plus.

2.1.1  Compiler variants

All ARM C and C++ compilers accept the same basic command-line options. Unless 
stated otherwise, the text in this chapter applies to all compiler types. Where a specific 
compiler has added features or restrictions, this is noted in the text. Where an option 
applies only to C++, this is also noted in the text.

There are four compiler variants as shown in Table 2-1:

Note

Throughout this chapter, the phrase the ARM compilers refers to armcc, armcpp, tcc, 
and tcpp. 

 Table 2-1 Compiler variants

Compiler name Compiler variant
Source 
language

Compiler output 

armcc C C 32-bit ARM code

tcc C C 16-bit Thumb code

armcpp C++ C or C++ 32-bit ARM code

tcpp C++ C or C++ 16-bit Thumb code



C and C++ Compilers

ARM DUI 0067B Copyright © 1999,2000 ARM Limited. All rights reserved. 2-3
-

2.1.2  Source language modes

The ARM compilers have three distinct source language modes that can be used to 
compile several varieties of C and C++ source code:

ANSI C In ANSI C mode, the ARM compilers have passed release 7.00 of the 
Plum Hall C Validation Suite (CVS). This suite has been adopted by the 
British Standards Institute for C compiler validation in Europe. The 
compiler option -strict was used when running the tests.

EC++ This mode applies only to the ARM C++ compilers. The ARM C++ 
compilers compile the Embedded C++ subset of the ISO/IEC Standard 
C++.

C++ This mode applies only to the ARM C++ compilers. The ARM C++ 
compilers compile ISO/IEC standard C++. The compilers are tested 
against Suite++, The Plum Hall Validation Suite for C++, version 5.00. 
This is the default language mode for the ARM C++ compilers. The 
option -strict was used when running the tests.

For more information on how to use compiler options to set the source mode for the 
compiler, see Setting the source language on page 2-12.

2.1.3  Library support

ADS provides both ANSI C libraries in prebuilt binary form and Rogue Wave C++ 
libraries in prebuilt binary form. See Chapter 4 The C and C++ Libraries for detailed 
information about the libraries.

You can create you own definition of target-dependent functions in order to customize 
the C libraries. Most retargeting is done automatically by setting the compiler options 
for processor architecture and family.



C and C++ Compilers

2-4 Copyright © 1999,2000 ARM Limited. All rights reserved. ARM DUI 0067B
-

2.2  File usage

This section describes naming conventions and included files. 

2.2.1  Naming conventions

The ARM compilers use suffix naming (filename-extension) conventions to identify the 
classes of file involved in compilation and in the linking process. The names used on 
the command line, and as arguments to preprocessor #include directives, map directly 
to host file names under UNIX and Windows/MS-DOS.

The ARM compilers use or generate files with the following file suffixes:

filename.c ARM C compilers recognize the .c suffix as source files.

ARM C++ compilers recognize .c, .cpp, .cp, .c++ and .cc 
suffixes as source files. 

filename.h header file (a convention only, this suffix has no special 
significance for the compiler).

filename.o ARM object file.

filename.s ARM or Thumb assembly language file. (This can be placed in the 
input file list or, with the -S option, produced as an output file.)

filename.lst error and warning list file (the default output extension for -list 
option).

Portability

The ARM compilers support multiple file-naming conventions on all supported hosts. 
To ensure portability between hosts, use the following guidelines: 

• ensure that filenames do not contain spaces. If you have to use pathnames or 
filenames containing spaces, enclose the path and filename in quotes.

• make embedded pathnames relative rather than absolute.

In each host environment, the compilers support:

• native filenames

• pseudo UNIX filenames in the format:

host-volume-name:/rest-of-unix-file-name 

• UNIX filenames using / as a path separator.



C and C++ Compilers

ARM DUI 0067B Copyright © 1999,2000 ARM Limited. All rights reserved. 2-5
-

Filenames are parsed as follows:

• a name starting with host-volume-name:/ is a pseudo UNIX filename

• a name that does not start with host-volume-name:/ and contains / is a UNIX 
filename

• a name that does not contain a / is a host filename.

Filename validity

The compilers do not check that filenames are acceptable to the host file system. If a 
filename is not acceptable, the compiler reports that the file could not be opened, but 
the compiler gives no further diagnosis.

Output files

By default, the output files created by an ARM compiler are stored in the current 
directory. Object files are written in ARM Executable and Linkable Format (ELF). The 
ELF documentation is available in install_directory\Pdf.

2.2.2  Included files

Several factors affect the way the ARM compilers search for #include header files 
and source files. These include:

• the -I and -j compiler options

• the -fk and -fd compiler options

• the value of the environment variable ARMINC

• whether the filename is an absolute filename or a relative filename

• whether the filename is between angle brackets or double quotes.

The in-memory file system

The ARM compilers have the ANSI C library headers built into a special, 
textually-compressed, in-memory file system. By default, the C header files are used 
from this file system for applications built from the command line. The in-memory file 
system can be specified on the command line with -j- or -I-.

The C++ header files that are equivalent to the C library header files are also stored in 
the in-memory file system. The header files specific to C++, such as iostream, are not 
stored in the in-memory file system.



C and C++ Compilers

2-6 Copyright © 1999,2000 ARM Limited. All rights reserved. ARM DUI 0067B
-

Enclosing a filename in angle brackets, #include <stdio.h> for example, indicates 
that the included file is a system file and instructs the compiler to look in the in-memory 
file system first.

Enclosing a filename in double quotes, #include "myfile.h" for example, indicates 
that it is not a system file and instructs the compiler to look in the search path.

The current place

By default, the ARM compilers use Berkeley UNIX search rule, so source files and 
#include header files are searched for relative to the current place. This is the 
directory containing the source or header file currently being processed by the compiler.

When a file is found relative to an element of the search path, the directory containing 
that file becomes the new current place. When the compiler has finished processing that 
file, it restores the previous current place. At each instant there is a stack of current 
places corresponding to the stack of nested #include directives. For example, if the 
current place is install_directory\include and the compiler is seeking the 
include file sys\defs.h, it will locate 
install_directory\include\sys\defs.h if it exists. 

When the compiler begins to process defs.h, the current place becomes 
install_directory\include\sys.

Any file included by defs.h that is not specified with an absolute pathname, is sought 
relative to install_directory\include\sys. 

Only when the compiler has finished processing defs.h will the original current place 
install_directory\include be restored.

You can disable the stacking of current places by using the compiler option -fk. This 
option makes the compiler use the search rule originally described by Kernighan and 
Ritchie in The C Programming Language. Under this rule each non-rooted user 
#include is sought relative to the directory containing the source file that is being 
compiled.

The ARMINC environment variable

You can set the ARMINC environment variable to a comma-separated list of directories 
in order to control searching for included header and source files. For example, from a 
command line, type:

set ARMINC=c:\work\x,c:\work\y



C and C++ Compilers

ARM DUI 0067B Copyright © 1999,2000 ARM Limited. All rights reserved. 2-7
-

When compiling from the command line, directories specified with ARMINC will be 
searched immediately after directories specified by the -I option on the command line 
have been searched. If the -j option is used, ARMINC is ignored.

The search path

Table 2-2 shows how the various command-line options affect the search path used by 
the compiler when it searches for included header and source files. The following 
conventions are used in the table:

:mem The in-memory file system where the ARM compilers store ANSI C and 
some C++ header files. See The in-memory file system on page 2-5 for 
more information.

ARMINC The list of directories specified by the ARMINC environment variable, if 
it is set.

CP The current place. See The current place on page 2-6 for more 
information.

Idir and jdirs 
The directories specified by the -I and -j compiler options.

 Table 2-2 Include file search paths

Compiler option <include> "include"

neither -I or -j :mem and ARMINC CP, ARMINC, and :mem

-j jdirs CP and jdirs

-I :mem,  ARMINC, and  Idirs CP, Idirs, ARMINC, and :mem

both -I and -j Idirs and jdirs  CP, Idirs, and jdirs

-fd No effect Removes CP from the search path, 
so the search is now the same as 
that invoked with angle brackets.

-fk No effect Uses Kernighan and Ritchie search 
rules.



C and C++ Compilers

2-8 Copyright © 1999,2000 ARM Limited. All rights reserved. ARM DUI 0067B
-

2.3  Command syntax

This section describes the command syntax for the ARM C and C++ compilers.

Many aspects of compiler operation can be controlled using command-line options. All 
options are prefixed by a minus – sign, and some options are followed by an argument. 
In most cases the ARM C and C++ compilers allow space between the option letter and 
the argument. 

2.3.1  Invoking the compiler

The command for invoking the ARM compilers is:

compiler [PCS-options] [source-language] [search-paths] 

[preprocessor-options] [output-format] [target-options] 

[debug-options] [code-generation-options] [warning-options] 

[additional-checks] [error-options] [source]

The command-line options can appear in any order. The options are: 

compiler This is one of armcc, tcc, armcpp, or tcpp.

PCS-options This specifies the procedure call standard to use. See Procedure 
Call Standard options on page 2-10 for details.

source-language This specifies the variant of source language that is accepted by 
the compiler. The default is ANSI C for the C compilers and ISO 
Standard C++ for the C++ compilers. See Setting the source 
language on page 2-12 for details.

search-paths This specifies the directories that are searched for included files. 
See Specifying search paths on page 2-13 for details.

preprocessor-options

This specifies preprocessor behavior, including preprocessor 
output and macro definitions. See Setting preprocessor options on 
page 2-14 for details.

output-format This specifies the format for the compiler output. You can use 
these options to generate assembly language output listing files 
and object files. See Specifying output format on page 2-15 for 
details.

target-options This specifies the target processor or architecture. See Specifying 
the target processor or architecture on page 2-17 for details.



C and C++ Compilers

ARM DUI 0067B Copyright © 1999,2000 ARM Limited. All rights reserved. 2-9
-

debug-options This specifies whether or not debug tables are generated, and their 
format. See Generating debug information on page 2-19 for 
details.

code-generation-options

This specifies options such as optimization, endianness, and 
alignment of data produced by the compiler. See Controlling code 
generation on page 2-20 for details.

warning-options This specifies whether specific warning messages are generated. 
See Controlling warning messages on page 2-24 details.

additional-checks

This specifies several further checks that can be applied to your 
code, such as checks for data flow anomalies and unused 
declarations. See Specifying additional checks on page 2-29 for 
details.

error-options This enables you to turn off specific recoverable errors or 
downgrade specific errors to warnings. See Controlling error 
messages on page 2-30 for details.

source This provides the filenames of one or more text files containing C 
or C++ source code. By default, the compiler looks for source 
files, and creates output files, in the current directory.

Reading compiler options from a file

When the operating system restricts the command line length, use the following option 
to read additional command-line options from a file:

-via filename

This opens a file and reads additional command-line options from it. You can nest -via 
calls within via files by including -via filename2 in the file. 

In the following example, the options specified in input.txt are read as the 
command-line is parsed:

armcpp -via input.txt source.c



C and C++ Compilers

2-10 Copyright © 1999,2000 ARM Limited. All rights reserved. ARM DUI 0067B
-

Specifying keyboard input

Use minus – as the source filename to instruct the compiler to take input from the 
keyboard. Input is terminated by entering Ctrl-D on UNIX environments or Ctrl-Z 
on MS Windows environments. 

An assembly listing for the keyboard input is sent to the output stream at the end of each 
function if both of the following are true:

• no output file is specified

• no preprocessor-only option is specified, for example -E.

If an output file is specified with the -o option, an object file is written. If the -E option 
is specified, the preprocessor output is sent to the output stream.

Getting help and version information

Use the -help option to view a summary of the main compiler command-line options.

Use the -vsn option to display the version string for the compiler.

Redirecting errors

Use the -errors filename option to redirect compiler error output to a file. Errors on 
the command line are not redirected. 

2.3.2  Procedure Call Standard options

This section applies to the ARM/Thumb Procedure Call Standard (ATPCS) as used by 
the ARM compilers.

See the ADS Developer Guide for more information on the ARM and Thumb procedure 
call standards. See Controlling code generation on page 2-20 for other build options.

Use the following command-line options to specify the variant of the procedure call 
standard that is to be used by the compiler:

-apcs qualifiers

The following rules apply to the -apcs command-line option:

• at least one qualifier must be present

• there must be no space between qualifiers.

If no -apcs options are specified, the default for all compilers is:

-apcs /noswst/nointer/noropi/norwpi -fpu softVFP



C and C++ Compilers

ARM DUI 0067B Copyright © 1999,2000 ARM Limited. All rights reserved. 2-11
-

The qualifiers are listed below.

Interworking qualifiers

/nointerwork

This option compiles code with no ARM/Thumb interworking support. 
This is the default.

/interwork This option compiles code with ARM/Thumb interworking support. See 
the ADS Developer Guide for more information on ARM/Thumb 
interworking and Chapter 6 The ARM Linker for information on the 
automatically generated interworking veneers.

Position independence qualifiers

/noropi This option does not compile (read-only) position-independent code. 
This is the default. /nopic is an alias for this option.

/ropi This option compiles (read-only) position-independent code. /pic, for 
position independent code, is an alias for this option. If this option is 
selected the compiler:

• addresses read-only code and data pc-relative

• sets the Position Independent (PI) attribute on read-only output 
sections.

Note

The ARM tools cannot determine if the final output image will be 
Read-Only Position Independent (ROPI) until the linker finishes 
processing input sections. This means that the linker might emit ROPI 
error messages, even though you have selected this option.

/norwpi This option does not compile code that addresses read/write data 
position-independently. This is the default. /nopid is an alias for this 
option.

/rwpi This option compiles code that addresses read/write data 
position-independently. /pid, for position independent data, is an alias 
for this option. If this option is selected, the compiler:

• addresses writable data using offsets from the static base register 
sb. This means that:

— data address can be fixed at runtime

— data can be multiply instanced



C and C++ Compilers

2-12 Copyright © 1999,2000 ARM Limited. All rights reserved. ARM DUI 0067B
-

— data can be, but does not have to be, position-independent.

• sets the PI attribute on read/write output sections.

Note

The compiler does not force your read/write data to be 
position-independent. This means that the linker might emit RWPI 
messages, even though you have selected this option.

Stack checking qualifiers

/noswstackcheck

This option does not use the software stack-checking Procedure Call 
Standard (PCS) variant. This is the default.

/swstackcheck

This option uses the software stack-checking PCS variant.

2.3.3  Setting the source language

This section describes options that determine the source language variant accepted by 
the compiler (see also Controlling code generation on page 2-20).

The following options specify how strictly the compiler enforces the standards and 
conventions of that language. By default, the C compilers compile ANSI-C, and the 
C++ compilers compile as much as they can of ISO/IEC C++.

-ansi This option compiles ANSI standard C. This is the default for armcc and 
tcc. The default mode is a fairly strict ANSI compiler, but without some 
of the inconvenient features of the ANSI standard. There are also some 
minor extensions allowed (for example // in comments and $ in 
identifiers).

-ansic This option compiles ANSI standard C. This option is synonymous with 
the -ansi option.

-cpp This option compiles ISO/IEC C++. This option is the default with the 
C++ compilers and not available with the C compilers.

-embeddedcplusplus

This option compiles standard Embedded C++ (EC++). This option is 
not available with the C compilers. 



C and C++ Compilers

ARM DUI 0067B Copyright © 1999,2000 ARM Limited. All rights reserved. 2-13
-

-strict This option enforces more stringent conformance to the ANSI C standard 
and the ISO/IEC C++ standard. For example, the following code:

static struct T {int i; };

gives an error when compiled with -cpp -strict, but only a warning 
with -cpp. Because no object is declared, static is spurious. In the C++ 
standard, the code shown is therefore illegal.

It is possible to combine language options:

armcc -ansi Compiles ANSI standard C. This is the default.

armcc -strict Compiles strict ANSI standard C. 

armcpp Compiles standard C++. 

armcpp -ansi Compiles normal ANSI standard C. (C mode of C++).

armcpp -ansi -strict

Compiles strict ANSI standard C. (C mode of C++).

armcpp -strict Compiles strict C++. 

2.3.4  Specifying search paths

The following options specify the directories that are searched for included files. 

The precise search path will vary according to the combination of options selected and 
whether the include file is enclosed in angle brackets or double quotes. See Included 
files on page 2-5 for full details of how these options work together. 

-Idir-name This option adds the specified directory to the list of places that 
are searched for included files. If more than one directory is 
specified, the directories are searched in the same order as the -I 
options specifying them. 

ARM uses an in-memory file system to speed processing of 
include header files. The in-memory file system is specified by 
-I-.

-fk This option uses Kernighan and Ritchie search rules for locating 
included files. The current place is defined by the original source 
file and is not stacked. See The current place on page 2-6 for more 
information. If you do not use this option, Berkeley-style 
searching is used.



C and C++ Compilers

2-14 Copyright © 1999,2000 ARM Limited. All rights reserved. ARM DUI 0067B
-

-fd This option makes the handling of quoted include files the same 
as angle-bracketed include files. Specifically, the current place is 
excluded from the search path.

-jdir-list This option adds the specified comma-separated list of directories 
to the end of the search path after all the directories specified by 
the -I options. Use -j- to search the in-memory file system.

2.3.5  Setting preprocessor options

The following command-line options control aspects of the preprocessor. (See Pragmas 
on page 3-2 for descriptions of other preprocessor options that can be set by pragmas.)

-E This option executes only the preprocessor phase of the compiler. By 
default, output from the preprocessor is sent to the standard output stream 
and can be redirected to a file using standard UNIX and MS-DOS 
notation. For example: 

compiler-name -E source.c > rawc

You can also use the -o option to specify a file for the preprocessed 
output. If -E is specified without -o, output is sent to the standard output 
stream. By default, comments are stripped from the output. See also the 
-C option.

-C This option retains comments in preprocessor output when used in 
conjunction with -E. This option differs from the -c (lowercase) option 
that suppresses the link step. See Specifying output format on page 2-15 
for a description of the -c option.

-Dsymbol=value

This option defines symbol as a preprocessor macro. This has the same 
effect as the text #define symbol value at the head of the source file. 
This option can be repeated.

-Dsymbol This option defines symbol as a preprocessor macro. This has the same 
effect as the text #define symbol at the head of the source file. This 
option can be repeated. The default value of symbol is 1. 

-M This option executes only the preprocessor phase of the compiler, as with 
-E. This option produces a list of makefile dependency lines suitable for 
use by a make utility. By default, output is on the standard output stream. 
You can redirect output to a file by using standard UNIX and MS-DOS 
notation. For example:

compiler-name -M source.c >> Makefile



C and C++ Compilers

ARM DUI 0067B Copyright © 1999,2000 ARM Limited. All rights reserved. 2-15
-

If the -o filename option is specified, the dependency lines generated 
on standard output refer to filename.o, not to source.o. However, no 
object file is produced with the combination of -M -o filename.

-Usymbol This option undefines symbol. This has the same effect as the text 
#undef symbol at the head of the source file. This option can be 
repeated.

2.3.6  Specifying output format 

By default, source files are compiled and linked into an executable image. 

Use the following options to direct the compiler to create unlinked object files, 
assembly language files, or listing files from C or C++ source files.

-c This option compiles but does not perform the link step. The compiler 
compiles the source program and writes the object files to either the 
current directory or the file specified by the -o option. This option is 
different from the uppercase -C option, described in Setting preprocessor 
options on page 2-14. (The -C option retains comments in preprocessor 
output.)

-list This option creates a listing file consisting of lines of source interleaved 
with error and warning messages. The options -fi, -fj, and -fu can be 
used to control the contents of this file.

Caution
The -list option does not accept a pathname for the output file. You 
must rename previous versions of list files if you do not want to overwrite 
them.

-fi This option is used with -list to list the lines from any files included 
with directives of the form #include "file".

-fj This option is used with -list to list the lines from any files included 
with directives of the form #include <file>.



C and C++ Compilers

2-16 Copyright © 1999,2000 ARM Limited. All rights reserved. ARM DUI 0067B
-

-fu This option is used with -list to list source that was not preprocessed. 

By default, if -list is specified, the compiler lists the source text as seen 
by the compiler after preprocessing. If -fu is specified, the unexpanded 
source text is listed. For example:

p = NULL; /* assume #defined NULL 0 */

If -fu is not specified, this is listed as:

p = 0;

If -fu is specified, it is listed as:

p = NULL;

-o file This option names the file that holds the final output of the compilation:

• if file is -, the output is written to the standard output stream and 
-S is assumed (unless -E is specified).

• used with -c, it names the object file.

• used with -S, it names the assembly language file.

• used with -E, it specifies the output file for preprocessed source.

• if none of -c , -S, or -E is present, it specifies the output file of the 
link step. An executable image called file is created.

If no -o option is specified, the name of the output file defaults to the 
name of the input file with the appropriate filename extension. For 
example, the output from file1.c is named file1.o if the -c option is 
specified, and file1.s if -S is specified. 

-MD This option compiles the source and writes makefile dependency lines to 
file inputfilename.d. The output file is suitable for use by a make 
utility.

-depend filename

This option is the same as -MD, but writes makefile dependency lines to 
the specified file. 

-S This option does not generate object code, but does write a listing of the 
assembly language generated by the compiler to a file. The name of the 
output file defaults to file.s in the current directory, where file.c is 
the name of the source file stripped of any leading directory names. The 
default file name can be overridden with the -o option.



C and C++ Compilers

ARM DUI 0067B Copyright © 1999,2000 ARM Limited. All rights reserved. 2-17
-

Note

You can use armasm to assemble the output file and produce object code. 
You must, however, specify the same ATPCS settings in the assembler as 
were used in the compiler. The software stack check (/swst) default for 
the assembler is not the same as the default for the compiler.

-fs This option, when used with -S, interleaves C, or C++, source code line 
by line as comments within the compiler-generated assembler code.

2.3.7  Specifying the target processor or architecture

The options described in this section specify the target processor or architecture 
attributes for a compilation. The compiler can take advantage of certain extra features 
of the selected processor or architecture, such as support for halfword load and store 
instructions and instruction scheduling. 

Note

Specifying the target processor can make the code incompatible with other ARM 
processors.

The following general points apply to processor and architecture options:

• The supported -cpu values are all current ARM product names or architecture 
versions. There are no aliases or wildcard matching. 

• If you specify an architecture name for the -cpu option, the code is compiled to 
run on any processor supporting that architecture, for example -cpu 4T produces 
code that can be used by either the ARM7TDMI or ARM9TDMI.

• If you specify a processor for the -cpu option, for example -cpu ARM940T, the 
compiled code will be optimized for that processor. This allows the compiler to 
use specific coprocessors or instruction scheduling for optimum performance.

• Use only a single processor or architecture name with -cpu. You cannot specify 
both a processor and an architecture.

• If -cpu is not specified, the default is -cpu ARM7TDMI.

• Specifying a Thumb-aware processor, such as -cpu ARM7TDMI to armcc or 
armcpp does not make these compilers generate Thumb code. It only allows 
features of the processor to be used, such as interworking instructions. Use tcc or 
tcpp to generate Thumb code.

The following options are available: 



C and C++ Compilers

2-18 Copyright © 1999,2000 ARM Limited. All rights reserved. ARM DUI 0067B
-

-cpu name This option compiles code for a specific ARM processor or architecture. 

If name is a processor:

• The name must be entered exactly as it is shown on ARM data 
sheets, for example ARM7TDMI. Wildcard characters are not 
accepted. Valid values are any ARM-supported processor later than 
ARM6.

• The selection of the processor will select the appropriate 
architecture, fpu, and memory organization.

• The -cpu selection implies -fpu. The implied -fpu can be 
overridden by an explicit -fpu option. Where no FPU is 
available, -fpu softvfp is used.

If name is an architecture, it must be one of:

3 ARMv3 without long multiply

3M ARMv3 with long multiply 

4 ARMv4 with long multiply but no Thumb

4xM ARMv4 without long multiply or Thumb

4T ARMv4 with long multiply and Thumb

4TxM ARMv4 without long multiply but with Thumb

5T ARMv5 with long multiply and Thumb.

-fpu name This option selects the target floating-point unit (FPU) architecture, 
where name is one of: 

none Selects no floating-point option. No floating-point code is to 
be used.

VFP Selects hardware Vector Floating Point unit.

FPA Selects hardware Floating Point Accelerator.

softVFP Selects software floating-point library (FPLib) with 
pure-endian doubles.

softFPA Selects software floating-point library with mixed-endian 
doubles.



C and C++ Compilers

ARM DUI 0067B Copyright © 1999,2000 ARM Limited. All rights reserved. 2-19
-

2.3.8  Generating debug information

There are options that enable you to specify whether debug tables are generated for the 
current compilation and, if they are, specify their format. See Pragmas on page 3-2 for 
more information on controlling debug information.

Note

Optimization criteria can limit the debug information generated by the compiler. See 
Defining optimization criteria on page 2-20 for more information.

Debug table generation options

The following options specify how debug tables are generated:

-g [options]

This option switches on the generation of debug tables for the current 
compilation. Debug table options are as specified by -gt. The compiler 
produces the same code whether -g is used or is not used. The only 
difference is the existence of debug tables.

Optimization options for debug code are specified by -O. By default, the 
-g option on its own is equivalent to:

-g -dwarf2 -O0 -gt

Debug data is not generated for inline functions unless -Ono_inline 
is used. 

-g+ This is a synonym for -g. It is generated by graphical configurers (the 
CodeWarrior IDE for example).

-g- This option switches off the generation of debug tables for the current 
compilation. This is the default option.



C and C++ Compilers

2-20 Copyright © 1999,2000 ARM Limited. All rights reserved. ARM DUI 0067B
-

-gt[p] This option, when used with -g, specifies the debug table entries that 
generate source level objects.

Debug tables can be very large, so it is sometimes useful to limit their size 
by restricting what is included:

-gt Generates all available entries. This is the default option.

-gtp Prevents preprocessor macro definitions in debug tables. This 
option is ignored if DWARF1 debug tables are generated, 
because there is then no way to describe macros.

Debug table format options

The following options control the format of the debug table generated when debug table 
generation is turned on with -g+ or -g:

-dwarf2 This option specifies DWARF2 debug table format. This is the default.

-dwarf1 This option specifies DWARF1 debug table format. This option is not 
recommended for C++. Specify -dwarf2 instead of -dwarf1. This 
option will not be supported in the future.

2.3.9  Controlling code generation 

Use the options described in this section to control aspects of the code generated by the 
compiler such as optimization. See Pragmas on page 3-2 for information on additional 
code generation options that are controlled using pragmas.

This section describes: 

• Defining optimization criteria on page 2-20 

• Controlling code and data sections on page 2-22 

• Setting byte order on page 2-22 

• Setting alignment options on page 2-22.

Defining optimization criteria

-Ono_inline

This option disables inlining. Calls to inline functions are not expanded 
inline. This option is not available with -dwarf1.

-Oinline This option expands inline functions instead of placing them in a 
common code section. Inline functions are difficult to debug if this option 
is used. This is the default.



C and C++ Compilers

ARM DUI 0067B Copyright © 1999,2000 ARM Limited. All rights reserved. 2-21
-

-Ospace This option optimizes to reduce image size at the expense of a possible 
increase in execution time. For example, large structure copies are done 
by out-of-line function calls instead of inline code. Use this option if code 
size is more critical than performance. This is the default.

-Otime This option optimizes to reduce execution time at the possible expense of 
a larger image. Use this option if execution time is more critical than code 
size. For example, it compiles:

while (expression) body;

as:

if (expression) {
do body;
while (expression);

}

If neither -Otime or -Ospace is specified, the compiler uses -Ospace. 
You can compile time-critical parts of your code with -Otime, and the 
rest with -Ospace. You should not specify both -Otime and -Ospace 
in the same compiler invocation.

-Onumber This option specifies the level of optimization to be used. The 
optimization levels are:

-O0 Turns off all optimization, except some simple source 
transformations. This is the default optimization level if debug 
tables are generated with -g. It gives the best debug view and 
the lowest level of optimization.

-O1 Turns off the following optimizations:

• structure splitting

• range splitting

• cross jumping

• conditional execution.

If used with -g, this option gives a satisfactory debug view 
with good code density.

-O2 Generates fully optimized code. If used with -g+, the debug 
view might be less satisfactory since the mapping of object 
code to source code is not always clear. This is the default 
optimization level if debug tables are not generated.



C and C++ Compilers

2-22 Copyright © 1999,2000 ARM Limited. All rights reserved. ARM DUI 0067B
-

Optimization options have the following effect on the debug view produced when 
compiling with -g: 

• For all debug table formats, if optimization level 1 or 2 is used, the debugger can 
display misleading values for local variables. If a variable is not live at the point 
where its value is interrogated, its location can be used for some other variable. 
In addition, the compiler replaces some local variables with constant values at 
each place the variable is used.

• For all debug table formats, if optimization level 2 is used, the value of variables 
that have been subject to range splitting or structure splitting cannot be displayed.

See Pragmas on page 3-2 for more information on controlling optimization.

Controlling code and data sections

-zo This option generates one ELF section for each function in source file. 
This option enables the linker to remove unused functions when the 
default -remove linker option is active.

This option increases code size slightly for some functions, but when 
creating code for a library, it can prevent unused functions being included 
at the link stage. This can result in the reduction of the final image size.

Setting byte order

-littleend This option compiles code for an ARM processor using 
little-endian memory. With little-endian memory, the least 
significant byte of a word has lowest address. This is the default.

-bigend This option compiles code for an ARM processor using 
big-endian memory. With big-endian memory, the most 
significant byte of a word has lowest address.

Setting alignment options

-zasNumber This option specifies the minimum byte alignment for structures. 
Allowed values for Number are:

1, 2, 4, 8

The default is 1. This option is deprecated and will not be 
supported in future versions of the product.



C and C++ Compilers

ARM DUI 0067B Copyright © 1999,2000 ARM Limited. All rights reserved. 2-23
-

-memaccess option

This option indicates to the compiler that the memory in the target 
system has slightly restricted or expanded capabilities. By default, 
ARM compilers assume that the memory system can load and 
store words at 4-byte alignment, halfwords at 2-byte alignment, 
and bytes. Load and store capability can be indicated by 
specifiying option:

+L41 The memory can return the aligned word containing the 
addressed byte. This is useful only with architecture v3 
processors that lack load halfword.

-S22 The memory cannot store halfwords. This can be used 
to suppress the generation of STRH instructions when 
generating ARM code for architecture v4 (and later) 
processors.

-L22 The memory cannot load halfwords. This can be used 
to suppress the generation of LDRH instructions when 
generating ARM code for architecture v4 (and later) 
processors.

Note

Do not use -L22 or -S22 when producing Thumb code.

It is possible that the processor has memory access modes 
available that the physical memory lacks (load aligned halfword 
for example).

It is also possible that the physical memory has access modes that 
the processor cannot use (architecture v3 load aligned halfword 
for example).

Controlling implementation details

-fy This option forces all enumerations to be stored in integers. This option 
is switched off by default and the smallest data type is used that can hold 
the values of all enumerators.

Note

This option is not recommended for general use and is not required for 
ANSI-compatible source.



C and C++ Compilers

2-24 Copyright © 1999,2000 ARM Limited. All rights reserved. ARM DUI 0067B
-

-zc  This option makes the char type to be signed. It is normally unsigned in 
C++ and ANSI C modes. 

Note

This option is not recommended for general use and is not required for 
ANSI-compatible source. If used incorrectly, this option can cause errors 
in the resulting image.

The sign of char is set by the last option specified that would normally 
affect it. For example, if you specify both -ansic and -zc options, and 
you want to make char signed, you must specify the -zc option after the 
-ansic option.

2.3.10  Controlling warning messages

The compiler issues warnings about potential portability problems and other hazards. 
The compiler options allow you to turn off specific warnings. For example, you can turn 
off warnings if you are in the early stages of porting a program written in old-style C. 
In general, it is better to check the code than to switch off warnings. 

The options are on by default, unless specified otherwise. 

See also Specifying additional checks on page 2-29 for descriptions of additional 
warning messages. 

The general form of the -W compiler option is:

-W[options][+][options]

where the options field contains zero or more characters.

If the + character is included in the characters following the -W, the warnings 
corresponding to any following letters are enabled rather than suppressed.

You can specify several options at the same time. For example:

-Wad+fg

turns off the warning messages specified by a and d, and turns on the warning messages 
specified by f and g.



C and C++ Compilers

ARM DUI 0067B Copyright © 1999,2000 ARM Limited. All rights reserved. 2-25
-

The warning message options are as follows:

-W This option suppresses all warnings. If one or more letters follow the 
option, only the warnings controlled by those letters are suppressed.

-Wa This option suppresses the warning:

Use of the assignment operator in a condition context 

This warning is normally given when the compiler finds a statement such 
as:

if (a = b) {...

where it is possible that one of the following was intended: 

if ((a = b) != 0) {... 

if (a == b) {...

-Wb This option suppresses the warning messages that are issued for 
extensions to the ANSI standard. Examples include:

• using an unwidened type in an ANSI C assignment

• specifying bitfields with a type of char, short, long, or 
long long

• specifying char, short, float, or enum arguments to variadic 
functions such as va_start().

-Wd This option suppresses the warning message:

Deprecated declaration foo() - give arg types

This warning is normally given when a declaration without argument 
types is encountered in ANSI C mode. 

In ANSI C, declarations like this are deprecated. However, it is 
sometimes useful to suppress this warning when porting old code.

In C++, void foo(); means void foo(void); and no warning is 
generated.

-We This option suppresses warnings about pointer casts in static int 
initializations.

-Wf This option suppresses the message:

Inventing extern int foo()

This is an error in C++ and cannot be suppressed. It is a warning in ANSI 
C and suppressing this message can be useful when compiling old-style 
C in ANSI C mode. 



C and C++ Compilers

2-26 Copyright © 1999,2000 ARM Limited. All rights reserved. ARM DUI 0067B
-

-Wg This option suppresses the warning given when an unguarded header file 
is #included. This warning is off by default. It can be enabled with 
-W+g. An unguarded header file is a header file not wrapped in a 
declaration such as:

#ifndef foo_h
#define foo_h
/* body of include file */
#endif

-Wi This option suppresses the implicit constructor warning (C++ only). It is 
issued when the code requires a constructor to be invoked implicitly. For 
example:

struct X { X(int); };
X x = 10; // actually means, X x = X(10);

// See the Annotated C++ 
// Reference Manual p.272

This warning is switched off by default. It can be enabled with -W+i.

-Wl This option gives the warning message: 

Lower precision in wider context 

when code like the following is found: 

long x; int y, z; x = y*z

where the multiplication yields an int result that is then widened to 
long. This warning indicates a potential problem when either the 
destination is long long or where the code has been ported to a system 
that uses 16-bit integers or 64-bit longs. This option is off by default. It 
can be enabled with -W+l.

-Wm This option suppresses warnings about multiple-character char constants.

-Wn This option suppresses the warning message:

Implicit narrowing cast

This warning is issued when the compiler detects the implicit narrowing 
of a long expression in an int or char context, or detects the implicit 
narrowing of a floating-point expression in an integer or narrower 
floating-point context.

Such implicit narrowing casts are almost always a source of problems 
when moving code that has been developed on a fully 32-bit system to a 
system where int occupies 16 bits and long occupies 32 bits. The -Wn 
option is suppressed by default.



C and C++ Compilers

ARM DUI 0067B Copyright © 1999,2000 ARM Limited. All rights reserved. 2-27
-

-Wo This option suppresses warnings for implicit conversion to signed long 
long constants.

-Wp This option suppresses the warning message:

non-ANSI #include <…>

The ANSI C standard requires that you use #include <…> for ANSI C 
headers only. However, it is useful to disable this warning when 
compiling code not conforming to this aspect of the standard. This option 
is suppressed by default unless the -strict option is specified.

-Wq This option suppresses warnings in C++ constructor initialization order.

-Wr This option suppresses the implicit virtual warning (C++ only) issued 
when a non-virtual member function of a derived class hides a virtual 
member of a parent class. For example:

struct Base { virtual void f(); };
struct Derived : Base { void f(); };
// warning 'implicit virtual'

Adding the virtual keyword in the derived class prevents the warning.

-Ws This option suppresses warnings when the compiler inserts padding in a 
struct. This warning is off by default. It can be enabled with -W+s.

-Wt This option suppresses the unused this warning. This warning is issued 
when the implicit this argument is not used in a non-static member 
function. It is applicable to C++ only. The warning can also be avoided 
by making the member function a static member function. The default is 
off.

-Wu For C code, -Wu suppresses warnings about future compatibility with C++. 
Warnings are suppressed by default. They can be enabled with -W+u.

-Wv This option suppresses the warning message:

Implicit return in non-void context

This is usually caused by a return from a function that was assumed to 
return int, because no other type was specified, but is being used as a 
void function. This is widespread in old-style C mode. Such action will 
always result in an error in C++.

-Wx This option suppresses unused declaration warnings such as:

C2870W: variable 'y' declared but not used

By default, unused declaration warnings are given for:



C and C++ Compilers

2-28 Copyright © 1999,2000 ARM Limited. All rights reserved. ARM DUI 0067B
-

• Local (within a function) declarations of variables, typedefs, and 
functions

• Labels (always within a function)

• Top-level static functions and static variables.

-Wy This option turns off warnings about deprecated features.



C and C++ Compilers

ARM DUI 0067B Copyright © 1999,2000 ARM Limited. All rights reserved. 2-29
-

2.3.11  Specifying additional checks

The options described below give you control over the extent and rigor of the checks. 
Additional checking is an aid to portability and is good coding practice.

-fa This option checks for certain types of data flow anomalies. The compiler 
performs data flow analysis as part of code generation. The checks 
indicate when an automatic variable might have been used before being 
assigned a value. The check is pessimistic and will sometimes report an 
anomaly where there is none. In general, it is useful at some stage to 
check all code using -fa.

-fh This option checks that:

• all external objects are declared before use

• all file-scoped static objects are used

• all predeclarations of static functions are used between their 
declaration and their definition. For example:

static int f(void);
static int f(void){return 1;}
line 2: Warning: unused earlier static 
declaration of ’f’

If external objects are declared only in included header files and are never 
inline in a source file, these checks directly support good modular 
programming practices.

When writing production software, use the -fh option only in the later 
stages of program development. The extra diagnostics can be annoying 
in the earlier stages.

-fp This option reports on explicit casts of integers to pointers, for example: 

char *cp = (char *) anInteger;

This warning indicates potential portability problems. Casting explicitly 
between pointers and integers, although not clean, is not harmful on the 
ARM processor where both are 32-bit types. This option also causes casts 
to the same type to produce a warning. For example:

int f(int i) {return (int)i;} 
// Warning: explicit cast to same type.



C and C++ Compilers

2-30 Copyright © 1999,2000 ARM Limited. All rights reserved. ARM DUI 0067B
-

-fv This option reports on all unused declarations (including from standard 
headers).

-fx This option enables all warnings normally suppressed by default.

2.3.12  Controlling error messages

The compiler issues errors to indicate serious problems in the code it is attempting to 
compile. The compiler options described below allow you to: 

• turn off specific recoverable errors

• downgrade specific errors to warnings.

Caution
These options force the compiler to accept C and C++ source that would normally 
produce errors. If you use any of these options to ignore error messages, it means that 
your source code does not conform to the appropriate C or C++ standard. 

These options can be useful during development, or when importing code from other 
environments. However, they might allow code to be produced that does not function 
correctly. It is generally better to correct the code than to use options to switch off error 
messages.

The general form of the -E compiler option is:

-E[options][+][options]

where options is a set of one or more of the letters a, c, f, i, l, p, or z as described 
below.

If the + character is included in the characters following the -E, the errors corresponding 
to any following letters are enabled rather than suppressed.

Note

The -E option on its own without any options is the preprocessor switch. See Setting 
preprocessor options on page 2-14.

You can specify multiple options. For example:

-Eac

turns off the error messages specified by a and c.



C and C++ Compilers

ARM DUI 0067B Copyright © 1999,2000 ARM Limited. All rights reserved. 2-31
-

The following options are on by default:

-Ea For C++ only, this option downgrades access control errors to warnings. 
For example:

class A { void f() {}; }; // private member
A a;
void g() { a.f(); } // erroneous access

-Ec This option suppresses all implicit cast errors, such as implicit casts of a 
non-zero int to pointer.

-Ef This option suppresses errors for unclean casts, such as short to 
pointer.

-Ei For C++ only, this option downgrades from error to warning the use of 
implicit int in constructs such as:

const i;
Error: declaration lacks type/storage-class (assuming 
’int’): ’i’

-El This option suppresses errors about linkage disagreements where 
functions are implicitly declared as extern and then later redeclared as 
static. 

-Ep This option suppresses errors arising as the result of extra characters at 
the end of a preprocessor line.

-Ez This option suppresses the errors caused by zero-length arrays.



C and C++ Compilers

2-32 Copyright © 1999,2000 ARM Limited. All rights reserved. ARM DUI 0067B
-



ARM DUI 0067B Copyright © 1999,2000 ARM Limited. All rights reserved. 3-1
-

Chapter 3 
ARM Compiler Reference

This chapter contains reference information for the ARM compilers. It contains the 
following sections:

• Compiler-specific features on page 3-2

• Standard C implementation definition on page 3-11

• Standard C++ implementation definition on page 3-30

• C and C++ language extensions on page 3-33

• Predefined macros on page 3-38

• Implementation limits on page 3-41

• Limits for integral numbers on page 3-44

• Limits for floating-point numbers on page 3-45.



ARM Compiler Reference

3-2 Copyright © 1999,2000 ARM Limited. All rights reserved. ARM DUI 0067B
-

3.1  Compiler-specific features

This section describes the ARM-specific aspects of the ARM C and C++ compilers, 
including:

• pragmas

• function declaration keywords

• variable declaration keywords

• type qualifiers.

Note

Features described here are outside the ANSI specification and might not easily port to 
other compilers.

3.1.1  Pragmas

Pragmas of the following form are recognized by the ARM compiler:

#pragma [no_]feature-name

Pragmas are listed in Table 3-1. The following sections describe these pragmas in more 
detail.

 Table 3-1 Pragmas recognized by the ARM compilers

Pragma name Default Reference

check_printf_formats Off Pragmas controlling printf/scanf argument checking on 
page 3-3

check_scanf_formats Off Pragmas controlling printf/scanf argument checking on 
page 3-3

check_stack On Pragmas controlling code generation on page 3-4

debug On Pragmas controlling debugging on page 3-3

Ospace – Pragmas controlling optimization on page 3-3

Otime – Pragmas controlling optimization on page 3-3

On – Pragmas controlling optimization on page 3-3

softfp_linkage Off Pragmas controlling code generation on page 3-4



ARM Compiler Reference

ARM DUI 0067B Copyright © 1999,2000 ARM Limited. All rights reserved. 3-3
-

Pragmas controlling printf/scanf argument checking

The following pragmas control type checking of printf-like and scanf-like arguments.

check_printf_formats 
This pragma marks printf-like functions for type checking against a 
literal format string, if it exists. If the format is not a literal string, no type 
checking is done. The format string must be the last fixed argument. For 
example:

#pragma check_printf_formats
extern void myprintf(const char * format,...);
                    //printf format
#pragma no_check_printf_formats

check_scanf_formats 
This pragma marks a function declared as a scanf-like function, so that 
the arguments are type checked against the literal format string. If the 
format is not a literal string, no type checking is done. The format string 
must be the last fixed argument. For example:

#pragma check_scanf_formats
extern void myformat(const char * format,...);
                    //scanf format
#pragma no_check_scanf_formats

Pragmas controlling debugging

The following pragma controls aspects of debug table generation:

debug This pragma turns debug table generation on or off. 

If #pragma no_debug is specified, no debug table entries are generated 
for subsequent declarations and functions until the next #pragma 
debug. 

Pragmas controlling optimization

The following pragmas control aspects of optimization:

Ospace This pragma optimizes for space (capital letter O). 

Otime This pragma optimizes for time. 

Onum This pragma changes optimization level. The value of num is 0, 1, or 2.



ARM Compiler Reference

3-4 Copyright © 1999,2000 ARM Limited. All rights reserved. ARM DUI 0067B
-

Pragmas controlling code generation

The following pragmas control how code is generated. Many other code generation 
options are available from the compiler command line.

check_stack 
This pragma reenables the generation of function entry code that checks 
for stack limit violation if the -noswst (default) command-line option is 
used. 

softfp_linkage 
This pragma asserts that all function declarations up to the next #pragma 
no_softfp_linkage describe functions that use software 
floating-point linkage. The __softfp keyword has the same effect and 
should be used instead (see Function declaration keywords on page 3-4). 
The pragma form can be useful when applied to an entire interface 
specification (header file) without altering that file.

3.1.2  Function declaration keywords

Several function declaration keywords tell the compiler to give a function special 
treatment. These are all ARM extensions to the ANSI C specification.

__asm This instructs the compiler that the following code is written in assembler 
language (see Inline assembler on page 3-35).

__inline This instructs the compiler to compile C functions inline. The semantics 
of __inline are exactly the same as those of the C++ inline keyword:

__inline int f(int x) {return x*5+1;}
int f(int x, int y) {return f(x) + f(y);}

The compiler compiles functions inline when __inline is used and the 
functions are not too large. Large functions are not compiled inline 
because they can adversely affect code density and performance.

__irq This enables a C or C++ function to be used as an interrupt routine called 
via the IRQ or FIQ vectors. All corrupted registers (not just those 
normally preserved under the ATPCS) except floating-point registers, are 
preserved. The default ATPCS mode must be used. The function exits by 
setting the pc to lr–4 and the CPSR to the value in SPSR. It is not 
available in tcc or tcpp. No arguments or return values can be used with 
__irq functions. 

Refer to Handling Processor Exceptions in the ADS Developer Guide for 
detailed information on using __irq.



ARM Compiler Reference

ARM DUI 0067B Copyright © 1999,2000 ARM Limited. All rights reserved. 3-5
-

__pure This asserts that a function declaration is pure. Functions that are pure are 
candidates for common subexpression elimination. By default, functions 
are assumed to be impure (causing side-effects). A function is properly 
defined as pure only if:

• its result depends exclusively on the values of its arguments

• it has no side effects, for example it cannot call impure functions.

So, a pure function cannot use global variables or dereference pointers, 
because the compiler assumes that the function does not access memory 
(except stack memory) at all. When called twice with the same 
parameters, a pure function must return the same value each time.

__softfp This asserts that a function uses software floating-point linkage. Calls to 
the function pass floating-point arguments in integer registers. If the 
result is floating-point, the value to be returned in an integer register. This 
duplicates the behavior of compilation targeting software floating-point.

This keyword allows an identical library to be used by sources compiled 
to use hardware and software floating-point.

__swi This declares a SWI function taking up to four integer-like arguments and 
returning up to four results in a value_in_regs structure. This causes 
function invocations to be compiled inline as an ATPCS compliant SWI 
that behaves similarly to a normal call to a function.

For a SWI returning no results, use:

void __swi(swi_num) swi_name(int arg1,…, int argn);

For example: 

void __swi(42) terminate_proc(int procnum);

For a SWI returning one result, use:

int __swi(swi_num) swi_name(int arg1,…, int argn);

For a SWI returning more than 1 result use:

typedef struct res_type { int res1,…,resn;} res_type;
res_type __value_in_regs __swi(swi_num) swi_name(
           int arg1,…,int argn);

The __value_in_regs qualifier is used to specify that a small structure 
of up to four words (16 bytes) is returned in registers, rather than by the 
usual structure-passing mechanism defined in the ATPCS.

Refer to Handling Processor Exceptions in the ADS Developer Guide for 
detailed information.



ARM Compiler Reference

3-6 Copyright © 1999,2000 ARM Limited. All rights reserved. ARM DUI 0067B
-

__swi_indirect 
This passes an operation code to the SWI handler in r12: 

int __swi_indirect(swi_num) 
            swi_name(int real_num, 
            int arg1, … argn);

where: 

swi_num Is the SWI number used in the SWI instruction.

real_num Is the value passed in r12 to the SWI handler. This 
feature can be used to implement indirect SWIs. 
The SWI handler can use r12 to determine the 
function to perform.

For example:

int __swi_indirect(0) ioctl(int swino, int fn, 
                            void *argp);

This SWI can be called as follows:

ioctl(IOCTL+4, RESET, NULL);

It compiles to a SWI 0 with IOCTL+4 in r12.

To use the indirect SWI mechanism, your system SWI handlers must 
make use of the r12 value to select the required operation.

__value_in_regs 
This instructs the compiler to return a structure of up to four integer 
words in integer registers or up to four floats or doubles in floating-point 
registers rather than using memory, for example:

typedef struct int64_struct {
    unsigned int lo;
    unsigned int hi;
} int64_struct;

__value_in_regs extern 
    int64_struct mul64(unsigned a, unsigned b);

Declaring a function __value_in_regs can be useful when calling 
assembler functions that return more than one result. See the ADS 
Debuggers Guide for information on the default method of passing and 
returning structures.

Note

A C++ function cannot return a __value_in_regs structure if the 
structure requires copy constructing.



ARM Compiler Reference

ARM DUI 0067B Copyright © 1999,2000 ARM Limited. All rights reserved. 3-7
-

__weak This specifies an extern function or object declaration that, if not 
present, does not cause the linker to fault an unresolved reference. The 
linker will not load the function or object from a library unless another 
compilation uses the function or object non-weakly. If the reference 
remains unresolved, its value is assumed to be NULL.

If the reference is made from code that compiles to a Branch or 
Branch-Link instruction, the reference is resolved as branching to the 
next instruction. This effectively makes the branch a no-op.

__weak void f(void);
...
f(); // call f weakly 

A function or object cannot be used both weakly and non-weakly. For 
example the following code uses f() weakly from g() and h().

void f(void);
void g() {f();}
__weak void f(void);
void h() {f();}

It is not possible to use a function or object weakly from the same 
compilation that defines the function or object. The code below uses f() 
non-weakly from h().

__weak void f(void);
void h() {f();}
void f() {}

3.1.3  Variable declaration keywords

This section describes the implementation of ARM-specific variable declaration 
keywords. 

Standard keywords

Standard C keywords are described in Standard C implementation definition on 
page 3-11. For examples, see:

• Qualifiers on page 3-26 for information on qualifiers such as volatile and 
__packed

• Registers on page 3-19 for information on the standard keyword register.



ARM Compiler Reference

3-8 Copyright © 1999,2000 ARM Limited. All rights reserved. ARM DUI 0067B
-

ARM-specific keywords

The keywords in this section are used to declare or modify variable definitions:

__int64 This is an alternative name for type long long. This is accepted even 
when using -strict

__global_reg(vreg) 
This allocates the declared variable to a global integer register variable. 
vreg is an ATPCS callee-save register (v1) and not a real register number 
(r1). Global register variables cannot be qualified or initialized at 
declaration. Valid types are:

• any integer type, except long long

• any pointer type.

For example, to declare a global integer register variable allocated to r5 (the ATPCS 
register v2), use the following: 

__global_reg(2) int x;

The global register must be specified in all declarations of the same variable. For 
example, the following is an error:

int x;
__global_reg(1) int x; // error

Also, __global_reg variables in C cannot be initialized at definition. For example, 
the following is an error in C, though not in C++:

__global_reg(1) int x=1; // error in C

Depending on the ATPCS variant used, between five and seven integer registers, and 
four floating-point registers are available for use as global register variables. In practice, 
using more than three global integer register variables in ARM code, or one global 
integer register variable in Thumb code, or more than two global floating-point register 
variables is not recommended.

Unlike register variables declared with the standard register keyword, the compiler 
will not move global register variables to memory as required. If you declare too many 
global variables, code size will increase significantly. In some cases, your program 
might not compile.



ARM Compiler Reference

ARM DUI 0067B Copyright © 1999,2000 ARM Limited. All rights reserved. 3-9
-

Caution
Exercise care when using global register variables due to the following:

• There is no check at link time to ensure that direct calls between different 
compilation units are sensible. If possible, any global register variables used in a 
program should be defined in each compilation unit of the program. In general, it 
is best to place the definition in a global header file. Your code must set up the 
value in the global register early in your code before the register is used.

• A global register variable maps to a callee-saved register, so its value is saved and 
restored across a call to a function in a compilation unit that does not use it as a 
global register variable, such as a library function.

• Calls back into a compilation unit that uses a global register variable are 
dangerous. For example, if a global register using function is called from a 
compilation unit that does not declare the global register variable, the function 
will read the wrong values from its supposed global register variables.

Qualifiers

See Qualifiers on page 3-26 for information on the __packed and volatile 
qualifiers.



ARM Compiler Reference

3-10 Copyright © 1999,2000 ARM Limited. All rights reserved. ARM DUI 0067B
-

3.1.4  Size and alignment of basic data types

Table 3-2 gives the size and natural alignment of the basic data types. Type alignment 
varies according to the context. (See Structures, unions, enumerations, and bitfields on 
page 3-20.)

• Local variables usually kept in registers, but when local variables are spilled onto 
the stack, they are always word-aligned. For example, a spilled local char 
variable has an alignment of 4.

• The natural alignment of a packed type is 1.

 Table 3-2 Size and alignment of data types

Type
Size
in bits

Natural alignment

char 8 1 (byte aligned)

short 16 2 (halfword aligned)

int 32 4 (word aligned)

long 32 4 (word aligned)

long long 64 4 (word aligned)

float 32 4 (word aligned)

double 64 4 (word aligned)

long double 64 4 (word aligned)

all pointers 32 4 (word aligned)

bool (C++ only) 32 4 (word aligned)



ARM Compiler Reference

ARM DUI 0067B Copyright © 1999,2000 ARM Limited. All rights reserved. 3-11
-

3.2  Standard C implementation definition 

Appendix G of the ISO C standard (IS/IEC 9899:1990 (E)) collates information about 
portability issues. Subclause G3 lists the behavior that each implementation must 
document.

The following subsections correspond to the relevant sections of subclause G3. They 
describe aspects of the ARM C compiler and ANSI C library, not defined by the ISO C 
standard, that are implementation-defined:

• Nonconformance with ANSI on page 3-11

• Translation on page 3-12

• Environment on page 3-12

• Identifiers on page 3-14

• Characters on page 3-15

• Integers on page 3-17

• Floating-point on page 3-18

• Arrays and pointers on page 3-19

• Registers on page 3-19

• Structures, unions, enumerations, and bitfields on page 3-20

• Qualifiers on page 3-26

• Declarators on page 3-28

• Statements on page 3-28

• Preprocessing directives on page 3-29

• Library functions on page 3-29.

Note

This section does not duplicate information that is part of the compiler-specific 
implementations. See Compiler-specific features on page 3-2. This section provides 
references where applicable.

3.2.1  Nonconformance with ANSI

The compiler behavior differs from the behavior described in the language conformance 
sections of the C standard in that there is no support for the wctype.h and wchar.h 
headers.



ARM Compiler Reference

3-12 Copyright © 1999,2000 ARM Limited. All rights reserved. ARM DUI 0067B
-

3.2.2  Translation

Diagnostic messages produced by the compiler are of the form:

source-file, line-number: severity: error-code: explanation

where severity is one of:

Warning This is a helpful message from the compiler relating to a minor violation 
of the ANSI specification.

Error This is a violation of the ANSI specification but the compiler is able to 
recover by guessing the intention.

Serious error

This is a violation of the ANSI specification and no recovery is possible 
because the intention is not clear.

Fatal error

This is an indication that the compiler limits have been exceeded, or that 
the compiler has detected an internal fault (for example, not enough 
memory).

error-code is a number identifying the error type.

explanation is a text description of the error.

3.2.3  Environment 

The mapping of a command line from the ARM-based environment into arguments to 
main() is implementation-specific. The generic ARM C library supports the 
following:

• main()

• Interactive device on page 3-13

• Standard input, output and error streams on page 3-13.

main()

The arguments given to main() are the words of the command line (not including 
input/output redirections), delimited by white space, except where the white space is 
contained in double quotes. 



ARM Compiler Reference

ARM DUI 0067B Copyright © 1999,2000 ARM Limited. All rights reserved. 3-13
-

Note

A whitespace character is any character where the result of isspace() is true.

A double quote or backslash character \ inside double quotes must be preceded by a 
backslash character.

An input/output redirection will not be recognized inside double quotes.

Interactive device

In an unhosted implementation of the ARM C library, the term interactive device might 
be meaningless. The generic ARM C library supports a pair of devices, both called :tt, 
intended to handle keyboard input and VDU screen output. In the generic 
implementation:

• No buffering is done on any stream connected to :tt unless input/output 
redirection has occurred.

• If input/output redirection other than to :tt has occurred, full file buffering is 
used (except that line buffering is used if both stdout and stderr were 
redirected to the same file).

Standard input, output and error streams

Using the generic ARM C library, the standard input (stdin), output (stdout) and 
error streams (stderr) can be redirected at runtime. For example, if mycopy is a 
program, running on a host debugger, that simply copies the standard input to the 
standard output, the following line runs the program: 

mycopy < infile > outfile 2> errfile

and redirects the files as follows:

stdin The file is redirected to infile

stdout The file is redirected to outfile

stderr The file is redirected to errfile.

The permitted redirections are:

0< filename This reads stdin from filename

< filename This reads stdin from filename



ARM Compiler Reference

3-14 Copyright © 1999,2000 ARM Limited. All rights reserved. ARM DUI 0067B
-

1> filename This writes stdout to filename

> filename This writes stdout to filename

2> filename This writes stderr to filename

2>&1 This writes stderr to the same place as stdout

>& filename This writes both stdout and stderr to filename

>> filename This appends stdout to filename

>>& filename This appends both stdout and stderr to filename

File redirection is done only if either: 

• the invoking operating system supports it

• the program reads and writes characters and has not replaced the C library 
functions fputc() and fgetc().

3.2.4  Identifiers

The following points apply to the identifiers expected by the compilers:

• An identifier can be any length. The compiler truncates an identifier after 256 
characters — all 256 characters are significant.

• Uppercase and lowercase characters are distinct in all internal and external 
identifiers. An identifier can also contain a dollar ($) character unless the 
-strict compiler option is specified.



ARM Compiler Reference

ARM DUI 0067B Copyright © 1999,2000 ARM Limited. All rights reserved. 3-15
-

3.2.5  Characters

The following points apply to the character sets and identifiers expected by the 
compilers:

• Uppercase and lowercase characters are distinct in all internal and external 
identifiers. An identifier can also contain a dollar ($) character unless the 
-strict compiler option is specified.

• Calling setlocale(LC_CTYPE, "ISO8859-1") makes the isupper() and 
islower() functions behave as expected over the full 8-bit Latin-1 alphabet, 
rather than over the 7-bit ASCII subset. The locale must be selected at link-time. 
(See Tailoring locale and CTYPE on page 4-24). 

• The characters in the source character set are assumed to be ISO 8859-1 (Latin-1 
Alphabet), a superset of the ASCII character set. The printable characters are 
those in the range 32 to 126 and 160 to 255. Any printable character can appear 
in a string or character constant, and in a comment.

• The ARM compilers do not support multibyte character sets, for example 
Unicode.

• Other properties of the source character set are host-specific.

The properties of the execution character set are target-specific. The ARM C and C++ 
libraries support the ISO 8859-1 (Latin-1 Alphabet) character set with the following 
consequences:

• The execution character set is identical to the source character set. 

• There are eight bits in a character in the execution character set.

• There are four characters (bytes) in an int. If the memory system is:

little-endian The bytes are ordered from least significant at the lowest 
address to most significant at the highest address

big-endian The bytes are ordered from least significant at the highest 
address to most significant at the lowest address.

• In C all character constants have type int. In C++ a character constant containing 
one character has the type char and a character constant containing more than 
one character has the type int. Up to four characters of the constant are 
represented in the integer value. The last character in the constant occupies the 
lowest-order byte of the integer value. Up to three preceding characters are placed 
at higher-order bytes. Unused bytes are filled with the NULL (\0) character.



ARM Compiler Reference

3-16 Copyright © 1999,2000 ARM Limited. All rights reserved. ARM DUI 0067B
-

• All integer character constants that contain a single character, or character escape 
sequence (see Table 3-3 on page 3-16), are represented in both the source and 
execution character sets.

• Characters of the source character set in string literals and character constants 
map identically into the execution character set.

• Data items of type char are unsigned by default. They can be explicitly declared 
as signed char or unsigned char. The -zc option can be used to make the 
char signed.

• No locale is used to convert multibyte characters into the corresponding wide 
characters (codes) for a wide character constant. This is not relevant to the generic 
implementation.

 Table 3-3 Character escape codes

Escape
sequence

Char
value

Description

\a  7 attention (bell)

\b  8 backspace

\t  9 horizontal tab

\n 10 new line (line feed)

\v 11 vertical tab

\f 12 form feed

\r 13 carriage return

\xnn 0xnn ASCII code in hexadecimal

\nnn 0nnn ASCII code in octal



ARM Compiler Reference

ARM DUI 0067B Copyright © 1999,2000 ARM Limited. All rights reserved. 3-17
-

3.2.6  Integers

Integers are represented in two’s complement form. The low word of a long long is 
at the low address in little-endian mode, and at the high address in big-endian mode.

Operations on integral types

The following statements apply to operations on the integral types:

• All signed integer arithmetic uses a two's complement representation. 

• Bitwise operations on signed integral types follow the rules that arise naturally 
from two's complement representation. No sign extension takes place.

• Right shifts on signed quantities are arithmetic.

• Any quantity that specifies the amount of a shift is treated as an unsigned 8-bit 
value.

• Any value to be shifted is treated as a 32-bit value.

• Left shifts of more than 31 give a result of zero.

• Right shifts of more than 31 give a result of zero from a shift of an unsigned value 
or positive signed value. They yield –1 from a shift of a negative signed value.

• The remainder on integer division has the same sign as the divisor.

• If a value of integral type is truncated to a shorter signed integral type, the result 
is obtained by discarding an appropriate number of most significant bits. If the 
original number was too large, positive or negative, for the new type, there is no 
guarantee that the sign of the result will be the same as the original.

• A conversion between integral types does not raise an exception.

• Integer overflow does not raise an exception.

• Integer division by zero raises a SIGFPE exception.



ARM Compiler Reference

3-18 Copyright © 1999,2000 ARM Limited. All rights reserved. ARM DUI 0067B
-

3.2.7  Floating-point

Floating-point quantities are stored in IEEE format:

• float values are represented by IEEE single-precision values

• double and long double values are represented by IEEE double-precision 
values.

If softvfp or vfp is selected, double and long double quantities, the word 
containing the sign, the exponent, and the most significant part of the mantissa is stored 
with the lower machine address in big-endian mode and at the higher address in 
little-endian mode. Refer to Operations on floating-point types on page 3-18 for more 
information.

ARM implements an ANSI extension for floating-point constants (see Hexadecimal 
floating-point constants on page 3-36).

Operations on floating-point types

The following statements apply to operations on floating-point types:

• normal IEEE 754 rules apply

• rounding is to the nearest representable value by default

• conversion from a floating-point type to an integral type causes a floating-point 
exception to be raised only if the value cannot be represented in the destination 
type (int or long long)

• floating-point underflow is disabled by default

• floating-point overflow raises a SIGFPE exception by default

• floating-point divide by zero raises a SIGFPE exception by default.

Caution
The IEEE 754 standard for floating-point processing states that the default action to an 
exception is to proceed without a trap. You can modify fp error handling by tailoring 
the functions and definitions in fenv.h. See Tailoring error signalling, error handling, 
and program exit on page 4-47 and the chapter on floating-point in the ADS Developer 
Guide.



ARM Compiler Reference

ARM DUI 0067B Copyright © 1999,2000 ARM Limited. All rights reserved. 3-19
-

3.2.8  Arrays and pointers 

The following statements apply to all pointer types in C. They also apply to all pointer 
types, except pointers to members, in C++:

• adjacent bytes have addresses that differ by one

• the macro NULL expands to the value 0

• casting between integers and pointers results in no change of representation

• the compiler warns of casts between pointers to functions and pointers to data

• the type size_t is defined as unsigned int

• the type ptrdiff_t is defined as signed int.

Pointer subtraction

The following statements apply to all pointers in C. They also apply to pointers, other 
than pointers to members, in C++:

• When one pointer is subtracted from another, the difference is obtained as if by 
the expression:

((int)a - (int)b) / (int)sizeof(type pointed to)

• If the pointers point to objects whose size is one, two, or four bytes, the natural 
alignment of the object ensures that the division will be exact, provided the 
objects are not packed.

• For packed or longer types, such as double and struct, the division might not 
be exact unless both pointers are to elements of the same array. Also, the quotient 
might be rounded up or down at different times, or in different circumstances. 
This can lead to inconsistencies.

3.2.9  Registers 

Using the ARM compilers, you can declare any number of local objects (auto variables) 
to have the storage class register.

Depending on the variant of the ATPCS being used, there are between five and seven 
integer registers available, and four floating-point registers. In general, declaring more 
than four integer register variables and two floating-point register variables is not 
recommended.



ARM Compiler Reference

3-20 Copyright © 1999,2000 ARM Limited. All rights reserved. ARM DUI 0067B
-

The following object types can be declared to have the register storage class:

• All integer types (long long occupies two registers).

• All integer-like structures. That is, any one word struct or union where all 
addressable fields have the same address, or any one word structure containing 
bitfields only. The structure must be padded to 32 bits.

• Any pointer type.

• Floating-point types. The double precision floating-point type double occupies 
two ARM registers if software floating-point is used.

The register keyword is regarded by the compiler as a suggestion only. Other 
variables, not declared with the register keyword, can be kept in registers and 
register variables can be kept in memory. Using register might increase code size 
because the compiler is restricted in its use of registers for optimization.

3.2.10  Structures, unions, enumerations, and bitfields

This section describes the implementation of the structured data types union, enum, 
and struct. It also discusses structure padding and bitfield implementation.

The ISO/IEC C standard requires the following implementation details to be 
documented for structured data types:

• the outcome when a member of a union is accessed using a member of different 
type

• the padding and alignment of members of structures

• whether a plain int bitfield is treated as a signed int bitfield or as an 
unsigned int bitfield

• the order of allocation of bitfields within a unit

• whether a bitfield can straddle a storage-unit boundary

• the integer type chosen to represent the values of an enumeration type.

These implementation details are documented in the relevant sections of Standard C 
implementation definition on page 3-11 and in the following sections:

Unions Refer to Unions for details.

Padding and alignment of structure members 
Refer to Packed structures on page 3-22 for details.

Enumerations Refer to Enumerations for details.

Bitfields Refer to Bitfields on page 3-23 for details.



ARM Compiler Reference

ARM DUI 0067B Copyright © 1999,2000 ARM Limited. All rights reserved. 3-21
-

Unions

When a member of a union is accessed using a member of a different type, the resulting 
value can be predicted from the representation of the original type. No error is given.

Enumerations

An object of type enum is implemented in the smallest integral type that contains the 
range of the enum. The type of an enum will be one of the following, according to the 
range of the enum:

• unsigned char

• signed char

• unsigned short

• signed short

• unsigned int (C++ always, C except when -strict)

• signed int.

Implementing enum in this way can reduce data size. The command-line option -fy 
sets the underlying type of enum to signed int. Refer to About the C and C++ 
compilers on page 2-2 for more information on the -fy option.

Unless the -strict option is used, enum declarations may have a comma at the end as 
in:

 enum { x = 1, };

Structures

The following points apply to:

• all C structures

• all C++ structures and classes not using virtual functions or base classes.

Structure Alignment 
The alignment of a non-packed structure is the maximum alignment 
required by any of its fields.



ARM Compiler Reference

3-22 Copyright © 1999,2000 ARM Limited. All rights reserved. ARM DUI 0067B
-

Field alignment 
Structures are arranged with the first-named component at the lowest 
address. Fields are aligned as follows:

• A field with a char type is aligned to the next available byte.

• A field with a short type is aligned to the next even-addressed 
byte.

• Bitfield alignment depends on how the bitfield is declared. Refer to 
Bitfields in packed structures on page 3-25 for more information.

• All other types are aligned on word boundaries.

Structures can contain padding to ensure that fields are correctly aligned and that the 
structure itself is correctly aligned. Figure 3-1 on page 3-22 shows an example of a 
conventional, non-packed structure. Bytes 1, 2, and 3 are padded to ensure correct field 
alignment. Bytes 10 and 11 are padded to ensure correct structure alignment.

The compiler pads structures in one of two ways, according to how the structure is 
defined:

• Structures that are defined as static or extern are padded with zeros.

• Structures on the stack or heap, such as those defined with malloc() or auto, 
are padded whatever was previously stored in memory. You cannot use 
memcmp() to compare padded structures defined in this way (see Figure 3-1 on 
page 3-22).

• Structures with empty initializers are allowed in C++ and only warned about in C 
(if C and -strict an error is generated):

struct { int x; } X = { };

 Figure 3-1 Conventional structure example

Packed structures

A packed structure is one where the alignment of the structure, and of the fields within 
it, is always 1. Floating-point types cannot be fields of packed structures.

�����������������������
�

�

�

	
���
�

����������
������
������������������

	
���
�

�����������������������

����������������������



ARM Compiler Reference

ARM DUI 0067B Copyright © 1999,2000 ARM Limited. All rights reserved. 3-23
-

Packed structures are defined with the __packed qualifier (see Structures, unions, 
enumerations, and bitfields on page 3-20). There is no command-line option to change 
the default packing of structures. 

Bitfields

In nonpacked structures, the ARM compilers allocate bitfields in containers. A 
container is a correctly aligned object of a declared type. Bitfields are allocated so that 
the first field specified occupies the lowest-addressed bits of the word, depending on 
configuration:

little-endian Lowest addressed means least significant.

big-endian Lowest addressed means most significant.

A bitfield container can be any of the integral types.

Note

The compiler warns about non int bitfields. You can disable this warning with the -Wb 
compiler option.

A plain bitfield, declared without either signed or unsigned qualifiers, is treated as 
unsigned. For example, int x:10 allocates an unsigned integer of 10 bits.

A bitfield is allocated to the first container of the correct type that has a sufficient 
number of unallocated bits, for example:

struct X {
    int x:10;
    int y:20;
};

The first declaration creates an integer container and allocates 10 bits to x. At the second 
declaration, the compiler finds the existing integer container with a sufficient number 
of unallocated bits, and allocates y in the same container as x.



ARM Compiler Reference

3-24 Copyright © 1999,2000 ARM Limited. All rights reserved. ARM DUI 0067B
-

A bitfield is wholly contained within its container. A bitfield that does not fit in a 
container is placed in the next container of the same type. For example, the declaration 
of z overflows the container if an additional bitfield is declared for the structure above:

struct X {
    int x:10;
    int y:20;
    int z:5;
};

The compiler pads the remaining two bits for the first container and assigns a new 
integer container for z.

Bitfield containers can overlap each other, for example: 

struct X {
    int x:10;
    char y:2;
};

The first declaration creates an integer container and allocates 10 bits to x. These 10 bits 
occupy the first byte and two bits of the second byte of the integer container. At the 
second declaration, the compiler checks for a container of type char. There is no 
suitable container, so the compiler allocates a new correctly aligned char container.

Because the natural alignment of char is 1, the compiler searches for the first byte that 
contains a sufficient number of unallocated bits to completely contain the bitfield. In the 
above example, the second byte of the int container has two bits allocated to x, and six 
bits unallocated. The compiler allocates a char container starting at the second byte of 
the previous int container, skips the first two bits that are allocated to x, and allocates 
two bits to y.

If y is declared char y:8, the compiler pads the second byte and allocates a new char 
container to the third byte, because the bitfield cannot overflow its container (see 
Figure 3-2).



ARM Compiler Reference

ARM DUI 0067B Copyright © 1999,2000 ARM Limited. All rights reserved. 3-25
-

struct X {
    int x:10;
    char y:8;
};

 Figure 3-2 Bitfield allocation 1

Note

The same basic rules apply to bitfield declarations with different container types. For 
example, adding an int bitfield to the example above gives:

struct X {
    int x:10;
    char y:8;
    int z:5;
}

The compiler allocates an int container starting at the same location as the int x:10 
container and allocates a byte-aligned char and 5-bit bitfield (Figure 3-3).

 Figure 3-3 Bitfield allocation 2

You can explicitly pad a bitfield container by declaring an unnamed bitfield of size zero. 
A bitfield of zero size fills the container up to the end if the container is non-empty. A 
subsequent bitfield declaration will start a new empty container.

Bitfields in packed structures

Bitfield containers in packed structures have an alignment of 1. Therefore, the 
maximum bit padding for a bitfield in a packed structure is 7 bits. For an unpacked 
structure, the maximum padding is 8*sizeof(container-type)–1 bits.

�����������������������������������������������������������������������������������������������

���

����
��� 	
���
�

� ���!�"#��

�����������������������������������������������������������������������������������������������

��$��� 	
���
�

� ���!�"#��

%



ARM Compiler Reference

3-26 Copyright © 1999,2000 ARM Limited. All rights reserved. ARM DUI 0067B
-

3.2.11  Qualifiers

This section describes the implementation of various standard C and ARM-specific 
type qualifiers. These type qualifiers can be used to instruct the compiler to treat the 
qualified type in a special way. Standard qualifiers that do not have ARM-specific 
behavior or restrictions are not documented.

__packed

The __packed qualifier sets the alignment of any valid type to 1. This means:

• there is no padding inserted to align the packed object

• objects of packed type are read or written using unaligned accesses.

The __packed qualifier cannot be used on: 

• floating-point types

• structures or unions with floating-point fields

• structures that were previously declared without __packed.

Note

__packed is not, strictly speaking, a type qualifier. It is included in this section because 
it behaves like a type qualifier in most respects.

The __packed qualifier does not affect local variables of integral type.

The __packed qualifier applies to all members of a structure or union when it is 
declared using __packed. There is no padding between members, or at the end of the 
structure. All substructures of a packed structure must be declared using __packed. 
Integral subfields of an unpacked structure can be packed individually.

A packed structure or union is not assignment-compatible with the corresponding 
unpacked structure. Because the structures have a different memory layout, the only 
way to assign a packed structure to an unpacked structure is by a field-by-field copy.

The effect of casting away __packed is undefined. The effect of casting a nonpacked 
structure to a packed structure is undefined. A pointer to an integral type can be legally 
cast, explicitly or implicitly, to a pointer to a packed integral type.

A pointer can be packed (see Example 3-1).

Example 3-1

__packed int *p



ARM Compiler Reference

ARM DUI 0067B Copyright © 1999,2000 ARM Limited. All rights reserved. 3-27
-

There are no packed array types. A packed array is simply an array of objects of packed 
type. There is no padding in the array.

Note

On ARM processors, access to unaligned data can take up to seven instructions and 
three work registers. Data accesses through packed structures should be minimized to 
avoid increase in code size, or performance loss.

The __packed qualifier is useful to map a structure to an external data structure, or for 
accessing unaligned data, but it is generally not useful to save data size because of the 
relatively high cost of access. The number of unaligned accesses can be reduced by only 
packing fields in a structure that requires packing.

When a packed object is accessed using a pointer, the compiler generates code that will 
work and that is independent of the pointer alignment (see Example 3-2).

Example 3-2

typedef __packed struct
{
    char x;       // all fields inherit the __packed qualifier
    int y;
}X;        // 5 byte structure, natural alignment = 1

int f(X *p)
{
    return p->y;    // does an unaligned read
}
typedef struct
{
    short x;
    char y;
    __packed int z; // only pack this field
    char a;
}Y;    // 8 byte structure, natural alignment = 2

int g(Y *p)
{
    return p->z + p->x;    // only unaligned read for z
}



ARM Compiler Reference

3-28 Copyright © 1999,2000 ARM Limited. All rights reserved. ARM DUI 0067B
-

volatile

The standard ANSI qualifier volatile informs the compiler that the qualified type 
contains data that can be changed from outside the program. The compiler will not 
attempt to optimize accesses to volatile types. For example, volatile structures can 
be mapped onto memory-mapped registers.

In ARM C and C++, a volatile object is accessed if any word or byte (or halfword 
on ARM architectures with halfword support) of the object is read or written. For 
volatile objects, reads and writes occur as directly implied by the source code, in the 
order implied by the source code. The effect of accessing a volatile short is 
undefined for ARM architectures that do not support halfwords. Accessing volatile 
packed data is undefined.

__weak

Specifies an extern object declaration that, if not present, does not cause the linker to 
fault an unresolved reference. If the reference remains unresolved, its value is assumed 
to be NULL. (See also Function declaration keywords on page 3-4.)

3.2.12  Declarators

The number of declarators that can modify an arithmetic, structure or union type is 
limited only by available memory.

3.2.13  Statements

The number of case values in a switch statement is limited only by memory.

Expression evaluation

The compiler performs the usual arithmetic conversions (promotions) set out in the 
appropriate C or C++ standard before evaluating an expression. 

Note

• The compiler can re-order expressions involving only associative and 
commutative operators of equal precedence, even in the presence of parentheses. 
For example, a + (b – c) might be evaluated as (a + b) – c if a, b, and c are integer 
expressions.

• Between sequence points, the compiler can evaluate expressions in any order, 
regardless of parentheses. Thus the side effects of expressions between sequence 
points can occur in any order.

• The compiler can evaluate function arguments in any order.



ARM Compiler Reference

ARM DUI 0067B Copyright © 1999,2000 ARM Limited. All rights reserved. 3-29
-

Any aspect of evaluation order not prescribed by the relevant standard, can vary 
between releases of the ARM compilers.

3.2.14  Preprocessing directives

The ANSI standard C header files are stored within the compiler and can be referred to 
as described in the standard, for example, #include <stdio.h>).

Quoted names for includable source files are supported. The compiler will accept host 
filenames or UNIX filenames. For UNIX filenames on non-UNIX hosts, the compiler 
tries to translate the filename to a local equivalent.

The recognized #pragma directives are shown in Pragmas on page 3-2.

3.2.15  Library functions

The ANSI C library variants are listed in About the runtime libraries on page 4-2.

The precise nature of each C library is unique to the particular implementation. The 
generic ARM C library has, or supports, the following features:

• The macro NULL expands to the integer constant 0.

• If a program redefines a reserved external identifier, an error might occur when 
the program is linked with the standard libraries. If it is not linked with standard 
libraries, no error will be detected.

• The assert() function prints the following message and then calls the abort() 
function:

*** assertion failed: expression, file name, line number

For implementation details of mathematical functions, locale, signals, and input/output 
see About the runtime libraries on page 4-2.



ARM Compiler Reference

3-30 Copyright © 1999,2000 ARM Limited. All rights reserved. ARM DUI 0067B
-

3.3  Standard C++ implementation definition

The majority of the language features described in the ISO/IEC standard for C++ are 
supported by the ARM C++ compilers. This section lists the C++ language features 
defined in the standard, and states whether or not that language feature is supported by 
ARM C++.

Note

ARM C++ differs from ISO/IEC because the compliance requirements for Embedded 
C++ (EC++) differ from the requirements for ISO/IEC C++.

This section does not duplicate information that is part of the standard C 
implementation. See Standard C implementation definition on page 3-11.

When used in ANSI C mode, the ARM C++ compilers are identical to the ARM C 
compiler. Where there is an implementation feature specific to either C or C++, this is 
noted in the text. For extension to standard C++, see C and C++ language extensions 
on page 3-33.

3.3.1  EC++ support

ARM C++ supports all features required by the definition of Embedded C++ except for 
argument-dependent name lookup (Koenig lookup).

3.3.2  Integral conversion

(This section is related to section 4.7 of the ISO/IEC standard.) During integral 
conversion, if the destination type is signed, the value is unchanged if it can be 
represented in the destination type and bitfield width. Otherwise, the value is truncated 
to fit the size of the destination type.

3.3.3  Calling a pure virtual function

If a pure virtual function is called, the message will be written to stderr and abort() 
will be called. The message will be written only if the image also uses fputs() and 
stderr.



ARM Compiler Reference

ARM DUI 0067B Copyright © 1999,2000 ARM Limited. All rights reserved. 3-31
-

3.3.4  Minor features of language support

Table 3-4 shows the minor features of the language supported by this release of ARM 
C++.

 Table 3-4 Minor feature support for language

Minor feature Support

atexit Implemented as defined in The Annotated 
C++ Reference, Addison-Wesley, 1991

Namespaces No

Runtime type identification (RTTI) Partial. Typeid is supported for static 
types and expressions with 
non-polymorphic type. See also the 
restrictions on new style casts.

New style casts Partial. ARM C++ supports the syntax of 
new style casts, but does not enforce the 
restrictions. New style casts behave in the 
same manner as old style casts.

Array new/delete Yes

Nothrow new No (but new does not throw)

bool type Yes

wchar_t type No

explicit keyword Yes

Static member constants Yes

extern inline Yes

Full linkage specification Yes

for loop variable scope change Yes

Covariant return types Yes (but not for non-leftmost base classes)

Default template arguments Partial (args not dependent on other 
template args)

Template instantiation directive Yes

Template specialization directive Yes

typename keyword Yes



ARM Compiler Reference

3-32 Copyright © 1999,2000 ARM Limited. All rights reserved. ARM DUI 0067B
-

3.3.5  Major features of language support

Table 3-5 shows the major features of the language supported by this release of ARM 
C++.

3.3.6  Standard C++ library implementation definition

Version 2.01 of the Rogue Wave library provides a subset of the library defined in the 
standard. There are slight differences from the December 1996 version of the ISO/IEC 
standard. For details of the implementation definition, see Standard C++ library 
implementation definition on page 4-87.

The library can be used with user-defined functions in order to produce 
target-dependent applications. See About the runtime libraries on page 4-2 for more 
information.

Member templates Yes

Partial specialization for class template Yes

Partial ordering of function templates Yes

Universal character names No

Koenig lookup No

 Table 3-4 Minor feature support for language (Continued)

Minor feature Support

 Table 3-5 Major feature support for language

Major feature
ISO/IEC standard 
section

Support

Core language 1 to 13 Yes

Templates 14 Templates are partially supported 

Exceptions 15 No

Libraries 17 to 27 Refer to Standard C++ library 
implementation definition on page 3-32 and 
to Chapter 4 The C and C++ Libraries



ARM Compiler Reference

ARM DUI 0067B Copyright © 1999,2000 ARM Limited. All rights reserved. 3-33
-

3.4  C and C++ language extensions

This section describes the language extensions supported by the ARM compilers.

3.4.1  C language extensions

The compilers support the ANSI C language extensions described below and in C and 
C++ language extensions. The extensions are not available if the compiler is restricted 
to compiling strict ANSI C, for example, by specifying the -strict compiler option.

// comments

The character sequence // starts a comment. As in C++, the comment is terminated by 
the next newline character. 

Note

Comment removal takes place after line continuation, so:

// this is a - \
single comment

The characters of a comment are examined only to find the comment terminator, 
therefore:

• // has no special significance inside a comment introduced by /*

• /* has no special significance inside a comment introduced by //

constant expressions

Extended constant expressions are allowed in initializers:

int i;
int j = (int)&i; /* not allowed by ANSI/ISO */

3.4.2  C and C++ language extensions

This section describes the extensions to both the ANSI C language, and the ISO/IEC 
C++ language that are accepted by the compilers. See C language extensions for those 
extensions that apply only to C. None of these extensions are available if the compiler 
is restricted to compiling strict ANSI C or strict ISO/IEC C++. This will be the case, for 
example, when the -strict compiler option is specified.



ARM Compiler Reference

3-34 Copyright © 1999,2000 ARM Limited. All rights reserved. ARM DUI 0067B
-

Identifiers

The $ character is a legal character in identifiers.

Void returns and arguments

Any void type is permitted as the return type in a function declaration, or the indicator 
that a function takes no argument. For example, the following is permitted:

typedef void VOID;
int fn(VOID);    // Error in -strict C and C++
VOID fn(int x);    // Error in -strict C

long long

ARM C and C++ compilers support 64-bit integer types through the type specifier long 
long and unsigned long long. They behave analogously to long and unsigned 
long with respect to the usual arithmetic conversions. long long is a synonym for 
__int64.

Integer constants can have:

• an ll suffix to force the type of the constant to long long, if it will fit, or to 
unsigned long long if it will not fit

• an llu (or ull) suffix to force the constant to unsigned long long

Format specifiers for printf() and scanf() can include ll to specify that the 
following conversion applies to an unsigned long long argument, as in %lld.

Also, a plain integer constant is of type unsigned long long if its value is large 
enough. There is a warning message from the compiler indicating the change. For 
example in strict ANSI C, 2147483648 has type unsigned long. In ARM C++ it has 
the type long long. One consequence of this is the value of an expression such as:

2147483648 > –1 

is 0 in strict C and C++, and 1 in ARM C and C++.

The following restrictions apply to long long:

• long long enumerators are not available.

• The controlling expression of a switch statement can not have (unsigned) 
long long type. Consequently case labels must also have values that can be 
contained in a variable of type unsigned long.



ARM Compiler Reference

ARM DUI 0067B Copyright © 1999,2000 ARM Limited. All rights reserved. 3-35
-

Inline assembler

The ARM C compilers support inline assembly language with the __asm specifier. 

The ARM C++ compilers support the syntax in the ISO/IEC C++ standard, with the 
restriction that the string-literal must be a single string, for example:

asm("instruction[;instruction]");

The asm declaration must be inside a C or C++ function. You cannot include comments 
in the string literal.

In addition to the syntax in the ISO/IEC standard, ARM C++ supports the C compiler 
__asm syntax when used with both asm and __asm.

The ARM compilers support the full ARM instruction set, including generic 
coprocessor instructions, but not BX and BLX.

The Thumb compilers support the full Thumb instruction set except for BX and BLX.

The inline assembler is invoked with the assembler specifier, and is followed by a list 
of assembler instructions inside braces, for example:

__asm
{
    instruction [; instruction]
    ...
    [instruction]
}

If two instructions are on the same line, you must separate them with a semicolon. If an 
instruction requires more than one line, line continuation must be specified with the 
backslash character \. C or C++ comments can be used anywhere within an inline 
assembly language block.

An asm statement can be used anywhere a C++ statement is expected. The __asm 
keyword is a synonym for asm and is provided to support compatibility with C.

Refer to Mixed Language Programming in the ADS Developer Guide for more 
information on inline C and C++ assemblers.

Keywords

ARM implements some keyword extensions for functions and variables. See Function 
declaration keywords on page 3-4, Variable declaration keywords on page 3-7, and 
Qualifiers on page 3-26.



ARM Compiler Reference

3-36 Copyright © 1999,2000 ARM Limited. All rights reserved. ARM DUI 0067B
-

Hexadecimal floating-point constants

ARM implements an extension to the syntax of numeric constants in C to allow explicit 
specification of floating-point constants as IEEE bit patterns. The syntax is:

0f_n Interpret an 8-digit hex number n as a float

0d_nn Interpret a 16-digit hex number nn as a double.

There must be exactly 8 digits for float constants. There must be exactly 16 digits for 
double constants. 

Read/write constants

For C++ only, a new linkage specification for external constants indicates that a 
constant can be dynamically initialized or have mutable members.

Note

The use of "C++:read/write" linkage is only necessary for code compiled /ropi or 
/rwpi. If you recompile existing code with either of these options, you will need to 
change the linkage specification for external constants that are dynamically initialized 
or have mutable members.

Compiling C++ with either the /ropi or /rwpi options deviates from the C++ 
standard. The declarations in Example 3-3 assume that x is in a read-only segment:

Example 3-3

extern const T x;
extern "C++" const T x;
extern "C" const T x;

Dynamic initialization of x (including user-defined constructors) will not be possible 
for the constants and T may not contain mutable members. The new linkage 
specification in Example 3-4 declares that x is in a read/write segment (even if it was 
initialized with a constant). Dynamic initialization of x is allowed and T may contain 
mutable members. The definitions of x, y, and z in another file must have the same 
linkage specifications.



ARM Compiler Reference

ARM DUI 0067B Copyright © 1999,2000 ARM Limited. All rights reserved. 3-37
-

Example 3-4

extern const int z;     /* in read-only segment, cannot  */
                         /* be dynamically initialized    */

extern "C++:read/write" const int y; /* in read/write segment */
                         /* can be dynamically initialized */
extern "C++:read/write" {
  const int i=5;      /* placed in read-only segment, */
                      /* not extern because implicitly static */
  extern const T x=6;    /* placed in read/write segment */
  struct S {
     static const T T x; /* placed in read/write segment */
  };
}

Constant objects must not be redeclared with another linkage. The code in Example 3-5 
produces a compile error.

Example 3-5

extern "C++"  const T x;
extern "C++:read/write"  const T x; /* error */

Note

Since C does not have the linkage specifications, it is not possible to use a const object 
declared in C++ as extern "C++:read/write" from C.



ARM Compiler Reference

3-38 Copyright © 1999,2000 ARM Limited. All rights reserved. ARM DUI 0067B
-

3.5  Predefined macros

Table 3-6 lists the macro names predefined by the ARM C and C++ compilers. Where 
the value field is empty, the symbol concerned is merely defined, as though by -D__arm 
on the command line.

 Table 3-6 Predefined macros

Name Value When defined

__arm – If using armcc, tcc, armcpp, or tcpp.

__ARMCC_VERSION ver For giving the version number of the compiler. The 
value is the same for the ARM and Thumb 
compilers. It is a decimal number, whose value can 
be relied on to increase between releases.
The format is PVtbbb where 
P is the product (1 for ADS)
V is the minor version (0 for 1.0)
t is the patch release (0 for 1.0)
bbb is the build (103 for example).
The example given results in 100103.

__APCS_INTERWORK – If -apcs /interwork in use.

__APCS_ROPI – If -apcs /ropi in use.

__APCS_RWPI – If -apcs /rwpi in use.

__APCS_SWST – If -apcs /swst in use.

__BIG_ENDIAN – If compiling for a big-endian target.

__cplusplus – In C++ compiler mode.

__CC_ARM – Returns compiler name.

__DATE__ Date When date of translation of source file is required.

__embedded_cplusplus – If in EC++ compiler mode.

__FEATURE_SIGNED_CHAR – Set by -zc (used by CHAR_MIN and CHAR_MAX).

__FILE__ name The presumed full pathname of the current source 
file.

__func__ name The name of the current function.

__LINE__ num When line number of the current source file is 
required.



ARM Compiler Reference

ARM DUI 0067B Copyright © 1999,2000 ARM Limited. All rights reserved. 3-39
-

__MODULE__ mod Contains the filename part of the value of 
__FILE__.

__OPTIMISE_SPACE – If -Ospace in use.

__OPTIMISE_TIME – If -Otime in use.

__prettyfunc__ name The unmangled name of the current function.

__sizeof_int 4 For sizeof(int), but available in preprocessor 
expressions.

__sizeof_long 4 For sizeof(long), but available in preprocessor 
expressions.

__sizeof_ptr 4 For sizeof(void *), but available in 
preprocessor expressions.

__SOFTFP__ – If compiling to use the software floating-point library 
(-apcs /softfp).

__STDC__ – In all compiler modes.

__STDC_VERSION__ – standard version information.

__STRICT_ANSI__ – Set by -strict. 

__TARGET_ARCH_xx – xx represents the target architecture and its value 
depends on the target architecture. For example, if 
the compiler options -cpu 4T or -cpu 
ARM7TDMI are specified then 
__TARGET_ARCH_4T is defined, and no other 
symbol starting with _TARGET_ARCH_ is defined.

__TARGET_CPU_xx – xx represents the target cpu. The value of xx is 
derived from the -cpu compiler option, or the 
default if none is specified. For example, if the 
compiler option -cpu ARM7TM is specified then 
_TARGET_CPU_ARM7TM is defined and no other 
symbol starting with _TARGET_CPU_ is defined. 
If the target architecture is specified, then 
_TARGET_CPU_generic is defined.
If the processor name contains hyphen (-) characters, 
these are mapped to an underscore (_). For example, 
-cpu SA-110 is mapped to 
__TARGET_CPU_SA_110.

 Table 3-6 Predefined macros (Continued)

Name Value When defined



ARM Compiler Reference

3-40 Copyright © 1999,2000 ARM Limited. All rights reserved. ARM DUI 0067B
-

__TARGET_FEATURE_DSPMUL – If the DSP-enhanced multiplier is available.

__TARGET_FEATURE_HALFWORD – If the target architecture supports halfword and 
signed byte access instructions.

__TARGET_FEATURE_MULTIPLY – If the target architecture supports the long multiply 
instructions MULL and MULAL.

__TARGET_FEATURE_THUMB – If the target architecture is Thumb-aware.

__TARGET_FPU_xx – Identifies the FPU option as one of
__TARGET_FPU_VFP, __TARGET_FPU_FPA,
__TARGET_FPU_SOFTVFP
__TARGET_FPU_SOFTFPA, or
__TARGET_FPU_NONE

__thumb – If using tcc or tcpp.

__TIME__ Time When time of translation of the source file is 
required.

 Table 3-6 Predefined macros (Continued)

Name Value When defined



ARM Compiler Reference

ARM DUI 0067B Copyright © 1999,2000 ARM Limited. All rights reserved. 3-41
-

3.6  Implementation limits

This section lists implementation limits for the ARM C and C++ compilers.

3.6.1  C++ ISO/IEC Standard Limits

The ISO/IEC C++ standard recommends minimum limits that a conforming compiler 
should accept. You should be aware of these when porting applications between 
compilers. A summary is given in Table 3-7. A limit of memory indicates that no limit 
is imposed by the ARM compilers, other than that imposed by the available memory.

 Table 3-7 Implementation limits

Description Recommended ARM 

Nesting levels of compound statements, iteration control structures, and 
selection control structures.

256 memory

Nesting levels of conditional inclusion. 256 memory

Pointer, array, and function declarators (in any combination) modifying an 
arithmetic, structure, union, or incomplete type in a declaration.

256 memory

Nesting levels of parenthesized expressions within a full expression. 256 memory

Number of initial characters in an internal identifier or macro name. 1024 1024

Number of initial characters in an external identifier. 1024 1024

External identifiers in one translation unit. 65536 memory

Identifiers with block scope declared in one block. 1024 memory

Macro identifiers simultaneously defined in one translation unit. 65536 memory

Parameters in one function declaration. Overload resolution is sensitive to 
the first 32 arguments only.

256 memory

Arguments in one function call. Overload resolution is sensitive to the 
first 32 arguments only.

256 memory

Parameters in one macro definition. 256 memory

Arguments in one macro invocation. 256 memory

Characters in one logical source line. 65536 memory

Characters in a character string literal or wide string literal after 
concatenation.

65536 memory



ARM Compiler Reference

3-42 Copyright © 1999,2000 ARM Limited. All rights reserved. ARM DUI 0067B
-

Size of a C++ object. 262144 8388607

Nesting levels of #include file. 256 memory

Case labels for a switch statement, excluding those for any nested switch 
statements.

16384 memory

Data members in a single class, structure, or union. 16384 memory

Enumeration constants in a single enumeration. 4096 memory

Levels of nested class, structure, or union definitions in a single 
struct-declaration-list.

256 memory

Functions registered by atexit(). 32 33

Direct and indirect base classes 16384 memory

Direct base classes for a single class 1024 memory

Members declared in a single class 4096 memory

Final overriding virtual functions in a class, accessible or not 16384 memory

Direct and indirect virtual bases of a class 1024 memory

Static members of a class 1024 memory

Friend declarations in a class 4096 memory

Access control declarations in a class 4096 memory

Member initializers in a constructor definition 6144 memory

Scope qualifications of one identifier 256 memory

Nested external specifications 1024 memory

Template arguments in a template declaration 1024 memory

Recursively nested template instantiations 17 memory

Handlers per try block 256 memory

Throw specifications on a single function declaration 256 memory

 Table 3-7 Implementation limits (Continued)

Description Recommended ARM 



ARM Compiler Reference

ARM DUI 0067B Copyright © 1999,2000 ARM Limited. All rights reserved. 3-43
-

3.6.2  Internal limits

In addition to the limits described in Table 3-7 on page 3-41, the compiler has internal 
limits as listed in Table 3-8.

 Table 3-8 Internal limits

Description ARM

Maximum number of relocatable references in a single translation unit. 65536

Maximum number of virtual registers. 65536

Maximum number of overload arguments. 32

Number of characters in a mangled name before it will be truncated. 4096

Number of bits in the smallest object that is not a bit field (CHAR_BIT). 8

Maximum number of bytes in a multibyte character, for any supported locale 
(MB_LEN_MAX).

1



ARM Compiler Reference

3-44 Copyright © 1999,2000 ARM Limited. All rights reserved. ARM DUI 0067B
-

3.7  Limits for integral numbers

Table 3-9 gives the ranges for integral numbers in ARM C and C++. The third column 
of the table gives the numerical value of the range endpoint. The fourth column gives 
the bit pattern (in hexadecimal) that would be interpreted as this value by the ARM 
compilers.

When entering a constant, choose the size and sign with care. Constants are interpreted 
differently in decimal and hexadecimal/octal. See the appropriate C or C++ standard, or 
any of the recommended C and C++ textbooks for more details (refer to Further reading 
on page Preface-iii).

 Table 3-9 Integer ranges

Constant Meaning Endpoint Hex value

CHAR_MAX Maximum value of char 255 0xff

CHAR_MIN Minimum value of char 0 0x00

SCHAR_MAX Maximum value of signed char 127 0x7f

SCHAR_MIN Minimum value of signed char –128 0x80

UCHAR_MAX Maximum value of unsigned char 255 0xff

SHRT_MAX Maximum value of short 32767 0x7fff

SHRT_MIN Minimum value of short –32768 0x8000

USHRT_MAX Maximum value of unsigned short 65535 0xffff

INT_MAX Maximum value of int 2147483647 0x7fffffff

INT_MIN Minimum value of int –2147483648 0x80000000

LONG_MAX Maximum value of long 2147483647 0x7fffffff

LONG_MIN Minimum value of long –2147483648 0x80000000

ULONG_MAX Maximum value of unsigned long 4294967295 0xffffffff

LONG_LONG_MAX Maximum value of long long 9.2E+18 0x7fffffff
ffffffff

LONG_LONG_MIN Minimum value of long long –9.2E+18 0x80000000
00000000

ULONG_LONG_MAX Maximum value of unsigned long long 1.8E+19 0xffffffff
ffffffff



ARM Compiler Reference

ARM DUI 0067B Copyright © 1999,2000 ARM Limited. All rights reserved. 3-45
-

3.8  Limits for floating-point numbers

Table 3-10 and Table 3-11 give the characteristics, ranges, and limits for floating-point 
numbers in ARM and Thumb compilers. 

Note

When a floating-point number is converted to a shorter floating-point number, it is 
rounded to the nearest representable number.

The properties of floating-point arithmetic accord with IEEE 754.

 Table 3-10 Floating-point limits

Constant Meaning Value

FLT_MAX Maximum value of float 3.40282347e+38F

FLT_MIN Minimum value of float 1.17549435e–38F

DBL_MAX Maximum value of double 1.79769313486231571e+308

DBL_MIN Minimum value of double 2.22507385850720138e–308

LDBL_MAX Maximum value of long double 1.79769313486231571e+308

LDBL_MIN Minimum value of long double 2.22507385850720138e–308

FLT_MAX_EXP Maximum value of base 2 exponent for type float 128

FLT_MIN_EXP Minimum value of base 2 exponent for type float –125

DBL_MAX_EXP Maximum value of base 2 exponent for type double 1024

DBL_MIN_EXP Minimum value of base 2 exponent for type double –1021

LDBL_MAX_EXP Maximum value of base 2 exponent for type long double 1024

LDBL_MIN_EXP Minimum value of base 2 exponent for type long double –1021

FLT_MAX_10_EXP Maximum value of base 10 exponent for type float 38

FLT_MIN_10_EXP Minimum value of base 10 exponent for type float –37

DBL_MAX_10_EXP Maximum value of base 10 exponent for type double 308



ARM Compiler Reference

3-46 Copyright © 1999,2000 ARM Limited. All rights reserved. ARM DUI 0067B
-

DBL_MIN_10_EXP Minimum value of base 10 exponent for type double –307

LDBL_MAX_10_EXP Maximum value of base 10 exponent for type long 
double

308

LDBL_MIN_10_EXP Minimum value of base 10 exponent for type long 
double

–307

 Table 3-11 Other floating-point characteristics

Constant Meaning Value

FLT_RADIX Base (radix) of the ARM floating-point number representation 2

FLT_ROUNDS Rounding mode for floating-point numbers (nearest) 1

FLT_DIG Decimal digits of precision for float 6

DBL_DIG Decimal digits of precision for double 15

LDBL_DIG Decimal digits of precision for long double 15

FLT_MANT_DIG Binary digits of precision for type float 24

DBL_MANT_DIG Binary digits of precision for type double 53

LDBL_MANT_DIG Binary digits of precision for type long double 53

FLT_EPSILON Smallest positive value of x that 1.0 + x != 1.0 for type float 1.19209290e–7F

DBL_EPSILON Smallest positive value of x that 1.0 + x != 1.0 for type double 2.2204460492503131e–16

LDBL_EPSILON Smallest positive value of x that 1.0 + x != 1.0 for type long 
double

2.2204460492503131e–16L

 Table 3-10 Floating-point limits  (Continued)

Constant Meaning Value



ARM DUI 0067B Copyright © 1999,2000 ARM Limited. All rights reserved. 4-1
-

Chapter 4 
The C and C++ Libraries

This chapter describes the ARM C and C++ libraries. The libraries support programs 
written in C or C++. This chapter contains the following sections:

• About the runtime libraries on page 4-2

• Building an application with the C library on page 4-6

• Building an application without the C library on page 4-13

• Tailoring the C library to a new execution environment on page 4-20

• Tailoring static data access on page 4-23

• Tailoring locale and CTYPE on page 4-24

• Tailoring error signalling, error handling, and program exit on page 4-47

• Tailoring storage management on page 4-52

• Tailoring the run-time memory model on page 4-60

• Tailoring the input/output functions on page 4-67

• Tailoring other C library functions on page 4-76

• ISO implementation definition on page 4-81

• Library naming conventions on page 4-96.



The C and C++ Libraries

4-2 Copyright © 1999,2000 ARM Limited. All rights reserved. ARM DUI 0067B
-

4.1  About the runtime libraries 

The following runtime libraries are provided to support compiled C and C++:

ANSI C The C libraries consist of:

• The functions defined by the ISO C library standard.

• Target-dependent functions used to implement the C library 
functions in the semihosted execution environment. You can 
redefine these functions in your own application.

• Helper functions used by the C and C++ compilers.

C++ The C++ libraries contain the functions defined by the ISO C++ library 
standard. The C++ library depends on the C library for target-specific 
support and there are no target dependencies in the C++ library. This 
library consists of: 

• the Rogue Wave Standard C++ Library version 2.0.1

• helper functions for the C++ compiler

• additional C++ functions not supported by the Rogue Wave library.

For a detailed description of how the libraries comply with the ISO standard, see ISO 
implementation definition on page 4-81.

As supplied, the ANSI C libraries use the standard ARM semihosted environment to 
provide facilities such as file input/output. This environment is supported by the 
ARMulator, Angel, Multi-ICE, and EmbeddedICE. You can use the ARM development 
tools in ADS to develop applications, and then immediately run and debug the 
applications under the ARMulator or on a development board. See the description of 
semihosting in the ADS Debug Target Guide for more information on the debug 
environment.

You can re-implement any of the target-dependent functions of the C library as part of 
your application. This lets you tailor the C library, and therefore the C++ library, to your 
own execution environment.



The C and C++ Libraries

ARM DUI 0067B Copyright © 1999,2000 ARM Limited. All rights reserved. 4-3
-

You can also tailor many of the target-independent functions to your own 
application-specific requirements, for example: 

• the malloc family

• the ctype family

• all of the locale-specific functions.

Many of the C library functions are independent of any other function and contain no 
target dependencies. You can easily exploit these functions from assembly language.

4.1.1  Build options and library variants

When you build your application, you must make certain fundamental choices. For 
example:

Byte order Big-endian or little-endian.

Floating-point support 
FPA, VFP, software, or none.

Stack limit Checked or unchecked.

Position-independence 
Data can be read/write position-independent or not position-independent, 
code can be read-only position-independent or not position-independent.

When you link your assembly language, C, or C++ code, the linker selects appropriate 
C and C++ library variants compatible with the build options you specified. There is a 
variant of the ANSI C library for each combination of major build options. Build 
options are described in more detail in:

• the ATPCS chapter in the ADS Developer Guide

• Selecting library variants on page 6-27 for the linker

• Procedure Call Standard options on page 2-10 for the compiler

• Command syntax on page 5-4 for the assembler.



The C and C++ Libraries

4-4 Copyright © 1999,2000 ARM Limited. All rights reserved. ARM DUI 0067B
-

4.1.2  Library directory structure

The libraries are installed in two subdirectories within install_directory\lib:

armlib This subdirectory contains the variants of the ARM C library, the 
floating-point arithmetic library, and the math library. The accompanying 
header files are in install_directory\include.

cpplib This subdirectory contains the variants of the Rogue Wave C++ library 
and supporting C++ functions. The Rogue Wave and supporting C++ 
functions are collectively referred to as the ARM C++ Libraries. The 
accompanying header files are installed in 
install_directory\include.

The environment variable ARMLIB should be set to point to the lib directory. 
Alternatively use the -libpath argument to the linker to identify the directory holding 
the library subdirectories.

There is no need to identify armlib and cpplib separately. The linker finds them for 
you from the location of lib.

Note

• The ARM C libraries are supplied in binary form only.

• The ARM libraries should not be modified. If you want to create a new 
implementation of a library function, place the new function in an object file, or 
your own library, and include it when you link the application. Your version of 
the function will be used instead of the standard library version.

• Normally, only a few functions in the ANSI C library require re-implementation 
in order to create a target-dependent application.

• The source for the Rogue Wave Standard C++ Library is not freely distributable. 
It can be obtained from Rogue Wave Software Inc., or through ARM Ltd, for an 
additional licence fee. See the Rogue Wave online documentation in 
install_directory\Html for more about the C++ library.



The C and C++ Libraries

ARM DUI 0067B Copyright © 1999,2000 ARM Limited. All rights reserved. 4-5
-

4.1.3  Reentrancy and static data

Libraries that make use of static data are supplied in two variants:

• Static data addressed in a position-dependent fashion. Code from these variants 
is single threaded.

• Static data addressed in a position-independent fashion using offsets from the 
static base register sb (r9). Code from these variants can be multiply-threaded and 
is reentrant.

The following points describe how static data is used by the libraries:

• Floating-point arithmetic libraries do not use static data and are always reentrant.

• All statically-initialized data in the C libraries is read-only. 

• All writable static data is uninitialized.

• Most C library functions use no writable static data and are reentrant whether 
built with base build options (-apcs /norwpi) or reentrant (-apcs /rwpi) 
build options. 

• A few functions have static data in their definitions, for example strtok(), 
localtime(), gmtime(), rand(), and srand(). You should avoid using these 
functions in a reentrant application unless you build it /rwpi.



The C and C++ Libraries

4-6 Copyright © 1999,2000 ARM Limited. All rights reserved. ARM DUI 0067B
-

4.2  Building an application with the C library

This section covers creating an application that links with functions from the C or C++ 
libraries. Functions in the C library are responsible for:

• Creating an environment in which a C or C++ program can execute. This includes

— creating a stack

— creating, if required, a heap

— initializing the parts of the library the program uses.

• Starting execution by calling main().

• Supporting use of ISO-defined functions by the program.

• Catching run-time errors and signals and, if required, terminating execution on 
error or program exit.

There are three major ways to use the libraries with an application:

• Build a semihosted application which can be debugged in a semihosted 
environment such as with ARMulator or Angel. See Building an application for 
a semihosted environment on page 4-6.

• Build a non-hosted application which can, for example, be embedded into ROM. 
See Building an application for a non-semihosted environment on page 4-8.

• Build an application which does not use main() and does not initialize the 
library. This application will have, unless you re-implement some functions, 
restricted library functionality. See Building an application without the C library 
on page 4-13.

4.2.1  Building an application for a semihosted environment

If you are developing an application that will run in a semihosted environment for 
debugging, you must have an execution environment that supports the ARM and 
Thumb semihosting SWIs and has sufficient memory.

The execution environment can be provided by either:

• using the standard semihosting functionality that is present by default in, for 
example, ARMulator, Angel, and Multi-ICE

• implementing your own SWI handler for the semihosting SWI (see ADS Debug 
Target Guide).

A list of functions that require semihosting is given in Overview of semihosting 
dependencies on page 4-9.

You do not need to write any new functions or include files if you are using the default 
semihosting functionality of the library.



The C and C++ Libraries

ARM DUI 0067B Copyright © 1999,2000 ARM Limited. All rights reserved. 4-7
-

Using ARMulator

The ARM instruction set simulator (ARMulator) supports the semihosting SWI and has 
adequate memory maps for using the library. The ARMulator will of course use 
memory in the host machine and this will normally be adequate for your application.

Using Angel

ARM boards running the Angel debug monitor support the semihosting SWI and have 
adequate memory maps for using the library. Your application might, however, require 
more memory than is available on the development board and the memory map 
assumed by the library might require tailoring to match the hardware being debugged

You can change the definition of the Angel environment. See the ADS Debug Target 
Guide for more information on semihosting and the Angel environment.

Using Multi-ICE and EmbeddedICE

The ARM debug agents support the semihosting SWI, but the memory map assumed by 
the library might require tailoring to match the hardware being debugged. However, it 
is easy to tailor the memory map assumed by the C library. See Tailoring the run-time 
memory model on page 4-60.

Using re-implemented functions in a semihosted environment

You can also mix the semihosting functionality with new input/output functions. For 
example, you could implement putc() to output directly to hardware, for example to 
a UART, in addition to the semihosted implementation. See Building an application for 
a non-semihosted environment for information on how to re-implement individual 
functions.

Converting a semihosted application to a standalone application

After an application has been developed in a semihosted debugging environment, you 
can move the application to a non-hosted environment by one of the following methods:

• Removing all calls to semihosted functions. See Avoiding the semihosting SWI on 
page 4-10.

• Re-implementing the semihosted functions. See Building an application for a 
non-semihosted environment on page 4-8. You do not have to re-implement all 
semihosted functions. You must, however, re-implement the functions that you 
are using in your application.

• Implementing a SWI handler that handles the semihosting SWIs.



The C and C++ Libraries

4-8 Copyright © 1999,2000 ARM Limited. All rights reserved. ARM DUI 0067B
-

Implementing your own semihosting SWI support

It is possible to implement your own semihosting SWI support. The interface is simple 
and requires a handler for just two SWI numbers. 0x123456 is used in ARM state and 
0xab is used in Thumb state. See the semihosting SWI definitions in ADS Debug Target 
Guide and the include file rt_sys.h

4.2.2  Building an application for a non-semihosted environment

If you do not want to use any semihosting functionality, you must ensure that either no 
calls are made to any function that uses semihosting or that such functions are replaced 
by your own non-semihosted functions.

To build an application that does not use semihosting functionality:

1. Create the source files to implement the target-dependent features.

2. Add the __use_no_semihosting_swi() guard to the source. See Avoiding the 
semihosting SWI on page 4-10.

3. Link the new objects with your application.

4. Use the new configuration when creating the target-dependent application.

You must re-implement functions that the C library uses to insulate itself from target 
dependencies. For example, if you use printf() you will need to re-implement 
fputc(). If you do not use the higher-level input/output functions like printf(), you 
do not need to re-implement the lower-level functions like fputc(). 

If you are building an application for a different execution environment, you can 
re-implement the target dependent functions (functions that use the semihosting SWI or 
that depend on the target memory map). There are no target-dependent functions in the 
C++ library. 

The functions that you might have to re-implement are described in:

• Tailoring static data access on page 4-23

• Tailoring locale and CTYPE on page 4-24

• Tailoring error signalling, error handling, and program exit on page 4-47

• Tailoring the run-time memory model on page 4-60

• Tailoring the input/output functions on page 4-67

• Tailoring other C library functions on page 4-76

Examples of embedded applications that do not use a hosted environment are included 
in install_directory\examples\ROM.

See the ADS Developer Guide for examples of creating applications for embedding into 
ROM.



The C and C++ Libraries

ARM DUI 0067B Copyright © 1999,2000 ARM Limited. All rights reserved. 4-9
-

Overview of semihosting dependencies

The functions shown in Table 4-1 depend directly upon semihosting SWIs:

 Table 4-1 Direct dependencies

Function Description

__user_initial_stackheap() Tailoring the run-time memory model on 
page 4-60

_sys_exit() Tailoring error signalling, error handling, 
and program exit on page 4-47

_ttywrch()

_sys_command_string() Tailoring the input/output functions on 
page 4-67

_sys_close(),_sys_ensure(), 
_sys_iserror(), 
_sys_istty(), _sys_flen(), 
_sys_open(), _sys_read(), 
_sys_seek(), _sys_write()

 _sys_tmpnam()

time() Tailoring other C library functions on 
page 4-76

remove()

rename()

system()

clock(), _clock_init()



The C and C++ Libraries

4-10 Copyright © 1999,2000 ARM Limited. All rights reserved. ARM DUI 0067B
-

The functions listed in Table 4-2 depend indirectly upon one or more of the functions 
listed in Table 4-1:

Avoiding the semihosting SWI

If you write an application in C, you must link it with the C library even if it makes no 
direct use of C library functions. The C library contains compiler helper functions and 
initialization code. Some C library functions use the semihosting SWI. To avoid using 
the semihosting SWI, do either of the following:

• re-implement the functions in your own application

• write the application so that it does not call any semihosted function.

 Table 4-2 Indirect dependencies

Function Where used

__raise() Catch, handle, or diagnose C library exceptions, without C 
signal support. See Tailoring error signalling, error 
handling, and program exit on page 4-47

__default_signal_handler() Catch, handle, or diagnose C library exceptions, with C 
signal support. See Tailoring error signalling, error 
handling, and program exit on page 4-47

__Heap_Initialize() Choosing or redefining memory allocation. See Tailoring 
storage management on page 4-52

ferror(), fputc(), __stdout Retargeting the printf family. See Tailoring the 
input/output functions on page 4-67

__backspace(), fgetc(), __stdin Retargeting the scanf family. See Tailoring the 
input/output functions on page 4-67

fwrite(), fputs(), puts(), fread(), 
fgets(), gets(), ferror()

Retargeting the stream output family. See Tailoring the 
input/output functions on page 4-67



The C and C++ Libraries

ARM DUI 0067B Copyright © 1999,2000 ARM Limited. All rights reserved. 4-11
-

To guarantee that no functions using the semihosting SWI are included in your 
application, make the following call at any point in your C program:

__use_no_semihosting_swi();

Its declaration, given in <stdio.h>, is:

extern void __use_no_semihosting_swi(void);

Place the following import in your assembler program:

IMPORT __use_no_semihosting_swi

The function has no effect except to cause a link-time error if a function that uses the 
semihosting SWI is included from the library. The linker error message is:

duplicate definition of __semihosting_swi_guard

Use the linker symbol table and cross reference listings to identify functions you have 
called that directly, or indirectly, use semihosting. This information can be viewed by 
using the linker options -map, -xref, and -v. Remove, or re-implement semihosted 
functions, and rebuild the application.



The C and C++ Libraries

4-12 Copyright © 1999,2000 ARM Limited. All rights reserved. ARM DUI 0067B
-

API definitions

In addition to the semihosted functions listed in Table 4-1 and Table 4-2, the functions 
and files listed in Table 4-3 might be useful when building for a different environment.

If you are re-implementing a function that exists in the standard ARM library, the linker 
will use an object or library from your project rather than the standard ARM library. A 
library you add to a project does not have to follow the ARM naming convention for 
libraries. 

Note

You must not use the same name for one of your libraries that ARM also uses for the 
supplied libraries.

 Table 4-3 Published API definitions

File or function Description

__main() and __rt_entry() Initializes the runtime environment and executes 
the user application.

__rt_lib_init(), 
__rt_exit(), and 
__rt_lib_shutdown()

Initializes or finalizes the runtime library.

locale() and CTYPE Defines the character properties for the local 
alphabet. See Tailoring locale and CTYPE on 
page 4-24

rt_sys.h A C header file describing all the functions whose 
default (semihosted) implementations use the 
semihosting SWI. .

rt_heap.h A C header file describing the storage 
management abstract data type.

rt_locale.h A C header file describing the five locale category 
filing systems, and defining some macros that are 
useful for describing the contents of locale 
categories.

rt_misc.h A C header file describing miscellaneous unrelated 
public interfaces to the C library.

rt_memory.s An empty, but commented, prototype 
implementation of the memory model manager.



The C and C++ Libraries

ARM DUI 0067B Copyright © 1999,2000 ARM Limited. All rights reserved. 4-13
-

4.3  Building an application without the C library

Creating an application that has a main() function causes the C library initialization 
functions to be included. 

If your application does not have a main() function, the C library will not be initialized 
and the following features will not be available in your application:

• software stack checking

• low-level stdio

• signal-handling functions, signal() and raise() in signal.h 

• atexit()

• alloca().

This section refers to creating applications without the library as bare machine C. These 
applications will not automatically use the full C run-time environment provided by the 
C library. Even though you are creating an application without the library, some helper 
functions from the library must be included. There are also many library functions that 
can be made available with only minor re-implementations.

4.3.1  Integer and FP helper functions

There are several compiler helper functions that are used by the compiler to handle 
operations that do not have a short machine code equivalent. For example, integer 
divide uses a helper function because there is not a divide instruction in the ARM and 
Thumb instruction set.

Integer divide and all the floating-point functions require __rt_raise() to handle 
math errors. Re-implementing __rt_raise() enables all the math helper functions.



The C and C++ Libraries

4-14 Copyright © 1999,2000 ARM Limited. All rights reserved. ARM DUI 0067B
-

4.3.2  Bare machine integer C

If you are writing a program in C that is to run without any environment initialization 
you must:

• Implement __rt_raise() yourself, since this error-handling function can be 
called from numerous places within the compiled code. 

• Not define main() in order to avoid linking in the library initialization code.

• Not use software stack checking in the build options.

• Write an assembly language veneer that establishes the register state needed to 
run C. This veneer should branch to the entry function in your application. 

• Ensure that your initialization veneer is executed by, for example, placing it in 
your reset handler.

• Build your application using -fpu none and link it normally. The linker will use 
the appropriate C library variant to find any needed compiler helper functions.

Many library facilities require __user_libspace() for static data. Even without the 
initialization code activated by having a main() function, __user_libspace() will 
be created automatically and use 64 bytes in the ZI segment.

4.3.3  Bare machine C with floating-point

If you want to use floating-point processing in your application you must:

• perform the steps necessary for integer C as described above in Bare machine 
integer C

• use the appropriate FPU option when you build your application

• call _fp_init() to initialize the floating-point status register before performing 
any floating-point operations.

If you are using software floating-point, you must also:

• define the function __rt_fp_status_addr() to return the address of a 
writable data word that will be used instead of the floating-point status register.

4.3.4  Exploiting the C library

If you create an application that includes a main() function, the linker will 
automatically include the initialization code necessary for the execution environment. 
See Building an application with the C library on page 4-6 for instructions. There are 
situations though where this is not desirable or possible.



The C and C++ Libraries

ARM DUI 0067B Copyright © 1999,2000 ARM Limited. All rights reserved. 4-15
-

You can create an application that consists of customized startup code and still use many 
of the library functions. You must either:

• avoid functions that require initialization

• provide the initialization and low-level support functions.

Program design

The functions you must re-implement depend on how much of the library functionality 
you require as follows: 

• If you want only the compiler support functions for division, structure copy, and 
FP arithmetic, you must provide __rt_raise(). This also allows very simple 
library functions such as those in errno.h, setjmp.h, most of string.h to 
work.

• If you call setlocale() explicitly, locale-dependent functions will start to 
work. This allows you to use the atoi family, sprintf(), sscanf(), and the 
functions in ctype.h

• Programs that use floating-point must call _fp_init(). If you select software 
floating-point, the program must also provide __rt_fp_status_addr().

• Implementing high-level input/output support is necessary for functions that use 
fprintf() or fputs(). The high-level output functions depend on fputc() 
and ferror(). The high-level input functions depend on fgetc() and 
__backspace(). 

• Implementing the above functions and the heap allows use of almost the entire 
library.

Using low-level functions

If you are using the libraries in an application that does not have a main() function, 
you must re-implement some functions in the library. See The standalone C library 
functions on page 4-16 for a detailed list of functions are not available, functions that 
are available without modification, and functions that are available after other 
lower-level functions are re-implemented. 

__rt_raise() is essential. It is required by all FP functions, by integer division so that 
divide-by-zero can be reported, and by some other library routines. You probably 
cannot write a non-trivial program without doing something that requires it.



The C and C++ Libraries

4-16 Copyright © 1999,2000 ARM Limited. All rights reserved. ARM DUI 0067B
-

Note

If rand() is called, srand() must be called first. This is done automatically during 
library initialization but not when you avoid the library initialization.

Using high-level functions

High-level I/O functions, fprintf() for example, can be used if the low-level 
functions, fputc() for example, are re-implemented. Most of the formatted output 
functions will also require a call to setlocale(). See Tailoring the input/output 
functions on page 4-67 for instructions.

Anything that uses locale should not be called before first calling setlocale() to 
initialize it, for example call setlocale(LC_ALL, "C"). Locale-using functions are 
described in The standalone C library functions on page 4-16. These include the 
functions in ctype.h and locale.h, the printf family, the scanf family, ato*, 
strto*, strcoll/strxfrm, and much of time.h.

Using malloc()

If heap support is required for bare machine C, _init_alloc() must be called first to 
supply initial heap bounds, and __rt_heap_extend() must be provided even if it just 
returns failure. Prototypes for both functions are in rt_heap.h.

4.3.5  The standalone C library functions

The following sections list the include files and the functions in them that are available 
with an uninitialized library. Some otherwise unavailable functions can be used if the 
library functions they depend on are re-implemented.

alloca.h

Functions listed in this file are not available without library initialization. See Building 
an application with the C library on page 4-6 for instructions.

assert.h

Functions listed in this file require high-level stdio, __rt_raise(), and 
_sys_exit(). See Tailoring error signalling, error handling, and program exit on 
page 4-47 for instructions.



The C and C++ Libraries

ARM DUI 0067B Copyright © 1999,2000 ARM Limited. All rights reserved. 4-17
-

ctype.h

Functions listed in this file require the locale functions.

errno.h

Functions in this file work without the need for any library initialization or function 
re-implementation.

fenv.h

Functions in this file work without the need for any library initialization and only 
require the re-implementation of __rt_raise().

float.h

This file does not contain any code. The definitions in the file do not require library 
initialization or function re-implementation.

inttypes.h

Functions listed in this file require the locale functions.

limits.h

Functions in this file work without the need for any library initialization or function 
re-implementation.

locale.h

Call setlocale() before calling any function that uses locale functions. For 
example call:

 setlocale(LC_ALL, "C")



The C and C++ Libraries

4-18 Copyright © 1999,2000 ARM Limited. All rights reserved. ARM DUI 0067B
-

See the contents of locale.h for details of the following functions and data structures:

setlocale() Selects the appropriate locale as specified by the category and 
locale arguments.

lconv  Is the structure used by locale functions for formatting numeric 
quantities according to the rules of the current locale.

localeconv() Creates an lconv structure and returns a pointer to it.

_get_lconv() Fills the lconv structure pointed to by the parameter. This ANSI 
extension removes the need for static data within the library.

locale.h also contains constant declarations used with locale functions. See Tailoring 
locale and CTYPE on page 4-24 for more information.

math.h

Functions in this file work without the need for any library initialization and only 
require the re-implementation of __rt_raise(). You must of course call 
_fp_init() in order to use floating-point functions.

setjmp.h

Functions in this file work without the need for any library initialization or function 
re-implementation.

signal.h

Functions listed in this file are not available without library initialization. See Building 
an application with the C library on page 4-6 for instructions on building an application 
that uses library initialization.

__rt_raise() can be re-implemented for error and exit handling. See Tailoring error 
signalling, error handling, and program exit on page 4-47 for instructions.

stdarg.h

Functions in this file work without the need for any library initialization or function 
re-implementation.

stddef.h

This file does not contain any code. The definitions in the file do not require library 
initialization or function re-implementation.



The C and C++ Libraries

ARM DUI 0067B Copyright © 1999,2000 ARM Limited. All rights reserved. 4-19
-

stdint.h

This file does not contain any code. The definitions in the file do not require library 
initialization or function re-implementation.

stdio.h

The following dependencies or limitations apply to these files:

• The high-level functions such as printf(), scanf(), puts(), fgets(), 
fread(), fwrite(), perror() and so on require high-level stdio. See 
Tailoring the input/output functions on page 4-67 for instructions.

• The printf() and scanf() family of functions require locale.

• The remove() and rename() functions are system-specific and probably not 
usable in your application.

stdlib.h

Most functions in this file work without the need for any library initialization or 
function re-implementation. The following are not available or require implementation 
of a support function: 

ato*() requires locale

strto*() requires locale

malloc()  malloc(), calloc(), realloc(), and free() require heap functions

atexit() is not available.

string.h

Functions in this file work without the need for any library initialization with the 
exception of strcoll() and strxfrm() that require locale.

time.h

mktime() and localtime() can be used immediately.

time() and clock() are system-specific and probably not usable unless 
re-implemented.

asctime(), ctime(), and strftime() require locale.



The C and C++ Libraries

4-20 Copyright © 1999,2000 ARM Limited. All rights reserved. ARM DUI 0067B
-

4.4  Tailoring the C library to a new execution environment

This section describes how to re-implement functions to produce an application for a 
different execution environment, for example embedded in ROM or used with an 
RTOS.

Symbols that have a single or double underscore, _ or __, name functions that are used 
as part of the low-level implementation. Some of these functions can be 
re-implemented.

Additional information on these library functions is available in the rt_heap.h, 
rt_locale.h, rt_misc.h, and rt_sys.h include files and the rt_memory.s 
assembler file.

4.4.1  How C and C++ programs use the library functions

This section describes specific library functions that are used to initialize the execution 
environment and application, library exit functions, and target-dependent library 
functions that the application itself might call during its execution.

Initializing the execution environment and executing the application

The entry point of a program is at __main in the C library where library code does the 
following:

1. Copies non-root execution regions from their load addresses to their execution 
addresses.

2. Zeroes ZI regions.

3. Branches to __rt_entry.

If you do not want the library to do this, you can define your own __main that simply 
branches to __rt_entry as in Example 4-1.

Example 4-1

    IMPORT __rt_entry
    EXPORT __main
    ENTRY
__main
    B     __rt_entry
    END



The C and C++ Libraries

ARM DUI 0067B Copyright © 1999,2000 ARM Limited. All rights reserved. 4-21
-

The library function __rt_entry() runs the program as follows:

1. Calls __rt_stackheap_init() to set up the stack and heap.

2. Calls __rt_lib_init() to initialize referenced library functions, initialize the 
locale and, if necessary, set up argc and argv for main().

3. Calls main(), the user-level root of the application.

From main(), your program might call, among other things, library functions. 
See Library functions called from main() on page 4-21 for more information.

4. Calls exit() with the value returned by main().

Library functions called from main()

The function main() is the user-level root of the application and expects the execution 
environment to be initialized and that input/output functions can be called. While in 
main() the program might perform one of the following actions that calls 
user-customizable functions in the C library:

• Extend the stack or heap. See Tailoring the run-time memory model on page 4-60.

• Call library functions that require a callout to a user-defined function, 
__rt_fp_status_addr or clock for example. See Tailoring other C library 
functions on page 4-76.

• Call library functions that use LOCALE or CTYPE. See Tailoring locale and 
CTYPE on page 4-24.

• Perform floating-point calculations that require the fpu or fp library. 

• Input or output directly through low-level functions, putc for example, or 
indirectly through high-level input/output functions and input/output support 
functions, fprintf or sys_open for example. See Tailoring the input/output 
functions on page 4-67.

• Raise an error or other signal, ferror for example. See Tailoring error 
signalling, error handling, and program exit on page 4-47.



The C and C++ Libraries

4-22 Copyright © 1999,2000 ARM Limited. All rights reserved. ARM DUI 0067B
-

4.4.2  Exiting from the program

The program can exit normally at the end of main() or it can exit prematurely due to 
an error.

Exiting from an assert

The exit sequence from an assert is: 

1. assert() calls abort().

2. abort() calls __rt_raise().

3. If __rt_raise() returns, abort() tries to finalize the library.

If you are creating an application that does not use the library, assert() will work if 
you retarget abort(). However, abort() does not have to finalize the library. The 
ANSI standard states that finalization is an implementation decision.

One solution for retargeting is to replace the __rt_exit call in abort() with a call to 
_sys_exit(). The function assert() would then work after retargeting only 
_sys_exit.

Application exit from __rt_entry()

If you replace __rt_entry() with your own function, it must end with a call to one of 
the following functions:

exit() To get full atexit() handling and library shut down

__rt_exit() To correctly shut down the library, bypassing atexit() 
processing

_sys_exit() To exit directly to the execution environment, bypassing 
atexit().



The C and C++ Libraries

ARM DUI 0067B Copyright © 1999,2000 ARM Limited. All rights reserved. 4-23
-

4.5  Tailoring static data access

This section describes using callouts from the C library to access static data. There are 
three types of C library function with regard to the use of static data:

• functions that do not use any static data of any kind, for example fprintf()

• functions that manage a static state, for example malloc(), rand(), and 
strtok()

• functions that do not manage a static state, but use static data in a way that is 
specific to their ARM implementation, for example isalpha().

When the C library does something that requires implicit static data, it uses a callout to 
a function you can replace. These functions are shown in Table 4-4:

The functions above do not use semihosting. 

See also Tailoring the run-time memory model on page 4-60 for more information about 
memory use.

The default implementation of __user_libspace() creates a 64-byte block in the ZI 
segment. Even if your application does not have a main() function, the 
__user_libspace() function does not normally need to be redefined.

 Table 4-4 Callouts

Function Description

__rt_errno_addr() Called to get the address of the variable errno. See 
__rt_errno_addr() on page 4-49.

__rt_fp_status_addr() Called by the floating-point support code to get the address 
of the floating-point status word. See 
__rt_fp_status_addr() on page 4-51.

The locale functions The function __user_libspace() creates a block of 
private static data for the library. See Tailoring locale 
and CTYPE on page 4-24.



The C and C++ Libraries

4-24 Copyright © 1999,2000 ARM Limited. All rights reserved. ARM DUI 0067B
-

4.6  Tailoring locale and CTYPE

This section describes functions related to locale. Applications use locale when they 
display or process data that is dependent on the local language or region, for example 
character order, monetary symbols, decimal point, time, and date.

See the rt_locale.h include file for more information on locale-related functions.

4.6.1  Selecting locale at link time

The locale subsystem of the C library can be selected at link time or extended to be 
selectable at runtime. The following points describe the use of locale categories by the 
library:

• The default implementation of each locale category is for the C locale. The library 
also provides an alternative, ISO8859-1 (Latin 1 alphabet) implementation of 
each locale category that you can select at link time.

• Both the C and ISO8859-1 default implementations provide only one locale to 
select at runtime.

• You can replace each locale category individually. 

• You can include as many locales in each category as you choose and you can 
name your locales as you wish.

• Each locale category uses one word in the private static data of the library.

• The locale category data is read-only and position independent.

• scanf() forces the inclusion of the LC_CTYPE locale category, but in either of 
the default locales this adds only 260 bytes of read-only data to several kilobytes 
of code.



The C and C++ Libraries

ARM DUI 0067B Copyright © 1999,2000 ARM Limited. All rights reserved. 4-25
-

Implementation

To select an ISO8859-1 (Latin-1 alphabet) locale category, include a call from your 
application to the functions shown in Table 4-5.

There is no ISO8859-1 version of the LC_TIME category.

The C library tests for the existence of the callout function before calling it. If the 
function does not exist, a default action is taken.

4.6.2  Selecting locale at run time

The C library function setlocale() selects a locale at runtime for the locale category, 
or categories, specified in its arguments. It does this by selecting the requested locale 
separately in each locale category. In effect, each locale category is a small filing system 
containing an entry for each locale.

Each locale category is processed by a function like _get_lc_category, for example:

void const *_get_lc_time (void *null, char const *locale_name)

_get_lc_time() returns the address of the time filing system entry for the locale 
named locale_name, or NULL the entry was not found.

 Table 4-5 Default locales

Function Description

__use_iso8859_ctype() Selects the ISO8859-1 (Latin-1) classification of 
characters (this is essentially 7-bit ASCII, except 
that the top-bit-set character codes 160-255 
represent a selection of useful European punctuation 
characters, letters, and accented letters). 

__use_iso8859_collate() Selects the strcoll/strxfrm collation table appropriate 
to the Latin-1 alphabet. The default C locale needs 
no collation table.

__use_iso8859_monetary() Selects the Sterling monetary category using Latin-1 
coding.

__use_iso8859_numeric() Selects separating thousands with commas in the 
printing of numeric values.

__use_iso8859_locale() Selects all the above iso8859 selections.



The C and C++ Libraries

4-26 Copyright © 1999,2000 ARM Limited. All rights reserved. ARM DUI 0067B
-

The implementation of each locale category must supply a selection function as shown 
in Table 4-6.

These functions are described below. C header files describing what must be 
implemented and providing some useful support macros, are given in locale.h and 
rt_locale.h.

Implementation

For each category, changing locale is achieved by changing a pointer into the read-only 
data for the locale category. Except for default locales, the data must be user-supplied. 

All locale blocks for a category are collected into a read-only, position-independent, 
in-memory file system structure. The C library provides a set of macros to create the 
blocks and the _findlocale() function to search the file system. 

You can define a set of run-time selectable locales by using the supplied 
re-implementations as a starting point. Your application will not call 
_get_lc_category functions directly. _get_lc_category functions are called by 
setlocale() and rt_lib_init(). You implement new locales by providing new 
locale definition blocks and re-implementations of _get_lc_category for 
setlocale() to use as in Example 4-2.

 Table 4-6 Locale categories

Function Description

_get_lc_ctype() Returns a pointer to the first element in a user-defined array 
that holds character attributes. See _get_lc_ctype() on 
page 4-28.

_get_lc_collate() Returns a pointer to the first element in a user-defined array 
that holds sorting attributes. See _get_lc_collate() on 
page 4-31.

_get_lc_monetary() Returns a pointer to the user-defined 
__lc_monetary_blk structure. See 
_get_lc_monetary() on page 4-34.

_get_lc_numeric() Returns a pointer to the user-defined __lc_numeric_blk 
structure. See _get_lc_numeric() on page 4-35.

_get_lc_time() Returns a pointer to the user-defined __lc_time_blk 
structure. See _get_lc_time() on page 4-36.



The C and C++ Libraries

ARM DUI 0067B Copyright © 1999,2000 ARM Limited. All rights reserved. 4-27
-

Example 4-2

void const *_get_lc_ctype(void const *null, char const *name) {
    return _findlocale(&lcctype_c_index, name);
}

4.6.3  Macros and utility functions

The macros and utility functions listed in Table 4-7 simplify the process of creating and 
using locale blocks. See the rt_locale.h file for more information.

Using the macros

The data blocks for a single locale category must be contiguous and the 
LC_INDEX_END macro must be the last macro in the sequence. 

The examples in each locale category use two test macros that are defined as:

#define EQI(i,j) assert(i==j)
#define EQS(s,t) assert(!strcmp(s,t))

 Table 4-7 locale macros

Function or macro Description

__LC_CTYPE_DEF Use this macro to create a block of values for the character 
set. See _get_lc_ctype() on page 4-28.

__LC_COLLATE_DEF Use this macro to create a block of sorting values for the 
character set. See _get_lc_collate() on page 4-31.

__LC_TIME_DEF Use this macro to create a block of time formatting values. 
See _get_lc_time() on page 4-36.

__LC_NUMERIC_DEF Use this macro to create a block of numeric formatting 
values. See _get_lc_numeric() on page 4-35.

__LC_MONETARY_DEF Use this macro to create a block of monetary formatting 
values. See _get_lc_monetary() on page 4-34.

__LC_INDEX_END Use this macro to declare the end of an index of formatting 
values. See Using the macros on page 4-27.

_findlocale() Use this function to return the address of a locale block. See 
_findlocale() on page 4-40.



The C and C++ Libraries

4-28 Copyright © 1999,2000 ARM Limited. All rights reserved. ARM DUI 0067B
-

4.6.4  _get_lc_ctype()

The ctype implementation is selected at link time to be either: 

• The C locale only. This is the default.

• The ISO 8859 (Latin-1) locale.

You can define your own ctype attribute table with the following characteristics:

• It must be read-only.

• It is a byte array with indexes ranging from –1 to 255 inclusive (257 bytes in total)

• Each byte is interpreted as 8 attribute bits, the values are defined in ctype.h as 
follows:

__C white-space characters

__P punctuation characters

__B blank characters

__L lower-case letters

__U upper-case letters

__N decimal digits

__C control characters

__X hexadecimal-digit letters A-F and a-f. 

The first element in the array, the element located at –1, must be zero. A skeletal 
implementation of the functions that return CTYPE data is shown in Example 4-3:

Example 4-3

__LC_CTYPE_DEF(lcctype_c, "C")
{
    __C, __C, __C, __C, __C, __C, __C, __C, __C,            /* 0x00-0x08 */
    __C+__S,__C+__S,__C+__S,__C+__S,__C+__S,    /* 0x09-0x0D (BS,LF,VT,FF,CR) */
    __C, __C, __C, __C, __C, __C, __C, __C, __C,            /* 0x0E-0x16 */
    __C, __C, __C, __C, __C, __C, __C, __C, __C,            /* 0x17-0x1F */
    __B+__S,                                                /* space */
    __P, __P, __P, __P, __P, __P, __P, __P,                 /* !"#$%&’( */
    __P, __P, __P, __P, __P, __P, __P,                      /* )*+,-./ */
    __N, __N, __N, __N, __N, __N, __N, __N, __N, __N,       /* 0-9 */
    __P, __P, __P, __P, __P, __P, __P,                      /* :;<=>?@ */



The C and C++ Libraries

ARM DUI 0067B Copyright © 1999,2000 ARM Limited. All rights reserved. 4-29
-

    __U+__X, __U+__X, __U+__X, __U+__X, __U+__X, __U+__X,   /* A-F */
    __U, __U, __U, __U, __U, __U, __U, __U, __U, __U,       /* G-P */
    __U, __U, __U, __U, __U, __U, __U, __U, __U, __U,       /* Q-Z */
    __P, __P, __P, __P, __P, __P,                           /* [\]^_‘ */
    __L+__X, __L+__X, __L+__X, __L+__X, __L+__X, __L+__X,   /* a-f */
    __L, __L, __L, __L, __L, __L, __L, __L, __L, __L,       /* g-p */
    __L, __L, __L, __L, __L, __L, __L, __L, __L, __L,       /* q-z */
    __P, __P, __P, __P,                                     /* {|}~ */
    __C,                                                    /* 0x7F */
    /* the whole of the top half is illegal characters */
    0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
    0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
    0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
    0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
    0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
    0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
    0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
    0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
};
__LC_CTYPE_DEF(lcctype_iso8859_1, "ISO8859-1")
{
    __C, __C, __C, __C, __C, __C, __C, __C, __C,            /* 0x00-0x08 */
    __C+__S,__C+__S,__C+__S,__C+__S,__C+__S,  /* 0x09-0x0D (BS,LF,VT,FF,CR) */
    __C, __C, __C, __C, __C, __C, __C, __C, __C,            /* 0x0E-0x16 */
    __C, __C, __C, __C, __C, __C, __C, __C, __C,            /* 0x17-0x1F */
    __B+__S,                                                /* space */
    __P, __P, __P, __P, __P, __P, __P, __P,                 /* !"#$%&’( */
    __P, __P, __P, __P, __P, __P, __P,                      /* )*+,-./ */
    __N, __N, __N, __N, __N, __N, __N, __N, __N, __N,       /* 0-9 */
    __P, __P, __P, __P, __P, __P, __P,                      /* :;<=>?@ */
    __U+__X, __U+__X, __U+__X, __U+__X, __U+__X, __U+__X,   /* A-F */
    __U, __U, __U, __U, __U, __U, __U, __U, __U, __U,       /* G-P */
    __U, __U, __U, __U, __U, __U, __U, __U, __U, __U,       /* Q-Z */
    __P, __P, __P, __P, __P, __P,                           /* [\]^_‘ */ 
    __L+__X, __L+__X, __L+__X, __L+__X, __L+__X, __L+__X,   /* a-f */
    __L, __L, __L, __L, __L, __L, __L, __L, __L, __L,       /* g-p */
    __L, __L, __L, __L, __L, __L, __L, __L, __L, __L,       /* q-z */
    __P, __P, __P, __P,                                     /* {|}~ */
    __C,                                                    /* 0x7F */
    /* ISO8859-1 top half:
     * - 0x80-0x9f are control chars
     * - 0xa0 is nonbreaking space (whitespace)
     * - 0xa1-0xbf are punctuation chars
     * - 0xc0-0xdf are uppercase chars except times sign at 0xd7  
     * - 0xe0-0xff are lowercase chars except divide sign at 0xf7 */
    __C,__C,__C,__C,__C,__C,__C,__C,       /* 0x80 - 0x87 */
    __C,__C,__C,__C,__C,__C,__C,__C,       /* 0x88 - 0x8f */



The C and C++ Libraries

4-30 Copyright © 1999,2000 ARM Limited. All rights reserved. ARM DUI 0067B
-

    __C,__C,__C,__C,__C,__C,__C,__C,       /* 0x90 - 0x97 */
    __C,__C,__C,__C,__C,__C,__C,__C,       /* 0x98 - 0x9f */
    __B+__S,__P,__P,__P,__P,__P,__P,__P,   /* 0xa0 - 0xa7 */
    __P,__P,__P,__P,__P,__P,__P,__P,       /* 0xa8 - 0xaf */
    __P,__P,__P,__P,__P,__P,__P,__P,       /* 0xb0 - 0xb7 */
    __P,__P,__P,__P,__P,__P,__P,__P,       /* 0xb8 - 0xbf */
    __U,__U,__U,__U,__U,__U,__U,__U,       /* 0xc0 - 0xc7 */
    __U,__U,__U,__U,__U,__U,__U,__U,       /* 0xc8 - 0xcf */
    __U,__U,__U,__U,__U,__U,__U,__P,       /* 0xd0 - 0xd7 */
    __U,__U,__U,__U,__U,__U,__U,__U,       /* 0xd8 - 0xdf */
    __L,__L,__L,__L,__L,__L,__L,__L,       /* 0xe0 - 0xe7 */
    __L,__L,__L,__L,__L,__L,__L,__L,       /* 0xe8 - 0xef */
    __L,__L,__L,__L,__L,__L,__L,__P,       /* 0xf0 - 0xf7 */
    __L,__L,__L,__L,__L,__L,__L,__L,           /* 0xf8 - 0xff */
};
_LC_INDEX_END(lcctype_dummy)

void const *_get_lc_ctype(void const *null, char const *name) {
    return _findlocale(&lcctype_c_index, name);
}

void test_lc_ctype(void) {
    EQS(setlocale(LC_CTYPE, NULL), "C");  /* verify starting point */
    EQI(!!isalpha(’@’), 0);               /* test off-by-one */
    EQI(!!isalpha(’A’), 1);
    EQI(!!isalpha(’\xc1’), 0);            /* C locale: isalpha(Aacute)==0 */
    EQI(!setlocale(LC_CTYPE, "ISO8859-1"), 0);   /* setlocale should work */
    EQS(setlocale(LC_CTYPE, NULL), "ISO8859-1");
    EQI(!!isalpha(’@’), 0);               /* test off-by-one */
    EQI(!!isalpha(’A’), 1);
    EQI(!!isalpha(’\xc1’), 1);            /* ISO8859 locale: isalpha(Aacute)!=0 */
    EQI(!setlocale(LC_CTYPE, "C"), 0);    /* setlocale should work */
    EQS(setlocale(LC_CTYPE, NULL), "C");
    EQI(!!isalpha(’@’), 0);               /* test off-by-one */
    EQI(!!isalpha(’A’), 1);
    EQI(!!isalpha(’\xc1’), 0);            /* C locale: isalpha(Aacute)==0 */
}



The C and C++ Libraries

ARM DUI 0067B Copyright © 1999,2000 ARM Limited. All rights reserved. 4-31
-

4.6.5  _get_lc_collate()

_get_lc_collate must return a pointer to the 0th entry in an array of unsigned bytes 
whose indexes range from 0 to 255 inclusive (256 bytes total). 

Each element gives the position in the collation sequence of the character represented 
by the index of the element. For example, if you wanted strcoll() to sort strings 
beginning with Z in between those beginning with A and those beginning with B, you 
would set up the LC_COLLATE table so that array[’A’] < array[’Z’] and 
array[’Z’] < array[’B’].

_get_lc_collate must return a pointer to a collate structure. Use the macros in 
Example 4-4 to create the structure.

Example 4-4

__LC_COLLATE_TRIVIAL_DEF(lccoll_c, "C")
__LC_COLLATE_DEF(lccoll_iso8859_1, "ISO8859-1")
{
    /* Things preceding letters have normal ASCII ordering */
    0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07,
    0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f,
    0x10, 0x11, 0x12, 0x13, 0x14, 0x15, 0x16, 0x17,
    0x18, 0x19, 0x1a, 0x1b, 0x1c, 0x1d, 0x1e, 0x1f,
    0x20, 0x21, 0x22, 0x23, 0x24, 0x25, 0x26, 0x27,
    0x28, 0x29, 0x2a, 0x2b, 0x2c, 0x2d, 0x2e, 0x2f,
    0x30, 0x31, 0x32, 0x33, 0x34, 0x35, 0x36, 0x37,
    0x38, 0x39, 0x3a, 0x3b, 0x3c, 0x3d, 0x3e, 0x3f,
    0x40,  /* @ */    0x41,  /* A - then 7 A variants */
    0x49,  /* B */    0x4a,  /* C - then 1 C variant */
    0x4c,  /* D */    0x4d,  /* E - then 4 E variants */
    0x52,  /* F */    0x53,  /* G */
    0x54,  /* H */    0x55,  /* I - then 4 I variants */
    0x5a,  /* J */    0x5b,  /* K */
    0x5c,  /* L */    0x5d,  /* M */
    0x5e,  /* N - then 1 N variant */
    0x60,  /* O - then 6 O variants */
    0x67,  /* P */    0x68,  /* Q */
    0x69,  /* R */    0x6a,  /* S */
    0x6b,  /* T */    0x6c,  /* U - then 4 U variants */
    0x71,  /* V */    0x72,  /* W */
    0x73,  /* X */    0x74,  /* Y - then 1 Y variant */
    0x76,  /* Z - then capital Eth & Thorn */
    0x79,  /* [ */    0x7a,  /* \ */
    0x7b,  /* ] */    0x7c,  /* ^ */
    0x7d,  /* _ */    0x7e,  /* ‘ */



The C and C++ Libraries

4-32 Copyright © 1999,2000 ARM Limited. All rights reserved. ARM DUI 0067B
-

    0x7f,  /* a - then 7 a variants */
    0x87,  /* b */    0x88,  /* c - then 1 c variant */
    0x8a,  /* d */    0x8b,  /* e - then 4 e variants */
    0x90,  /* f */    0x91,  /* g */
    0x92,  /* h */    0x93,  /* i - then 4 i variants */
    0x98,  /* j */    0x99,  /* k */
    0x9a,  /* l */    0x9b,  /* m */
    0x9c,  /* n - then 1 n variant */
    0x9e,  /* o - then 6 o variants */
    0xa5,  /* p */    0xa6,  /* q */
    0xa7,  /* r */    0xa8,  /* s - then 1 s variant */
    0xaa,  /* t */    0xab,  /* u - then 4 u variants */
    0xb0,  /* v */    0xb1,  /* w */
    0xb2,  /* x */    0xb3,  /* y - then 2 y variants */
    0xb6,  /* z - then eth & thorn */
    0xb9,  /* { */    0xba,  /* | */
    0xbb,  /* } */    0xbc,  /* ~ */
    0xbd,  /* del */
    /* top bit set control characters */ 
    0xbe, 0xbf, 0xc0, 0xc1, 0xc2, 0xc3, 0xc4, 0xc5,
    0xc6, 0xc7, 0xc8, 0xc9, 0xca, 0xcb, 0xcc, 0xcd,
    0xce, 0xcf, 0xd0, 0xd1, 0xd2, 0xd3, 0xd4, 0xd5,
    0xd6, 0xd7, 0xd8, 0xd9, 0xda, 0xdb, 0xdc, 0xdd,
    /* other non_alpha */
    0xde, 0xdf, 0xe0, 0xe1, 0xe2, 0xe3, 0xe4, 0xe5,
    0xe6, 0xe7, 0xe8, 0xe9, 0xea, 0xeb, 0xec, 0xed,
    0xee, 0xef, 0xf0, 0xf1, 0xf2, 0xf3, 0xf4, 0xf5,
    0xf6, 0xf7, 0xf8, 0xf9, 0xfa, 0xfb, 0xfc, 0xfd,
    0x42,  /* A grave */    0x43,  /* A acute */
    0x44,  /* A circumflex */
    0x45,  /* A tilde */    0x46,  /* A umlaut */
    0x47,  /* A ring */     0x48,  /* AE */
    0x4b,  /* C cedilla */  0x4e,  /* E grave */
    0x4f,  /* E acute */    0x50,  /* E circumflex */
    0x51,  /* E umlaut */   0x56,  /* I grave */
    0x57,  /* I acute */    0x58,  /* I circumflex */
    0x59,  /* I umlaut */   0x77,  /* Eth */
    0x5f,  /* N tilde */    0x61,  /* O grave */
    0x62,  /* O acute */    0x63,  /* O circumflex */
    0x64,  /* O tilde */    0x65,  /* O umlaut */
    0xfe,  /* multiply */   0x66,  /* O with line */
    0x6d,  /* U grave */    0x6e,  /* U acute */
    0x6f,  /* U circumflex */  0x70,  /* U umlaut */
    0x75,  /* Y acute */    0x78,  /* Thorn */
    0xa9,  /* german sz */  0x80,  /* a grave */
    0x81,  /* a acute */    0x82,  /* a circumflex */
    0x83,  /* a tilde */    0x84,  /* a umlaut */



The C and C++ Libraries

ARM DUI 0067B Copyright © 1999,2000 ARM Limited. All rights reserved. 4-33
-

    0x85,  /* a ring */     0x86,  /* ae */
    0x89,  /* c cedilla */  0x8c,  /* e grave */
    0x8d,  /* e acute */    0x8e,  /* e circumflex */
    0x8f,  /* e umlaut */   0x94,  /* i grave */
    0x95,  /* i acute */    0x96,  /* i circumflex */
    0x97,  /* i umlaut */   0xb7,  /* eth */
    0x9d,  /* n tilde */    0x9f,  /* o grave */
    0xa0,  /* o acute */    0xa1,  /* o circumflex */
    0xa2,  /* o tilde */    0xa3,  /* o umlaut */
    0xff,  /* divide  */    0xa4,  /* o with line */
    0xac,  /* u grave */    0xad,  /* u acute */
    0xae,  /* u circumflex */ 0xaf,  /* u umlaut */
    0xb4,  /* y acute */    0xb8,  /* thorn */
    0xb5   /* y umlaut */
};
__LC_INDEX_END(lccollate_dummy)

void const *_get_lc_collate(void const *null, char const *name) {
    return _findlocale(&lccoll_c_index, name);
}

void test_lc_collate(void) {
    char buf[5];

    /* test both strxfrm and strcoll here*/
    EQS(setlocale(LC_COLLATE, NULL), "C");         /* verify starting point */
    EQS((strxfrm(buf, "\xEF", 4), buf), "\xEF");
    EQI(strcoll("\xEF", "j") < 0, 0);
    EQI(!setlocale(LC_COLLATE, "ISO8859-1"), 0);   /* setlocale should work */
    EQS(setlocale(LC_COLLATE, NULL), "ISO8859-1");
    EQS((strxfrm(buf, "\xEF", 4), buf), "\x97");
    EQI(strcoll("\xEF", "j") < 0, 1);
    EQI(!setlocale(LC_COLLATE, "C"), 0);           /* setlocale should work */
    EQS(setlocale(LC_COLLATE, NULL), "C");
    EQS((strxfrm(buf, "\xEF", 4), buf), "\xEF");
    EQI(strcoll("\xEF", "j") < 0, 0);
}

The __LC_COLLATE_TRIVIAL_DEF macro defines an array that has the element value 
equal to its index number. __LC_COLLATE_TRIVIAL_DEF(lccoll_c, "C") is 
equivalent to the code in Example 4-5.



The C and C++ Libraries

4-34 Copyright © 1999,2000 ARM Limited. All rights reserved. ARM DUI 0067B
-

Example 4-5

__LC_COLLATE_DEF(lccoll_c, "C")
{
0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 
0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f,
...
0xf0, 0xf1, 0xf2, 0xf3, 0xf4, 0xf5, 0xf6, 0xf7,
0xf8, 0xf9, 0xfa, 0xfb, 0xfc, 0xfd, 0xfe, 0xff
};

4.6.6  _get_lc_monetary()

_get_lc_monetary() must return a pointer to an __lc_monetary_blk structure. 
Use the macros in Example 4-6 to create the structure.

Example 4-6

__LC_MONETARY_DEF(lcmonetary_c, "C",
                  "","","","","","","",
                  255,255,255,255,255,255,255,255)
__LC_MONETARY_DEF(lcmonetary_iso8859_1, "ISO8859-1",
                  "STG ", "\243", ".", ",", "\3", "", "-",
                  2, 2, 1, 0, 1, 0, 1, 2)
__LC_INDEX_END(lcmonetary_dummy)

void const *_get_lc_monetary(void const * nullpara, char const *name) {
    return _findlocale(&lcmonetary_c_index, name);
}

void test_lc_monetary(void) {
    struct lconv lc;
    /*Test changing currency string as we change locales.*/
    EQS(setlocale(LC_MONETARY, NULL), "C");         /* verify starting point */
    _get_lconv(&lc); EQS(lc.currency_symbol, "");
    EQI(!setlocale(LC_MONETARY, "ISO8859-1"), 0);   /* setlocale should work */
    EQS(setlocale(LC_MONETARY, NULL), "ISO8859-1");
    _get_lconv(&lc); EQS(lc.currency_symbol, "\243");
    EQI(!setlocale(LC_MONETARY, "C"), 0);           /* setlocale should work */
    EQS(setlocale(LC_MONETARY, NULL), "C");   _get_lconv(&lc);
    EQS(lc.currency_symbol, "");   
}



The C and C++ Libraries

ARM DUI 0067B Copyright © 1999,2000 ARM Limited. All rights reserved. 4-35
-

4.6.7  _get_lc_numeric()

_get_lc_numeric() must return a pointer to an __lc_numeric_blk structure. Use 
the macros in Example 4-7 to create the structure.

Example 4-7 

__LC_NUMERIC_DEF(lcnumeric_c, "C",".","","")
__LC_NUMERIC_DEF(lcnumeric_iso8859_1, "ISO8859-1",
                ".", ",", "\3")
__LC_NUMERIC_DEF(lcnumeric_fr, "fr", ",", ".", "\3")
__LC_INDEX_END(lcnumeric_dummy)

void const *_get_lc_numeric(void const *null, char const *name) {
    return _findlocale(&lcnumeric_c_index, name);
}

void test_lc_numeric(void) {
    double pi = 4*atan(1.);
    char buf[20];

    /* Test changing decimal point as we shift in and out of French
     * numeric locale. */

    EQS(setlocale(LC_NUMERIC, NULL), "C");         /* verify starting point */
    snprintf(buf, sizeof(buf), "%g", pi); EQS(buf, "3.14159");
    EQI(!setlocale(LC_NUMERIC, "ISO8859-1"), 0);   /* setlocale should work */
    EQS(setlocale(LC_NUMERIC, NULL), "ISO8859-1");
    snprintf(buf, sizeof(buf), "%g", pi); EQS(buf, "3.14159");
    EQI(!setlocale(LC_NUMERIC, "fr"), 0);          /* setlocale should work */
    EQS(setlocale(LC_NUMERIC, NULL), "fr");
    snprintf(buf, sizeof(buf), "%g", pi); EQS(buf, "3,14159");
    EQI(!setlocale(LC_NUMERIC, "C"), 0);           /* setlocale should work */
    EQS(setlocale(LC_NUMERIC, NULL), "C");
    snprintf(buf, sizeof(buf), "%g", pi); EQS(buf, "3.14159");
}

The offset fields are interpreted similarly to __lc_monetary_blk.



The C and C++ Libraries

4-36 Copyright © 1999,2000 ARM Limited. All rights reserved. ARM DUI 0067B
-

4.6.8  _get_lc_time()

_get_lc_time() must return a pointer to a __lc_time_blk structure. Use the 
macros in Example 4-8 to create the structure.

Example 4-8 Time structure

__LC_TIME_DEF(lctime_c, "C",
              "Sun\0Mon\0Tue\0Wed\0Thu\0Fri\0Sat",
              "Sunday\0xxx" "Monday\0xxx" "Tuesday\0xx" "Wednesday\0"
              "Thursday\0x" "Friday\0xxx" "Saturday\0",
              "Jan\0Feb\0Mar\0Apr\0May\0Jun\0Jul\0Aug\0Sep\0Oct\0Nov\0Dec",
              "January\0xx" "February\0x" "March\0xxxx" "April\0xxxx"
              "May\0xxxxxx" "June\0xxxxx" "July\0xxxxx" "August\0xxx"
              "September\0" "October\0xx" "November\0x" "December\0",
              "AM", "PM",
              "%x %X", "%d %b %Y", "%H:%M:%S")
__LC_TIME_DEF(lctime_fr, "fr",
              "dim\0lun\0mar\0mer\0jeu\0ven\0sam",
              "dimanche\0" "lundi\0xxx" "mardi\0xxx" "mercredi\0"
              "jeudi\0xxx" "vendredi\0" "samedi\0x",
              "jan\0xfev\0xmars\0avr\0xmai\0xjuin\0"
              "juil\0aout\0sep\0xoct\0xnov\0xdec\0",
              "janvier\0xx" "fevrier\0xx" "mars\0xxxxx" "avril\0xxxx"
              "mai\0xxxxxx" "juin\0xxxxx" "juillet\0xx" "aout\0xxxxx"
              "septembre\0" "octobre\0xx" "novembre\0x" "decembre\0",
              "AM", "PM", "%A, %d %B %Y, %X", "%d.%m.%y", "%H:%M:%S")
__LC_INDEX_END(lctime_dummy)

void const *_get_lc_time(void const *null, char const *name) {
    return _findlocale(&lctime_c_index, name);
}

void test_lc_time(void) {
    struct tm tm;
    char timestr[256];

    tm.tm_sec = 13;
    tm.tm_min = 13;
    tm.tm_hour = 23;
    tm.tm_mday = 12;
    tm.tm_mon = 1;
    tm.tm_year = 98;
    tm.tm_wday = 4;
    tm.tm_yday = 42;
    tm.tm_isdst = 0;



The C and C++ Libraries

ARM DUI 0067B Copyright © 1999,2000 ARM Limited. All rights reserved. 4-37
-

    EQS(setlocale(LC_TIME, NULL), "C");      /* verify starting point */
    strftime(timestr, sizeof(timestr), "%c", &tm);
    EQS(timestr, "12 Feb 1998 23:13:13");
    EQI(!setlocale(LC_TIME, "fr"), 0);      /* setlocale should work */
    EQS(setlocale(LC_TIME, NULL), "fr");
    strftime(timestr, sizeof(timestr), "%c", &tm);
    EQS(timestr, "jeudi, 12 fevrier 1998, 23:13:13");
    EQI(!setlocale(LC_TIME, "C"), 0);      /* setlocale should work */
    EQS(setlocale(LC_TIME, NULL), "C");
    strftime(timestr, sizeof(timestr), "%c", &tm);
    EQS(timestr, "12 Feb 1998 23:13:13");
}

The offset fields are interpreted similarly to __lc_monetary_blk.

4.6.9  _get_lconv()

_get_lconv() sets the components of an lconv structure with values appropriate for 
the formatting of numeric quantities. 

Syntax

void _get_lconv(struct lconv* lc)

Implementation

This extension to ANSI does not use any static data. If you are building an application 
that must conform strictly to the ANSI C standard, use localeconv() instead.

Returns

The existing lconv structure lc is filled with formatting data. 

4.6.10  localeconv()

localeconv() creates and sets the components of an lconv structure with values 
appropriate for the formatting of numeric quantities according to the rules of the current 
locale. 

Syntax

struct lconv * localeconv(void)



The C and C++ Libraries

4-38 Copyright © 1999,2000 ARM Limited. All rights reserved. ARM DUI 0067B
-

Implementation

The members of the structure with type char are strings, any of which, except 
decimal_point, can point to "" to indicate that the value is not available in the current 
locale or is of zero length. 

The members with type char are non-negative numbers. Any of the members can be 
CHAR_MAX to indicate that the value is not available in the current locale.

The members included in lconv are described in The lconv structure on page 4-45.

Returns

The function returns a pointer to the filled-in object. The structure pointed to by the 
return value will not be modified by the program, but might be overwritten by a 
subsequent call to the localeconv() function. In addition, calls to the setlocale() 
function with categories LC_ALL, LC_MONETARY, or LC_NUMERIC might overwrite the 
contents of the structure.

4.6.11  setlocale()

Selects the appropriate locale as specified by the category and locale arguments. 

Syntax

char* setlocale(int category, const char* locale)

Implementation

The setlocale() function is be used to change or query part or all of the current 
locale. The effect of the category argument for each value is described below. A value 
of "C" for locale specifies the minimal environment for C translation. An empty string, 
"", for locale specifies the implementation-defined native environment. At program 
startup the equivalent of setlocale(LC_ALL, "C") is executed.



The C and C++ Libraries

ARM DUI 0067B Copyright © 1999,2000 ARM Limited. All rights reserved. 4-39
-

The values of category are:

LC_COLLATE 
Affects the behavior of strcoll().

LC_CTYPE Affects the behavior of the character handling functions. 

LC_MONETARY 
Affects the monetary formatting information returned by 
localeconv().

LC_NUMERIC 
Affects the decimal-point character for the formatted input/output 
functions and the string conversion functions and the numeric formatting 
information returned by localeconv().

LC_TIME Could affect the behavior of strftime(). For currently supported 
locales, the option has no effect. 

LC_ALL Affects all locale categories. This is the bitwise OR of the above 
categories.

Returns

If a pointer to string is given for locale and the selection can be honoured, the string 
associated with the specified category for the new locale is returned. If the selection can 
not be honoured, a null pointer is returned and the locale is not changed. 

A null pointer for locale causes the string associated with the category for the current 
locale to be returned and the locale is not changed. 

If category is LC_ALL and the most recent successful locale-setting call used a 
category other than LC_ALL a composite string may need to be returned. The string 
returned is such that a subsequent call with that string and its associated category will 
restore that part of the program’s locale. The string returned will not be modified by the 
program, but might be overwritten by a subsequent call to setlocale().



The C and C++ Libraries

4-40 Copyright © 1999,2000 ARM Limited. All rights reserved. ARM DUI 0067B
-

4.6.12  _findlocale()

findlocale() searches the locale database and returns a pointer to the data block for 
the requested category and locale.

Syntax

void const* _findlocale(void const* index, char const *name)

Returns

Returns a pointer to the requested data block.

4.6.13  __LC_CTYPE_DEF

This macro is used to create CTYPE blocks. The definition from rt_locale.h and 
sample code are shown in Example 4-9.

Example 4-9

#define __LC_CTYPE_DEF(sym,ln) \
static const int sym##_index = ~3 & (3 + (268+(~3 & (3 + sizeof(ln))))); \
static const char sym##_lname[~3 & (3 + sizeof(ln))] = ln; \
static const int sym##_pname = -4-(~3 & (3 + sizeof(ln))); \
static const char sym##_start = 0; \
static const char sym##_table[256] =

For all the macros, the first two arguments are a symbol prefix and a locale name. The 
resulting locale block will be addressed by the expression &symprefix_start, and 
the index entry by the expression &symprefix_index.

Usage

See _get_lc_ctype() on page 4-28.



The C and C++ Libraries

ARM DUI 0067B Copyright © 1999,2000 ARM Limited. All rights reserved. 4-41
-

4.6.14  __LC_COLLATE_DEF

This macro is used to create collate blocks used when sorting ASCII characters. The 
definition from rt_locale.h, the definition of a macro for creating an empty table, 
and sample code are shown in Example 4-10.

For all the macros, the first two arguments are a symbol prefix and a locale name. The 
resulting locale block will be addressed by the expression &symprefix_start, and 
the index entry by the expression &symprefix_index.

Example 4-10 Macro for use with array

#define __LC_COLLATE_DEF(sym,ln) \
static const int sym##_index = ~3&(3+(268+(~3&(3+sizeof(ln))))); \
static const char sym##_lname[~3 & (3 + sizeof(ln))] = ln; \
static const int sym##_pname = -4-(~3 & (3 + sizeof(ln))); \
static const int sym##_start = 4; \
static const char sym##_table[] =

Example 4-11 Macro that generates default table

#define __LC_COLLATE_TRIVIAL_DEF(sym,ln) \
static const int sym##_index = ~3&(3+(12+(~3&(3+sizeof(ln))))); \
static const char sym##_lname[~3 & (3 + sizeof(ln))] = ln; \
static const int sym##_pname = -4-(~3 & (3 + sizeof(ln))); \
static const int sym##_start = 0;

Usage

See _get_lc_collate() on page 4-31.

4.6.15  __LC_TIME_DEF

This macro is used to create blocks used when formatting time or date values. The 
definition from rt_locale.h and sample code are shown in Example 4-12.

For all the macros, the first two arguments are a symbol prefix and a locale name. The 
resulting locale block will be addressed by the expression &symprefix_start, and 
the index entry by the expression &symprefix_index.



The C and C++ Libraries

4-42 Copyright © 1999,2000 ARM Limited. All rights reserved. ARM DUI 0067B
-

Example 4-12

#define __LC_TIME_DEF(sym,ln,wa,wf,ma,mf,am,pm,dt,df,tf) \
static const int sym##_index = ~3 & (3 + (sizeof(wa)+sizeof(wf)+sizeof(ma)+ \
sizeof(mf)+sizeof(am)+sizeof(pm)+ \
sizeof(dt)+sizeof(df)+sizeof(tf)+ \
60+(~3 & (3 + sizeof(ln))))); \
static const char sym##_lname[~3 & (3 + sizeof(ln))] = ln; \
static const int sym##_pname = -4-(~3 & (3 + sizeof(ln))); \
static const int sym##_start = 52; \
static const int sym##_wfoff = (sizeof(wa)+52); \
static const int sym##_maoff = (sizeof(wa)+sizeof(wf)+52); \
static const int sym##_mfoff = (sizeof(wa)+sizeof(wf)+sizeof(ma)+52); \
static const int sym##_amoff = (sizeof(wa)+sizeof(wf)+sizeof(ma)+ \
sizeof(mf)+52); \
static const int sym##_pmoff = (sizeof(wa)+sizeof(wf)+sizeof(ma)+ \
sizeof(mf)+sizeof(am)+52); \
static const int sym##_dtoff = (sizeof(wa)+sizeof(wf)+sizeof(ma)+ \
sizeof(mf)+sizeof(am)+sizeof(pm)+52); \
static const int sym##_dfoff = (sizeof(wa)+sizeof(wf)+sizeof(ma)+ \
sizeof(mf)+sizeof(am)+sizeof(pm)+ \
sizeof(dt)+52); \
static const int sym##_tfoff = (sizeof(wa)+sizeof(wf)+sizeof(ma)+ \
sizeof(mf)+sizeof(am)+sizeof(pm)+ \
sizeof(dt)+sizeof(df)+52); \static const int sym##_wasiz = (sizeof(wa)/7); \
static const int sym##_wfsiz = (sizeof(wf)/7); \
static const int sym##_masiz = (sizeof(ma)/12); \
static const int sym##_mfsiz = (sizeof(mf)/12); \
static const char sym##_watxt[] = wa; \
static const char sym##_wftxt[] = wf; \
static const char sym##_matxt[] = ma; \
static const char sym##_mftxt[] = mf; \
static const char sym##_amtxt[] = am; \
static const char sym##_pmtxt[] = pm; \
static const char sym##_dttxt[] = dt; \
static const char sym##_dftxt[] = df; \
static const char sym##_tftxt[] = tf;

Usage

See _get_lc_time() on page 4-36.



The C and C++ Libraries

ARM DUI 0067B Copyright © 1999,2000 ARM Limited. All rights reserved. 4-43
-

4.6.16  __LC_NUMERIC_DEF

This macro is used to create blocks used when formatting numbers. The definition from 
rt_locale.h and sample code are shown in Example 4-13.

For all the macros, the first two arguments are a symbol prefix and a locale name. The 
resulting locale block will be addressed by the expression &symprefix_start, and 
the index entry by the expression &symprefix_index.

Example 4-13

#define __LC_NUMERIC_DEF(sym,ln,dp,ts,gr) \
static const int sym##_index = ~3 & (3 + (sizeof(dp)+sizeof(ts)+sizeof(gr)+ \
20) + (~3 & (3 + sizeof(ln)))); \
static const char sym##_lname[~3 & (3 + sizeof(ln))] = ln; \
static const int sym##_pname = -4-(~3 & (3 + sizeof(ln))); \
static const int sym##_start = 12; \
static const int sym##_tsoff = (sizeof(dp)+12); \
static const int sym##_groff = (sizeof(dp)+sizeof(ts)+12); \
static const char sym##_dptxt[] = dp; \
static const char sym##_tstxt[] = ts; \
static const char sym##_grtxt[] = gr;

Usage

See _get_lc_numeric() on page 4-35.

4.6.17  __LC_MONETARY_DEF

This macro is used to create blocks used when formatting monetary values. The 
definition from rt_locale.h and sample code are shown in Example 4-14.

For all the macros, the first two arguments are a symbol prefix and a locale name. The 
resulting locale block will be addressed by the expression &symprefix_start, and 
the index entry by the expression &symprefix_index.

Example 4-14

#define __LC_MONETARY_DEF(sym,ln,ic,cs,md,mt,mg,ps,ns, \
                          id,fd,pc,pS,nc,nS,pp,np) \
static const int sym##_index = ~3 & (3 + (sizeof(ic)+sizeof(cs)+sizeof(md)+ \
                                          sizeof(mt)+sizeof(mg)+sizeof(ps)+ \
                                          sizeof(ns)+44) \
                                     + (~3 & (3 + sizeof(ln)))); \



The C and C++ Libraries

4-44 Copyright © 1999,2000 ARM Limited. All rights reserved. ARM DUI 0067B
-

static const char sym##_lname[~3 & (3 + sizeof(ln))] = ln; \
static const int sym##_pname = -4-(~3 & (3 + sizeof(ln))); \
static const char sym##_start = id; \
static const char sym##_fdchr = fd; \
static const char sym##_pcchr = pc; \
static const char sym##_pSchr = pS; \
static const char sym##_ncchr = nc; \
static const char sym##_nSchr = nS; \
static const char sym##_ppchr = pp; \
static const char sym##_npchr = np; \
static const int sym##_icoff = 36; \
static const int sym##_csoff = (sizeof(ic)+36); \
static const int sym##_mdoff = (sizeof(ic)+sizeof(cs)+36); \
static const int sym##_mtoff = (sizeof(ic)+sizeof(cs)+sizeof(md)+36); \
static const int sym##_mgoff = (sizeof(ic)+sizeof(cs)+sizeof(md)+ \
                                sizeof(mt)+36); \
static const int sym##_psoff = (sizeof(ic)+sizeof(cs)+sizeof(md)+ \
                                sizeof(mt)+sizeof(mg)+36); \
static const int sym##_nsoff = (sizeof(ic)+sizeof(cs)+sizeof(md)+ \
                                sizeof(mt)+sizeof(mg)+sizeof(ps)+36); \
static const char sym##_ictxt[] = ic; \
static const char sym##_cstxt[] = cs; \
static const char sym##_mdtxt[] = md; \
static const char sym##_mttxt[] = mt; \
static const char sym##_mgtxt[] = mg; \
static const char sym##_pstxt[] = ps; \
static const char sym##_nstxt[] = ns;

Usage

See _get_lc_monetary() on page 4-34.

4.6.18  __LC_INDEX_END

This macro is used to declare the end of an index. symprefix is provided to ensure a 
unique name. The definition from rt_locale.h and sample code are shown in 
Example 4-15.

Example 4-15

#define __LC_INDEX_END(symprefix)  static const int symprefix##_index = 0;



The C and C++ Libraries

ARM DUI 0067B Copyright © 1999,2000 ARM Limited. All rights reserved. 4-45
-

4.6.19  The lconv structure

The lconv structure contains numeric formatting information. The structure is filled by 
the functions _get_lconv() and localeconv(). The setlocale() function must 
be called to initialize the lconv structure prior to using the structure in any other 
functions.

The definition of lconv from locale.h is shown in Example 4-16.

Example 4-16 lconv structure

struct lconv {
  char *decimal_point;
       /* The decimal point character used to format non-monetary quantities */
  char *thousands_sep;
       /* The character used to separate groups of digits to the left of the */
       /* decimal point character in formatted non-monetary quantities.      */
  char *grouping;
       /* A string whose elements indicate the size of each group of digits  */
       /* in formatted non-monetary quantities. See below for more details.  */
  char *int_curr_symbol;
       /* The international currency symbol applicable to the current locale.*/
       /* The first three characters contain the alphabetic international    */
       /* currency symbol in accordance with those specified in ISO 4217.    */
       /* Codes for the representation of Currency and Funds. The fourth     */
       /* character (immediately preceding the null character) is the        */
       /* character used to separate the international currency symbol from  */
       /* the monetary quantity.                                             */
  char *currency_symbol;
       /* The local currency symbol applicable to the current locale.        */
  char *mon_decimal_point;
       /* The decimal-point used to format monetary quantities.              */
  char *mon_thousands_sep;
       /* The separator for groups of digits to the left of the decimal-point*/
       /* in formatted monetary quantities.                                  */
  char *mon_grouping;
       /* A string whose elements indicate the size of each group of digits  */
       /* in formatted monetary quantities. See below for more details.      */
  char *positive_sign;
       /* The string used to indicate a non-negative-valued formatted        */
       /* monetary quantity.                                                 */
  char *negative_sign;
       /* The string used to indicate a negative-valued formatted monetary   */
       /* quantity.                                                          */
  char int_frac_digits;
       /* The number of fractional digits (those to the right of the         */



The C and C++ Libraries

4-46 Copyright © 1999,2000 ARM Limited. All rights reserved. ARM DUI 0067B
-

       /* decimal-point) to be displayed in an internationally formatted     */
       /* monetary quantities.                                               */
  char frac_digits;
       /* The number of fractional digits (those to the right of the         */
       /* decimal-point) to be displayed in a formatted monetary quantity.   */
  char p_cs_precedes;
       /* Set to 1 or 0 if the currency_symbol respectively precedes or      */
       /* succeeds the value for a non-negative formatted monetary quantity. */
  char p_sep_by_space;
       /* Set to 1 or 0 if the currency_symbol respectively is or is not     */
       /* separated by a space from the value for a non-negative formatted   */
       /* monetary quantity.                                                 */
  char n_cs_precedes;
       /* Set to 1 or 0 if the currency_symbol respectively precedes or      */
       /* succeeds the value for a negative formatted monetary quantity.     */
  char n_sep_by_space;
       /* Set to 1 or 0 if the currency_symbol respectively is or is not     */
       /* separated by a space from the value for a negative formatted       */
       /* monetary quantity.                                                 */
  char p_sign_posn;
       /* Set to a value indicating the position of the positive_sign for a  */
       /* non-negative formatted monetary quantity. See below for more details*/
  char n_sign_posn;
       /* Set to a value indicating the position of the negative_sign for a  */
       /* negative formatted monetary quantity. */
};

The elements of grouping and non_grouping are interpreted as follows:

CHAR_MAX No further grouping is to be performed.

0 The previous element is repeated for the remainder of the digits.

other The value is the number of digits that compromise the current group. The 
next element is examined to determine the size of the next group of digits 
to the left of the current group.

The value of p_sign_posn and n_sign_posn is interpreted as follows:

0 Parentheses surround the quantity and currency symbol.

1 The sign string precedes the quantity and currency symbol.

2 The sign string is after the quantity and currency symbol.

3 The sign string immediately proceeds the currency symbol.

4 The sign string immediately succeeds the currency symbol.



The C and C++ Libraries

ARM DUI 0067B Copyright © 1999,2000 ARM Limited. All rights reserved. 4-47
-

4.7  Tailoring error signalling, error handling, and program exit

All trap or error signals raised by the C library go through the __raise() function. You 
can re-implement this function or the lower-level functions that it uses.

Caution
The IEEE 754 standard for floating-point processing states that the default response to 
an exception is to proceed without a trap. You can modify floating-point error handling 
by tailoring the functions and definitions in fenv.h. See also Chapter 8 Floating-point 
Support.

See the rt_misc.h include file for more information on error-related functions.

The trap and error-handling functions are shown in Table 4-8.

 Table 4-8 Trap and error handling

Function Description

_sys_exit() Called, eventually, by all exits from the library. 
See _sys_exit() on page 4-48.

errno Is a static variable used with error handling. See 
errno on page 4-48.

__raise() Raises a signal to indicate a runtime 
anomaly. See __raise() on page 4-49.

__rt_errno_addr() This function is called to obtain the address 
of the C library. See __rt_errno_addr() on 
page 4-49.

__rt_fp_status_addr() This function is called to obtain the address 
of the fp status word. See 
__rt_fp_status_addr() on page 4-51.

__default_signal_handler() Displays an error indication to the user. See 
__default_signal_handler() on page 4-50.

_ttywrch() The default implementation of _ttywrch is 
semihosted and therefore it uses the 
semihosting SWI. See _ttywrch() on 
page 4-51.



The C and C++ Libraries

4-48 Copyright © 1999,2000 ARM Limited. All rights reserved. ARM DUI 0067B
-

4.7.1  _sys_exit()

The library exit function. All exits from the library eventually call _sys_exit(). 

Syntax

void _sys_exit(int return_code)

Implementation

This function must not return. You can intercept application exit at a higher level by 
either:

• Implementing the C library function exit() as part of your application. You will 
lose atexit() processing and library shutdown if you do this.

• Implementing the function __rt_exit(int n) as part of your application. You 
will lose library shutdown if you do this, but atexit() processing will still be 
performed when exit() is called or main() returns.

Returns

The return code is advisory. An implementation might attempt to pass it to the execution 
environment.

4.7.2  errno

The C library errno variable is defined in the implicit static data area of the library. 
This area is identified by __user_libspace(). It occupies part of initial stack space 
used by the functions that established the runtime stack. The definition of errno is:

(*(volatile int *) __rt_errno_addr())

You can define __rt_errno_addr() if you want to place errno at a user-defined 
location instead of the default location identified by __user_libspace(). 

Returns

The default implementation is a veneer on __user_libspace() that returns the 
address of the status word. A suitable default definition is given in the C library standard 
headers.



The C and C++ Libraries

ARM DUI 0067B Copyright © 1999,2000 ARM Limited. All rights reserved. 4-49
-

4.7.3  __rt_errno_addr()

This function is called to obtain the address of the C library errno variable when the C 
library attempts to read or write errno. A default implementation is provided by the 
library. It is very unlikely that you would have to re-implement this function.

Syntax

volatile int *__rt_errno_addr(void)

4.7.4  __raise()

This function raises a signal to indicate a runtime anomaly.

Syntax

int __raise(int major, int minor)

major Is an integer that holds the signal number.

minor Is an integer or string constant or variable. 

Implementation

This function calls the normal C signal mechanism or the default signal handler. See 
also _ttywrch() on page 4-51 for more information.

You can replace the __raise() function by defining:

int __raise(int signal, int argument)

This allows you to bypass the C signal mechanism and its data-consuming signal 
handler vector, but otherwise gives essentially the same interface as:

void __default_signal_handler(int signal, int arg)

Returns

There are three possibilities for __raise() return condition: 

no return The handler performs a long jump or restart.

0 The signal was handled.

non-0 The calling code should pass that return value to the exit code. The 
default library implementation calls _sys_exit(rc) if __raise() 
returns a non-zero return code rc.



The C and C++ Libraries

4-50 Copyright © 1999,2000 ARM Limited. All rights reserved. ARM DUI 0067B
-

4.7.5  __rt_raise()

This function raises a signal to indicate a runtime anomaly.

Syntax

void __rt_raise(int signal, int type)

signal Is an integer that holds the signal number.

type Is an integer or string constant or variable. 

Implementation

This function calls __raise(). See __raise() on page 4-49 for more information.

Depending on the value returned from __raise(): 

no return The handler performed a long jump or restart and __rt_raise() does 
not regain control.

0 The signal was handled and __rt_raise() exits.

non-0 The default library implementation calls _sys_exit(rc) if __raise() 
returns a non-zero return code rc.

4.7.6  __default_signal_handler()

This function handles a raised signal. The default action is to print an error message and 
exit.

Syntax

void __default_signal_handler(int signal, int arg)

Implementation

The default signal handler uses _ttywrch() to print a message and calls 
_sys_exit() to exit.You can replace the default signal handler by defining:

void __default_signal_handler(int signal, int argument)



The C and C++ Libraries

ARM DUI 0067B Copyright © 1999,2000 ARM Limited. All rights reserved. 4-51
-

4.7.7  _ttywrch()

This function writes a character to the console. The console might have been redirected. 
This function may be used as a last resort error handling routine.

Syntax

void _ttywrch(int ch)

Implementation

The default implementation of this function uses the semihosting SWI. 

You can redefine this function, or __raise(), even if there is no other input/output. 
For example, it might write an error message to a log kept in non-volatile memory.

4.7.8  __rt_fp_status_addr()

This function returns the address of the floating-point status register.

Syntax

unsigned* _rt_fp_status_addr(void)

Implementation

If __rt_fp_status_addr() is not defined, the default implementation from the C 
library is used. The value is initialized when __rt_lib_init() calls _fp_init(). 
The constants for the status word are listed in fenv.h. The default fp status is 0.



The C and C++ Libraries

4-52 Copyright © 1999,2000 ARM Limited. All rights reserved. ARM DUI 0067B
-

4.8  Tailoring storage management

This section describes the functions from rt_heap.h that you can define if you are 
tailoring memory management. There are also two helper functions that you can call 
from your heap implementation.

See the rt_heap.h and rt_memory.h include files for more information on 
memory-related functions.

4.8.1  Support for malloc

malloc(), realloc(), calloc(), and free() are built on a heap abstract data type. 
You can either:

• Choose between Heap1 or Heap2, the two provided heap implementations.

• Write your own heap implementation of the abstract data type for heap. See 
Creating your own storage-management system on page 4-54.

Heap1: Standard heap implementation

Heap1, the default implementation, implements the smallest and simplest heap 
manager. The heap is managed as a singly-linked list of free blocks held in increasing 
address order. The allocation policy is first-fit by address. 

This implementation has low overheads, but the cost of malloc() or free() grows 
linearly with the number of free blocks. The smallest block that can be allocated is 8 
bytes. If you expect more than 100 unallocated blocks you should use Heap2. 

Heap2: Alternative heap implementation

Heap2 provides a compact implementation with the cost of malloc() or free() 
growing logarithmically with the number of free blocks. The allocation policy is first-fit 
by address. The smallest block that can be allocated is 8 bytes and there is an overhead 
of 4 bytes. 

Heap2 is recommended when near constant-time performance is required in the 
presence of hundreds of free blocks. To select the alternative standard implementation, 
IMPORT from assembly language, or call from C, the symbol

 __use_realtime_heap()

You can also define your own heap implementation. See Creating your own 
storage-management system on page 4-54 for more information.



The C and C++ Libraries

ARM DUI 0067B Copyright © 1999,2000 ARM Limited. All rights reserved. 4-53
-

Using Heap2

The Heap2 real-time heap implementation needs to know how much address space the 
heap will span. The smaller the address range, the more efficient the algorithm will be.

By default, the heap extent is taken to be 16MB starting at the beginning of the heap 
(defined as the start of the first chunk of memory given to the heap manager by 
__rt_initial_stackheap() or __rt_heap_extend()).

The heap bounds are given by: 

struct __heap_extent {
       unsigned base, range;};
__value_in_regs struct __heap_extent __user_heap_extent(
       unsigned defaultbase, unsigned defaultsize);

The function prototype for __user_heap_extent() is in rt_misc.h.

The Heap1 algorithm does not require the bounds on the heap extent, therefore it never 
calls this function.

You will need to redefine __user_heap_extent() if:

• You require a heap to span more than 16MB of address space.

• Your memory model is able to supply a block of memory at a lower address than 
the first one supplied.

• You know in advance that the address space bounds of your heap are small. (In 
this case it is not necessary to redefine __user_heap_extent(), but it does 
speed up the heap algorithms if you do.)

The input parameters are the default values that would be used if this routine were not 
defined. You can, for example, leave the default base value unchanged and just adjust 
the size. 

Note

The size field returned must be a power of two. You can set your heap extent to 4GB by 
returning zero for size.



The C and C++ Libraries

4-54 Copyright © 1999,2000 ARM Limited. All rights reserved. ARM DUI 0067B
-

Using a heap implementation from bare machine C

To use a heap implementation in an application that does not define main() and does 
not initialize the C library:

1. Call _init_alloc(base, top) to define the base and top of the memory you 
want to manage as a heap.

2. Define the function unsigned __rt_heap_extend(unsigned size, void 
** block) to handle calls to extend the heap when it becomes full.

alloca()

alloca() behaves identically to malloc() except that alloca() has automatic 
garbage collection (see alloca() on page 4-93).

4.8.2  Creating your own storage-management system

You can implement the heap functions in Table 4-9 to create a new storage-management 
system.

 Table 4-9 Heap functions

Function Description

__Heap_Descriptor You must define your own implementation of the 
abstract data type for heap. See 
__Heap_Descriptor on page 4-55.

__Heap_Initialize() Initializes the heap. See __Heap_Initialize() on 
page 4-55

__Heap_DescSize() Returns the size of the __Heap_Descriptor 
structure. See __Heap_DescSize() on page 4-56

__Heap_ProvideMemory() Called to increase the size of the heap. See 
__Heap_ProvideMemory() on page 4-56

__Heap_Alloc() Allocates memory from the heap to the 
application. See __Heap_Alloc() on page 4-57

__Heap_Free() Returns previously allocated space to the heap. 
See __Heap_Free() on page 4-57

__Heap_Realloc() Adjusts the size of an already allocated block. See 
__Heap_Realloc() on page 4-57



The C and C++ Libraries

ARM DUI 0067B Copyright © 1999,2000 ARM Limited. All rights reserved. 4-55
-

4.8.3  __Heap_Descriptor

You must define your own implementation of the abstract data type for heap. A C 
header file describing this abstract data type is provided in rt_heap.h. You must 
provide the interior definition of the structure so that the other functions can find the 
heap data. Typical contents are given in Example 4-17.

Example 4-17

struct __Heap_Descriptor {
  void *my_first_free_block;
  void *my_heap_limit;
}

Your heap descriptor is set by __Heap_Initialize() and is passed to the other heap 
functions, for example __Heap_Alloc() and __Heap_Free().

4.8.4  __Heap_Initialize()

Initializes the heap.

Syntax

void __Heap_Initialize( struct __Heap_Descriptor*h)

__Heap_Stats() Called from __heapstats() to print statistics 
about the state of the heap. See __Heap_Stats() on 
page 4-58

__Heap_Valid() Called to perform a consistency check on the 
heap. See __Heap_Valid() on page 4-58

__Heap_Full() Attempts to acquire a new block from the system. 
You must not re-implement this function. See 
__Heap_Full() on page 4-59

__Heap_Broken() Called when an inconsistency in the heap is 
detected. See __Heap_Broken() on page 4-59

 Table 4-9 Heap functions (Continued)

Function Description



The C and C++ Libraries

4-56 Copyright © 1999,2000 ARM Limited. All rights reserved. ARM DUI 0067B
-

Implementation

This is called at initialization. You should redefine it to set up the fields in your heap 
descriptor structure to correct initial values. A typical linked-list heap would just 
initialize the first_free_block pointer to NULL to indicate that there are no free blocks in 
the heap.

4.8.5  __Heap_DescSize()

Returns the size of the __Heap_Descriptor structure.

Syntax

int __Heap_DescSize(int 0)

Implementation

This is called at initialization. It should return the size of your heap descriptor structure. 
In almost all cases the implementation in Example 4-18 is sufficient.

Example 4-18

extern int __Heap_DescSize(int zero) {return sizeof(__Heap_Descriptor);}

This routine is needed so that the library initialization can find an initial piece of 
memory big enough to be the heap descriptor.

4.8.6  __Heap_ProvideMemory()

Called to increase the size of the heap.

Syntax

void __Heap_ProvideMemory(struct __Heap_Descriptor* h, void* 
base, size_t size)

Implementation

This is called when the system provides a chunk of memory for use by the heap. The 
parameters are your heap descriptor, a pointer to the new block of memory, and the size 
of the block. A typical __Heap_ProvideMemory() implementation might set up the 
new block of memory as a free-list entry and add it to the free chain.



The C and C++ Libraries

ARM DUI 0067B Copyright © 1999,2000 ARM Limited. All rights reserved. 4-57
-

4.8.7  __Heap_Alloc()

Allocates memory from the heap to the application.

Syntax

void __Heap_Alloc( struct __Heap_Descriptor* h, size_t size)

Implementation

This is called from malloc(), and should return a pointer to size bytes of memory 
allocated from the heap, or NULL if nothing can be allocated. You must ensure that the 
size of the block can be determined when it is time to free it. The returned block size is 
typically stored in the word just before its start address.

4.8.8  __Heap_Free()

Returns previously allocated space to the heap.

Syntax

void __Heap_Free( struct __Heap_Descriptor* h, void* _blk)

Implementation

This is called from free(), and given a pointer that was previously returned from 
either __Heap_Alloc() or __Heap_Realloc(). It should return the previously 
allocated space to the collection of free blocks in the heap.

4.8.9  __Heap_Realloc()

Adjusts the size of an already allocated block.

Syntax

void __Heap_Realloc( struct __Heap_Descriptor* h, void* _blk, 
size_t size)

Implementation

This is called from realloc(). It is never passed trivial cases such as blk equal to NULL 
or size equal to zero. It should adjust the size of the allocated block blk to become size. 
The reallocation might involve moving the block, copying as much of the data as is 
common to the old and new sizes, and returning the new address.



The C and C++ Libraries

4-58 Copyright © 1999,2000 ARM Limited. All rights reserved. ARM DUI 0067B
-

4.8.10  __Heap_Stats()

Called from __heapstats() to print statistics about the state of the heap.

Syntax

void *__Heap_Stats(__Heap_Descriptor *h, int(*print) (void*, 
char const *format,...), void *printparam)

Implementation

It should output its results using the supplied printf-type print routine, by calls of the 
form: 

print(printparam, "%d free blocks\n", nblocks);

The format of the statistics data is implementation-defined, so it can do nothing. This 
routine is effectively optional, since it will never be called unless the user program calls 
__heapstats().

4.8.11  __Heap_Valid()

Called from __heapvalid() to perform a consistency check on the heap data 
structures and attempt to spot an invalid or corrupted heap.

Syntax

int __Heap_Valid(struct __Heap_Descriptor *h, int(*print) 
(void*, char const *format,...), void *printparam, int verbose)

Implementation

It should output error messages and diagnostics using the supplied printf-type print 
routine. For example, by a call of the form:

print(printparam, "free block at %p is corrupt\n",block_addr);

This routine is effectively optional, since it will never be called unless the user program 
calls __heapvalid().

Returns

The function should return non-zero if the heap is valid or zero if the heap is corrupted. 
It should use print to output error messages if it finds problems in the heap. If the 
verbose parameter is non-zero, it can also output diagnostic data.



The C and C++ Libraries

ARM DUI 0067B Copyright © 1999,2000 ARM Limited. All rights reserved. 4-59
-

4.8.12  __Heap_Full()

Attempts to acquire a new block of at least size bytes from the system. You must not 
reimplement this function. 

Syntax

int __Heap_Full(struct __Heap_Descriptor *h, size_t size)

Implementation

If __Heap_Alloc() or __Heap_Realloc() cannot allocate a block of the required 
size from the memory owned by the heap, then before giving up and returning NULL, 
they can try calling this routine. 

Remember to allow space for heap housekeeping data. If the user asks for 1000 bytes 
and you store a word before every allocated block, you need to ask __Heap_Full() 
for 1004 bytes, not 1000. 

Before calling __Heap_Full(), you must ensure that the heap data structures are in a 
consistent state so that __Heap_ProvideMemory() calls will be able to add the new 
block to the heap successfully.

Returns

If __Heap_Full() is successful, it will call __Heap_ProvideMemory() to add the 
new block to the heap, and return non-zero. If it fails, it will return 0. 

4.8.13  __Heap_Broken()

Called when an inconsistency in the heap is detected. You must not reimplement this 
function. 

Syntax

int __Heap_Full(struct __Heap_Descriptor *h)

Implementation

If __Heap_Alloc(), __Heap_Realloc(), __Heap_Free() or 
__Heap_ProvideMemory() detect an inconsistency in the heap structures they can 
call this function to terminate the program with a suitable error message.



The C and C++ Libraries

4-60 Copyright © 1999,2000 ARM Limited. All rights reserved. ARM DUI 0067B
-

4.9  Tailoring the run-time memory model

This section describes:

• the management of writable memory by the C library as static data, heap, and 
stack

• functions that can be redefined in order to change how writable memory is 
managed.

4.9.1  The memory models

There are two managed memory models that you can select:

Single memory region 
The stack grows downward from the top of the memory region while the 
heap grows upwards from the bottom of the region. This is the default.

Two memory regions 
One memory region is for the stack and the other is for the heap. The size 
of heap region can be zero. The stack region can be in allocated memory 
or inherited from the execution environment.

To use the two-region model rather than the default one-region model, 
IMPORT (from ARM assembly language) or call (from C or C++) the 
symbol __use_two_region_memory. 

The reference to the symbol __use_two_region_memory is used by 
the linker to select the memory model. There is no action taken when the 
code is executed. The reference to the symbol can therefore be located 
anywhere in the source, immediately after main() for example.

Caution
If you use the two-region memory model and do not provide any heap memory, you 
cannot call malloc(), use stdio, or get command-line arguments for main().

If you set the size of the heap region to zero and define __user_heap_extend() as a 
function that can extend the heap, the heap will be created when it is needed.



The C and C++ Libraries

ARM DUI 0067B Copyright © 1999,2000 ARM Limited. All rights reserved. 4-61
-

4.9.2  Controlling the run-time memory model

The behavior of the heap and stack manager can be modified by redefining the functions 
listed in Table 4-10.

The hidden static data for the library is provided by __user_libspace(). The static 
data area is also used as a stack during the library initialization process. This function 
does not normally need to be re-implemented. See Tailoring static data access on 
page 4-23.

4.9.3  Writing your own memory model

If the provided memory models do not meet your requirements, you can write your own. 
A memory model must define the functions described in Table 4-11. All functions are 
ARM-state functions (the library takes care of entry from Thumb state if this is 
required). An incomplete prototype implementation for the model is provided in 
rt_memory.s located in the public sub-directory of the library. 

 Table 4-10 Memory model initialization

Function Description

__user_initial_stackheap() Returns the location of the initial heap. See 
__user_initial_stackheap() on page 4-62.

__user_heap_extend() Returns the size and base address of a heap 
extra block. See __user_heap_extend() on 
page 4-63.

__user_stack_slop() Returns the amount of extra stack. See 
__user_initial_stackheap() on page 4-62.



The C and C++ Libraries

4-62 Copyright © 1999,2000 ARM Limited. All rights reserved. ARM DUI 0067B
-

Use the prototype as a starting point for your own implementation.

4.9.4  __user_initial_stackheap()

Return the locations of the initial heap and stack.

Syntax

struct __initial_stackheap __user_initial_stackheap(unsigned RO, 
unsigned SP, unsigned R2, unsigned SL)

Implementation

If this function is redefined, it must:

• use no more than 64 bytes of stack

• not corrupt registers other than r0 to r3 and ip

• return in r0-r3 respectively the heap base, stack base, heap limit, and stack limit.

The values of sp and sl inherited from the environment are passed as arguments in r1 
and r3, respectively. An implementation of __user_initial_stackheap() that 
uses the semihosting SWI is given by the library in module sys_stackheap.o. 

To create a version of __user_initial_stack_heap() that inherits sp and sl from 
the execution environment and does not have a heap, set r0 and r2 to r3 and return.

The definition of __initial_stackheap in rt_misc.h is:

struct __initial_stackheap{ 
unsigned heap_base, stack_base, heap_limit, stack_limit;} 

 Table 4-11 Memory model functions

Function Description

__rt_stackheap_init Sets the application stack and initial heap. See __rt_stackheap_init() on 
page 4-64.

__rt_heap_extend Returns a new block of memory to add to the heap. See __rt_heap_extend() on 
page 4-65.

__rt_stack_postlongjmp Atomically sets the stack pointer and stack limit pointer to their correct values 
after a call to longjmp. See __rt_stack_postlongjmp() on page 4-66.

__rt_stack_overflow Handles stack overflows. See __rt_stack_overflow() on page 4-65.



The C and C++ Libraries

ARM DUI 0067B Copyright © 1999,2000 ARM Limited. All rights reserved. 4-63
-

Returns

The values returned in r0 to r3 depend on whether the one or two region model is used:

One region (r0,r1) is the single stack region. r1 is greater than r0. r2 and r3 are 
ignored.

Two regions (r0, r2) is the initial heap and (r3, r1) is the initial stack. r2is greater than 
or equal to r0. r3 is less than r1.

4.9.5  __user_heap_extend()

If defined, this function returns the size and base address of a heap extension block.

Syntax

unsigned __user_heap_extend(int 0, unsigned requested_size, void 
**base)

Implementation

There is no default implementation of this function. If you define this function, it must 
have the following characteristics: 

• the returned size must be at least the requested size, or 0 denoting that the request 
could not be honored

• the function is subject only to ATPCS constraints

• the first argument must be zero on entry. The base is returned in the register 
holding this argument.

• size is measured in bytes.

4.9.6  __user_heap_extent()

If defined, this function returns the base address and maximum range of the heap.

Syntax

__value_in_regs  struct __heap_extent 
__user_heap_extent(unsigned ignore1, unsigned ignore2)



The C and C++ Libraries

4-64 Copyright © 1999,2000 ARM Limited. All rights reserved. ARM DUI 0067B
-

Implementation

There is no default implementation of this function. The values of the parameters 
ignore1 and ignore2 are not used by the function. 

4.9.7  __user_stack_slop()

If defined, this function returns the size of the extra stack your system requires below 
sl. The extra stack is in addition to the 256 bytes required by ATPCS. The extra space 
might allow an interrupt handler to execute on your stack or allow a chain of unchecked 
functions calls.

Syntax

__stack_slop __user_stack_slop(void)

Implementation

There is no default implementation of this function.

Returns

If you define this function, it must return the following values in registers: 

r0 The amount of extra stack (measured in bytes) that must always be 
available so an interrupt handler can execute on the stack at an arbitrary 
instant.

r1 The amount of extra stack (measured in bytes) that must be available after 
stack overflow to support recovery from overflow.

4.9.8  __rt_stackheap_init()

This function is responsible for setting up sp and sl pointing at a valid stack, and must 
also return in r0 and r1 the lower and upper bounds of a chunk of memory that can be 
used as a heap. (It can decline to do the latter, by returning r0 equal to r1. In this case, 
the first call to malloc will result in a call to __rt_heap_extend, described in 
__rt_heap_extend() on page 4-65.) An incomplete prototype implementation is in 
rt_memory.s. Because it is the first function called from entry, it need not preserve 
any other registers. On entry to this function, sp and sl are exactly as they were on entry 
to the whole application, so a valid stack can be inherited from the execution 
environment if desired. (sl is only required if stack checking is used.)



The C and C++ Libraries

ARM DUI 0067B Copyright © 1999,2000 ARM Limited. All rights reserved. 4-65
-

4.9.9  __rt_stack_overflow()

This function is called if a stack overflow occurs. An incomplete prototype 
implementation is in rt_memory.s

Implementation

This function is called with ip equal to the desired new sp, and with sp up to 256 bytes 
below sl as well. 

If your memory model is used only with non-stack-checked ATPCS, you do not have to 
implement this function.

The stack overflow routines are called at function entry if a stack limit check fails. 
These are subject to the usual register-use restrictions on stack overflow routines (in 
particular, they cannot use r0-r3 because the arguments are still held there, and they 
cannot use v-registers in case the routine did not save them). 

Returns

The function does not return to lr. It must return by branching to 
__rt_stack_overflow_return.

4.9.10  __rt_heap_extend()

This function should return a new block of memory to add to the heap (if that is 
possible). If you reimplement the other memory model functions, you must 
reimplement this function. An incomplete prototype implementation is in 
rt_memory.s.

Implementation

The calling convention is ordinary ATPCS. On entry, r0 is the minimum size of the 
desired block, and r1 holds a pointer to a location to store the base address in. 

Returns

The default implementation calls __user_heap_extend() and returns a failure 
indication if that function fails. On exit, r0 is the size of the block acquired, or 0 if 
nothing could be obtained, and the memory location r1 pointed to on entry will contain 
the base address of the block.



The C and C++ Libraries

4-66 Copyright © 1999,2000 ARM Limited. All rights reserved. ARM DUI 0067B
-

4.9.11  __rt_stack_postlongjmp()

This function sets sp and sl to correct values after a call to longjmp. An incomplete 
prototype implementation in assembler code is in rt_memory.s

Implementation

This function is called with r0 containing the pre-setjmp value for sl, and r1 containing 
the pre-setjmp value for sp. 

If your memory model is used only with non-stack-checked ATPCS, you do not have to 
implement this function.

Returns

The function must set sl and sp to valid post-longjmp values. The registers must be set 
atomically in order to avoid interrupt problems. So in the minimal implementation 
where the memory model requires no special handling, you would push r0 and r1 on the 
stack and then use LDM to load sl and sp atomically with the new values.



The C and C++ Libraries

ARM DUI 0067B Copyright © 1999,2000 ARM Limited. All rights reserved. 4-67
-

4.10  Tailoring the input/output functions

The higher-level input/output functions such as fscanf() and fprintf() are not 
target dependent. However, the higher-level functions perform input/output by calling 
lower-level functions that are target dependent. To retarget input/output, you can either 
avoid these higher-level functions or redefine the lower-level functions.

See the rt_sys.h include file for more information on I/O functions.

4.10.1  Dependencies on low-level functions

The dependencies of the higher-level function on lower-level functions is shown in 
Table 4-12. If you define your own versions of the lower-level functions, you can use 
the library versions of the higher-level functions directly. fgetc() uses __FILE, but 
fputc() uses __FILE and ferror().

Refer to the ANSI C Reference for syntax of the low-level functions.

 Table 4-12 Input/Output Dependencies

Low-level object Description

fp
ri

n
tf

p
ri

n
tf

fw
ri

te

fp
u

ts

p
u

ts

fs
ca

n
f

sc
an

f

fr
ea

d

re
ad

fg
et

s

g
et

s

__FILE The file structure ∗ * * * * * * * * * *

__stdin The standard input object of type 
__FILE

- - - - - - * - * - *

__stdout The standard output object of type 
__FILE

- * - - * - - - - - -

fputc() Outputs a character to a file * * * * * - - - - - -

ferror() Returns the error status accumulated 
during file input/output

* * * - - - - - - - -

fgetc() Gets a character from a file - - - - - * * * * * *

__backspace() Moves file pointer to previous character - - - - - * * - - - -



The C and C++ Libraries

4-68 Copyright © 1999,2000 ARM Limited. All rights reserved. ARM DUI 0067B
-

printf family

The printf family consists of _printf(), printf(), _fprintf(), fprintf(), 
vprintf(), and vfprintf(). All these functions use __FILE opaquely and depend 
only on the functions fputc and ferror. The functions _printf() and _fprintf() 
are identical to printf() and fprintf() except that they cannot format 
floating-point values.

The standard output functions of the form _printf(...) are equivalent to:

fprintf(& __stdout, ...) 

where __stdout has type __FILE. 

scanf family

The scanf family consists of scanf() and fscanf(). These functions depend only 
on the functions fgetc(), __FILE, and __backspace(). 

The standard input form scanf(...) is equivalent to: 

fscanf(& __stdin, ...)

where __stdout has type __FILE. 

fwrite(), fputs, and puts

If you define your own version of __FILE, and your own fputc() and ferror() 
functions and the __stdout object, you can use all of the printf family, fwrite(), 
fputs(), and puts() unchanged from the library. Example 4-19 shows how to do this.



The C and C++ Libraries

ARM DUI 0067B Copyright © 1999,2000 ARM Limited. All rights reserved. 4-69
-

Example 4-19

#include <stdio.h>
struct __FILE {
    int handle;
    /* Whatever you need here */
};
FILE __stdout;
int fputc(int ch, FILE *f)
{
    /* Your implementation of fputc */
    return ch;
}
int ferror(FILE *f)
{   
    /* Your implementation of ferror */
    return EOF;
}
void test(void)
{
    printf("Hello world\n");  /* This works ... */
}

By default, fread() and fwrite() call fast block input/output functions that are part 
of the ARM stream implementation. If you define your own __FILE structure instead 
of using the ARM stream implementation, fread() and fwrite() will call fgetc() 
instead of calling the block input/output functions.

fread(), fgets(), and gets()

The functions fread(), fgets(), and gets() are implemented as a loop over 
fgetc() and ferror(). Each uses the FILE argument opaquely.

If you provide your own implementation of __FILE, __stdin (for gets()), fgetc(), 
and ferror(), you can use these functions directly from the library.



The C and C++ Libraries

4-70 Copyright © 1999,2000 ARM Limited. All rights reserved. ARM DUI 0067B
-

4.10.2  Target-dependent input/output support functions

rt_sys.h defines the type FILEHANDLE. The value of FILEHANDLE is returned by 
_sys_open() and identifies an open file on the host system. 

The target-dependent input and output functions and their library members are listed in 
Table 4-13.

The default implementation of these functions is semihosted. That is, each function uses 
the semihosting SWI. If any function is redefined, all stream-support functions must be 
redefined.

4.10.3  _sys_open()

This function opens a file.

Syntax

FILEHANDLE _sys_open(const char *name, int openmode)

 Table 4-13 I/O support functions

Function Description

_sys_open() _sys_open() on page 4-70

_sys_close() _sys_close() on page 4-71

_sys_read() _sys_seek() on page 4-74

_sys_write() _sys_write() on page 4-72

_sys_seek() _sys_read() on page 4-71

_sys_ensure() _sys_ensure() on page 4-73

_sys_flen() _sys_flen() on page 4-73

_sys_istty() _sys_istty() on page 4-74

_sys_tmpnam() _sys_tmpnam() on page 4-75

_sys_command_string() _sys_command_string() on page 4-75



The C and C++ Libraries

ARM DUI 0067B Copyright © 1999,2000 ARM Limited. All rights reserved. 4-71
-

Implementation

The _sys_open function is required by fopen() and freopen(). These functions, in 
turn, are required if any file input/output function is to be used. 

The openmode parameter is a bitmap, whose bits mostly correspond directly to the 
ANSI mode specification. Refer to rt_sys.h for details. Target-dependent extensions 
are possible, in that case freopen() must also be extended.

Returns

The return value is –1 if an error occurs. 

4.10.4  _sys_close()

This function closes a file previously opened with _sys_open().

Syntax

int _sys_close(FILEHANDLE fh)

Implementation

This function must be defined if any input/output function is to be used. 

Returns

The return value is 0 if successful. A non-zero value indicates an error.

4.10.5  _sys_read()

This function reads the contents of a file into a buffer.

Syntax

int _sys_read(FILEHANDLE fh, unsigned  char *buf, unsigned len, 
               int mode)

Implementation

The mode argument is a bitmap describing the state of the file connected to fh, as for 
_sys_write(). 



The C and C++ Libraries

4-72 Copyright © 1999,2000 ARM Limited. All rights reserved. ARM DUI 0067B
-

Returns

The return value is one of the following:

• the number of characters not read (that is, len - result were read)

• an error indication

• an EOF indicator. The EOF indication involves the setting of 0x80000000 in the 
normal result. The target-independent code is capable of handling either:

early EOF The last read from a file returns some characters plus an 
EOF indicator

late EOF The last read returns just EOF.

4.10.6  _sys_write()

Writes the contents of a buffer to a file previously opened with _sys_open().

Syntax

int _sys_write(FILEHANDLE fh, const unsigned char *buf, 
               unsigned len, int mode)

Implementation

The mode parameter is a bitmap describing the state of the file connected to fh, whether 
it is a binary file, and how it is buffered. The mode bits might be important if the file is 
connected to a terminal device because they specify whether or not the device is to be 
used raw (for example, whether the terminal input should be echoed). See the _IOxxx 
constants in stdio.h for definitions of user-accessible mode bits. 

Returns

The return value is either:

• a positive number representing the number of characters not written (so any 
non-zero return value denotes a failure of some sort)

• a negative number indicating an error.



The C and C++ Libraries

ARM DUI 0067B Copyright © 1999,2000 ARM Limited. All rights reserved. 4-73
-

4.10.7  _sys_ensure()

This function flushes buffers associated with a file handle.

Syntax

int _sys_ensure(FILEHANDLE fh)

Implementation

A call to _sys_ensure() flushes any buffers associated with file handle fh, and 
ensures that the file is up to date on the backing store medium. 

Returns

If an error occurs, the result is negative.

4.10.8  _sys_flen()

This function returns the current length of a file.

Syntax

long _sys_flen(FILEHANDLE fh)

Implementation

The function is required in order to convert fseek(, SEEK_END) into (, SEEK_SET) 
as required by _sys_seek(). 

If fseek() is used with an underlying system that does not directly support seeking 
relative to the end of a file, _sys_flen() must be defined. If the underlying system 
can seek relative to the end of a file, you can define fseek() such that _sys_flen() 
is not required.

Returns

This function returns the current length of the file fh, or a negative error indicator.



The C and C++ Libraries

4-74 Copyright © 1999,2000 ARM Limited. All rights reserved. ARM DUI 0067B
-

4.10.9  _sys_seek()

This function puts the file pointer at offset pos from the beginning of the file. 

Syntax

int _sys_seek (FILEHANDLE fh, long pos)

Implementation

This function sets the current read or write position to the new location pos relative to 
the start of the current file fh.

Returns

The result is non-negative if no error occurs or is negative if an error occurs.

4.10.10  _sys_istty()

This function determines if a file handle identifies a terminal.

Syntax

int _sys_istty(FILE *f)

Implementation

When a file is connected to a terminal device, this function is used to provide unbuffered 
by default behavior (in the absence of a call to set(v)buf) and to disallow seeking. 

Returns

The return value is:

0 There is not an interactive device

1 There is an interactive device

other An error occurred.



The C and C++ Libraries

ARM DUI 0067B Copyright © 1999,2000 ARM Limited. All rights reserved. 4-75
-

4.10.11  _sys_tmpnam()

This function converts the file number fileno for a temporary file to a unique filename, 
for example tmp0001.

Syntax

void _sys_tmpnam(char *name, int fileno)

Implementation

The function must be defined if tmpnam() or tmpfile() is used. 

Returns

Returns the filename in name.

4.10.12  _sys_command_string()

This function retrieves the command line used to invoke the current application from 
the environment that called the application.

Syntax

char *_sys_command_string(char *cmd, int len)

where:

cmd is a pointer to a buffer that can be used to store the command line. It is 
not required that the command line is stored in cmd.

len is the length of the buffer.

Implementation

This function is called by the library startup code to set up argv and argc to pass to 
main(). 

Returns

The function must return either:

• A pointer to the command line, if successful. This can be either a pointer to the 
cmd buffer if it is used, or a pointer to wherever else the command line is stored.

• NULL, if not successful.



The C and C++ Libraries

4-76 Copyright © 1999,2000 ARM Limited. All rights reserved. ARM DUI 0067B
-

4.11  Tailoring other C library functions

Implementation of the following ANSI standard functions depends entirely on the target 
operating system. None of the functions listed below is used internally by the library. 
So if any of these functions are not implemented, only applications calling the function 
directly will fail. 

The target-dependent ANSI C library functions are listed in Table 4-14.

The default implementation of these functions is semihosted. That is, each function uses 
the semihosting SWI.

clock() and _clock_init() must be reimplemented together or not at all. 

 Table 4-14 ANSI C library functions

Function Description

clock and _clock_init() clock() on page 4-77 and _clock_init() 
on page 4-77

time() time() on page 4-77

remove() remove() on page 4-78

rename() rename() on page 4-78

system() system() on page 4-79

getenv() and _getenv_init() getenv() on page 4-79 and 
_getenv_init() on page 4-80



The C and C++ Libraries

ARM DUI 0067B Copyright © 1999,2000 ARM Limited. All rights reserved. 4-77
-

4.11.1  clock()

This is the standard C library clock function from time.h.

Syntax

clock_t clock(void)

Implementation

If the units of clock_t differ from the default of centiseconds you must define 
__CLK_TCK on the compiler command line or in your own header file. The value in the 
definition will be used for CLK_TCK and CLOCKS_PER_SEC. If you re-implement 
clock() you must also re-implement _clock_init().

Returns

The returned value is an unsigned integer.

4.11.2  _clock_init()

This is an optional initialization function for clock().

Syntax

__weak void _clock_init(void)

Implementation

You should provide a clock initilization function if clock() must work with a 
read-only timer. If implemented, _clock_init() is called from the library 
initialization code.

4.11.3  time()

This is the standard C library time() function from time.h.

Syntax

time_t time(time_t *timer)

The return values is an approximation of the current calendar time. 



The C and C++ Libraries

4-78 Copyright © 1999,2000 ARM Limited. All rights reserved. ARM DUI 0067B
-

Returns

The value (time_t*)-1 is returned if the calendar time is not available. If timer is not 
a NULL pointer, the return value is also assigned to the time_t*. 

4.11.4  remove()

This is the standard C library remove() function from stdio.h.

Syntax

int remove(const char *filename)

Implementation

remove() causes the file whose name is the string pointed to by filename to be 
removed. Subsequent attempts to open the file will fail, unless it is created again. If the 
file is open, the behavior of the remove function is implementation-defined.

Returns

Returns zero if the operation succeeds or nonzero if it fails.

4.11.5  rename()

This is the standard C library rename() function from stdio.h.

Syntax

int rename(const char *old, const char *new)

Implementation

rename() causes the file whose name is the string pointed to by old to be henceforth 
known by the name given by the string pointed to by new. The file named old is 
effectively removed. If a file named by the string pointed to by new exists prior to the 
call of the rename function, the behavior is implementation-defined.

Returns

Returns zero if the operation succeeds or nonzero if it fails. If nonzero and the file 
existed previously it is still known by its original name.



The C and C++ Libraries

ARM DUI 0067B Copyright © 1999,2000 ARM Limited. All rights reserved. 4-79
-

4.11.6  system()

This is the standard C library system() function from stdlib.h.

Syntax

int system(const char *string)

Implementation

system() passes the string pointed to by string to the host environment to be executed 
by a command processor in an implementation-defined manner. A null pointer may be 
used for string, to inquire whether a command processor exists.

Returns

If the argument is a null pointer, the system function returns non-zero only if a 
command processor is available.

If the argument is not a null pointer, the system function returns an 
implementation-defined value.

4.11.7  getenv()

This is the standard C library getenv() function from stdlib.h.

Syntax

char *getenv(const char *name)

Implementation

The default implementation returns NULL indicating that no environment information is 
available. You can re-implement getenv() yourself. It depends on no other function 
and no other function depends on it. 

If you redefine the function, you can also call a function _getenv_init() which the 
C library initialization code will call when the library is initialized, that is before 
main() is entered.

The function searches the environment list, provided by the host environment, for a 
string that matches the string pointed to by name. The set of environment names and the 
method for altering the environment list are implementation-defined.



The C and C++ Libraries

4-80 Copyright © 1999,2000 ARM Limited. All rights reserved. ARM DUI 0067B
-

Returns

The return value is a pointer to a string associated with the matched list member. The 
array pointed to must not be modified by the program, but might be overwritten by a 
subsequent call to getenv().

4.11.8  _getenv_init()

This allows a user version of getenv() to initialize itself.

Syntax

void _getenv_init(void)

Implementation

If this function is defined, the C library initialization code will call when the library is 
initialized, that is before main() is entered.



The C and C++ Libraries

ARM DUI 0067B Copyright © 1999,2000 ARM Limited. All rights reserved. 4-81
-

4.12  ISO implementation definition

This section describes how the libraries fulfill the requirements of the ANSI 
specification.

4.12.1  ANSI C library implementation definition

The ANSI C library variants are listed in Library naming conventions on page 4-96.

The ANSI specification leaves some details to the implementors, but requires their 
implementation choices to be documented. The implementation details are described in 
this section.

• The macro NULL expands to the integer constant 0.

• If a program redefines a reserved external identifier, an error might occur when 
the program is linked with the standard libraries. If it is not linked with standard 
libraries, no error will be diagnosed.

• The assert() function prints the following message and then calls the abort() 
function as shown in Example 4-20.

Example 4-20

*** assertion failed: expression, file _FILE_, line _LINE_

The following functions test for character values in the range EOF (–1) to 255 
(inclusive):

• isalnum()

• isalpha()

• iscntrl()

• islower()

• isprint()

• isupper()

• ispunct()



The C and C++ Libraries

4-82 Copyright © 1999,2000 ARM Limited. All rights reserved. ARM DUI 0067B
-

Mathematical functions

The mathematical functions shown in Table 4-15, when supplied with out-of-range 
arguments respond in the way shown.

 Table 4-15 Mathematical functions

Function Condition Returned value Error number

acos(x) abs(x) > 1 QNaN EDOM

asin(x) abs(x) > 1 QNaN EDOM

atan2(x,y) x =0, y = 0 QNaN EDOM

atan2(x,y) x = Inf, y = Inf QNaN EDOM

cos(x) x=Inf QNaN EDOM

cosh(x) Overflow +Inf ERANGE

exp(x) Overflow +Inf ERANGE

exp(x) Underflow +0 ERANGE

fmod(x,y) x=Inf QNaN EDOM

fmod(x,y) y = 0 QNaN EDOM

log(x) x < 0 QNaN EDOM

log(x) x = 0 -Inf EDOM

log10(x) x < 0 QNaN EDOM

log10(x) x = 0 -Inf EDOM

pow(x,y) Overflow +Inf ERANGE

pow(x,y) Underflow 0 ERANGE

pow(x,y) x=0 or x=Inf, y=0 +1 EDOM

pow(x,y) x=+0, y<0 -Inf EDOM

pow(x,y) x=-0,
y<0 and y integer

-Inf EDOM

pow(x,y) x= -0,
y<0 and y noninteger

QNaN EDOM

pow(x,y) x<0, y noninteger QNaN EDOM



The C and C++ Libraries

ARM DUI 0067B Copyright © 1999,2000 ARM Limited. All rights reserved. 4-83
-

HUGE_VAL is an alias for Inf. Consult the errno variable for the error number. Other 
than the cases shown in Table 4-15, all functions return QNaN when passed QNaN and 
throw an invalid operation exception when passed SNaN.

pow(x,y) x=1, y=Inf QNaN EDOM

sqrt(x) x < 0 QNaN EDOM

sin(x) x=Inf QNaN EDOM

sinh(x) Overflow +Inf ERANGE

tan(x) x=Inf QNaN EDOM

atan(x) SNaN SNaN None

ceil(x) SNaN SNaN None

floor(x) SNaN SNaN None

frexp(x) SNaN SNaN None

ldexp(x) SNaN SNaN None

modf(x) SNaN SNaN None

tanh(x) SNaN SNaN None

 Table 4-15 Mathematical functions (Continued)

Function Condition Returned value Error number



The C and C++ Libraries

4-84 Copyright © 1999,2000 ARM Limited. All rights reserved. ARM DUI 0067B
-

Signal function

The signals listed in Table 4-16 are supported by the signal() function

A signal number greater than 31 can be passed through __raise(), and caught by the 
default signal handler, but it cannot be caught by a handler registered using signal(). 

signal() returns an error code if you try to register a handler for a signal number 
greater than SIGUSR2.

The default handling of all recognized signals is to print a diagnostic message and call 
exit(). This default behavior applies at program startup and until you change it.

 Table 4-16 Signal function signals

Signal Number Description Additional argument

SIGABRT 1 Abort None

SIGFPE 2 Arithmetic exception A set of bits from 
{FE_EX_INEXACT, 
FE_EX_UNDERFLOW, 
FE_EX_OVERFLOW, 
FE_EX_DIVBYZERO, 
FE_EX_INVALID, 
DIVBYZERO}

SIGILL 3 Illegal instruction None

SIGINT 4 Attention request from user None

SIGSEGV 5 Bad memory access None

SIGTERM 6 Termination request None

SIGSTAK 7 Stack overflow None

SIGRTRED 8 Redirection failed on a 
runtime library 
input/output stream

Name of file or device 
being re-opened to redirect 
a standard stream

SIGRTMEM 9 Out of heap space Size of failed request

SIGUSR1 10 User-defined User-defined

SIGUSR2 11 User-defined User-defined

reserved 12 - 31 Reserved Reserved

other > 31 User-defined User-defined



The C and C++ Libraries

ARM DUI 0067B Copyright © 1999,2000 ARM Limited. All rights reserved. 4-85
-

Caution
The IEEE 754 standard for floating-point processing states that the default action to an 
exception is to proceed without a trap. A raised exception in floating-point calculations 
does not, by default, generate SIGFPE. You can modify fp error handling by tailoring 
the functions and definitions in fenv.h. See Tailoring error signalling, error handling, 
and program exit on page 4-47 and the chapter on floating-point in the ADS Developer 
Guide.

For all the signals in Table 4-16, when a signal occurs, if the handler points to a function, 
the equivalent of signal(sig, SIG_DFL) is executed before the call to handler. 

If the SIGILL signal is received by a handler specified to by the signal() function, 
the default handling is reset.

Input/output characteristics

The generic ARM C library has the following input/output characteristics: 

• The last line of a text stream does not require a terminating newline character.

• Space characters written out to a text stream immediately before a newline 
character do appear when read back in.

• No null characters are appended to a binary output stream.

• The file position indicator of an append mode stream is initially placed at the end 
of the file.

• A write to a text stream causes the associated file to be truncated beyond the point 
where the write occurred if this is the behavior of the device category of the file.

• The characteristics of file buffering agree with section 4.9.3 of the ANSI C 
standard. If semihosting is used, the maximum number of open files is limited by 
the available target memory.

• A zero-length file, into which no characters have been written by an output 
stream, does exist.

• A file can be opened many times for reading, but only once for writing or 
updating. A file cannot simultaneously be open for reading on one stream, and 
open for writing or updating on another.

• Local time zones and Daylight Saving Time are not implemented. The values 
returned will indicate that the information is not available. For example, the 
gmtime() function always returns NULL.



The C and C++ Libraries

4-86 Copyright © 1999,2000 ARM Limited. All rights reserved. ARM DUI 0067B
-

• The status returned by exit() is the same value that was passed to it. For 
definitions of EXIT_SUCCESS and EXIT_FAILURE, refer to the header file 
stdlib.h. The semihosting SWI, however, does not pass the status back to the 
execution environment.

• The error messages returned by the strerror() function are identical to those 
given by the perror() function.

• If the size of area requested is zero, calloc(), malloc() and realloc() 
return NULL.

• abort() closes all open files and deletes all temporary files.

• fprintf() prints %p arguments in lowercase hexadecimal format as if a 
precision of 8 had been specified. If the variant form (%#p) is used, the number is 
preceded by the character @.

• fscanf() treats %p arguments exactly the same as %x arguments.

• fscanf() always treats the character "-" in a %...[...] argument as a literal 
character.

• ftell() and fgetpos() set errno to the value of EDOM on failure.

• perror() generates the messages in Table 4-17.

 Table 4-17 perror() messages

Error Message

0 No error (errno = 0)

EDOM EDOM - function argument out of range

ERANGE ERANGE - function result not representable

ESIGNUM ESIGNUM - illegal signal number

Others Unknown error



The C and C++ Libraries

ARM DUI 0067B Copyright © 1999,2000 ARM Limited. All rights reserved. 4-87
-

The following characteristics, required to be specified in an ANSI-compliant 
implementation, are unspecified in the ARM C library:

• the validity of a filename

• whether remove() can remove an open file

• the effect of calling the rename() function when the new name already exists

• the effect of calling getenv() (the default is to return NULL, no value available)

• the effect of calling system()

• the value returned by clock().

4.12.2  Standard C++ library implementation definition

This section describes the implementation of the C++ libraries. The ARM C++ library 
provides all of the library defined in the ISO/IEC 14822 :1998 International Standard 
for C++, aside from some limitations described below. For information on 
implementation-defined behavior that is defined in the Rogue Wave C++ library, refer 
to the included Rogue Wave HTML documentation. By default, this is installed in the 
install_directory\HTML.

The standard C++ library is distributed in binary form only.



The C and C++ Libraries

4-88 Copyright © 1999,2000 ARM Limited. All rights reserved. ARM DUI 0067B
-

The requirements that the C++ library places on the C library are described in Table 
4-18.

 Table 4-18 C++ requirements on the C library

File Required function in C library

ctype.h isalnum, isalpha, iscntrl, isdigit, isgraph, 
islower, isprint, ispunct, isspace, isupper, 
isxdigit, tolower, toupper

locale.h localeconv, setlocale

math.h acos, asin, atan2, atan, ceil, cos, cosh, exp, fabs, 
floor, fmod, frexp, ldexp, log10, log, modf, pow, 
sin, sinh, sqrt, tan, tanh

setjmp.h longjmp

signal.h raise, signal

stdio.h clearerr, fclose, feof, ferror, fflush, fgetc, 
fgetpos, fgets, fopen, fprintf, fputc, fputs, 
fread, freopen, fscanf, fseek, fsetpos, ftell, 
fwrite, getc, getchar, gets, perror, printf, putc, 
putchar, puts, remove, rename, rewind, scanf, 
setbuf, setvbuf, sprintf, sscanf, tmpfile, tmpnam, 
ungetc, vfprintf, vprintf, vsprintf

stdlib.h abort, abs, atexit, atof, atoi, atol, bsearch, 
calloc, div, exit, free, getenv, labs, ldiv, malloc, 
mblen, qsort, rand, realloc, srand, strtod, strtol, 
strtoul, system

string.h memchr, memcmp, memcpy, memmove, memset, memset, 
strcat, strchr, strcmp, strcoll, strcpy, strcspn, 
strerror, strlen, strncat, strncmp, strncpy, 
strpbrk, strrchr, strspn, strstr, strtok, strxfrm

time.h asctime, clock, ctime, difftime, mktime, strftime, 
time



The C and C++ Libraries

ARM DUI 0067B Copyright © 1999,2000 ARM Limited. All rights reserved. 4-89
-

The most important features missing from this release are described in Table 4-19.

 Table 4-19 Standard C++ library differences

Standard Implementation differences

Wide character Not a separate type. wchar_t is an existing typedef for int. 
Characters are 8-bits wide.

Namespaces Not supported. All top-level items are in the global namespace.

Unimplemented features Support functions for unimplemented language features, 
class bad_cast for example, are unlikely to be 
functional.

locale The locale message facet is not supported. It will fail to open 
catalogs at runtime because the ARM C library does not 
support catopen and catclose through nl_types.h. 
One of two locale definitions can be selected at link time, other 
locales can be created by user-redefinable functions.

Timezone Not supported. The ARM C library does not support it.

Complex default template 
arguments

Not supported. Complex default template argument definitions 
are where a type parameter has a default instantiation 
involving an earlier type parameter.
When you request a template that the standard says is defined 
with a complex default (such as instantiating class queue), you 
must always supply a value for each template parameter. No 
defaults will be present.

Exceptions Not supported.

typeinfo Limited support. typeinfo is supported in a basic way by 
the ARM C++ library additions. 



The C and C++ Libraries

4-90 Copyright © 1999,2000 ARM Limited. All rights reserved. ARM DUI 0067B
-

4.13  C library extensions

This section describes the ARM-specific library extensions and functions defined by 
the C9X draft standard.

4.13.1  atoll()

The atoll() function converts a decimal string into an integer, similarly to the ANSI 
functions atol() and atoi(), but returning a long long result. Like atoi(), 
atoll() can accept octal or hexadecimal input if the string begins with 0 or 0x.

Syntax

long long atoll(const char *nptr)

 Table 4-20 Extensions

Function
Header file 
definition

Entension

atoll() on page 4-90 stdlib.h C9X draft standard

strtoll() on page 4-91 stdlib.h C9X draft standard

strtoull() on page 4-91 stdlib.h C9X draft standard

snprintf() on page 4-91 stdio.h C9X draft standard

vsnprintf() on page 4-92 stdio.h C9X draft standard

lldiv() on page 4-92 stdlib.h C9X draft standard

llabs() on page 4-93 stdlib.h C9X draft standard

alloca() on page 4-93 alloca.h C9X and others 

_fisatty() on page 4-93 stdio.h ARM-specific

__heapstats() on page 4-94 stdlib.h ARM-specific

__heapvalid() on page 4-94 stdlib.h ARM-specific



The C and C++ Libraries

ARM DUI 0067B Copyright © 1999,2000 ARM Limited. All rights reserved. 4-91
-

4.13.2  strtoll()

The strtoll() function converts a string in an arbitrary base to an integer, similarly 
to the ANSI function strtol(), but returning a long long result. Like strtol(), the 
parameter endptr can point to a location in which to store a pointer to the end of the 
translated string, or can be NULL. The parameter base should contain the number base. 
Setting base to zero indicates that the base should be selected in the same way as 
atoll().

Syntax

long long strtoll(const char *nptr, char **endptr, int base)

4.13.3  strtoull()

strtoull() is exactly the same as strtoll(), but returns an unsigned long long.

Syntax

unsigned long long strtoull(const char *nptr, char **endptr, int 
base)

4.13.4  snprintf()

snprintf() works almost exactly like the ANSI sprintf() function, except that the 
caller can specify the maximum size of the buffer. The return value is the length of the 
complete formatted string that would have been written if the buffer were big enough. 
Therefore, the string written into the buffer is complete only if the return value is at least 
zero and at most n-1.

The bufsize parameter specifies the number of characters of buffer that the function 
can write into, including the terminating null.

<stdio.h> is an ANSI header file, but the function is not allowed by the ANSI C 
library standard. it therefore not available if you use the compilers with the -strict 
option.

Syntax

int snprintf(char *buffer, size_t bufsize, const  char *format,  
...)



The C and C++ Libraries

4-92 Copyright © 1999,2000 ARM Limited. All rights reserved. ARM DUI 0067B
-

4.13.5  vsnprintf()

vsnprintf() works almost exactly like the ANSI vsprintf() function, except that 
the caller can specify the maximum size of the buffer. The return value is the length of 
the complete formatted string that would have been written if the buffer were big 
enough. Therefore, the string written into the buffer is complete only if the return value 
is at least zero and at most n-1.

The bufsize parameter specifies the number of characters of buffer that the function 
can write into, including the terminating null.

<stdio.h> is an ANSI header file, but the function is not allowed by the ANSI C 
library standard. it therefore not available if you use the compilers with the -strict 
option.

Syntax

int vsnprintf(char *buffer,  size_t bufsize, const  char 
*format,   va_list ap)

4.13.6  lldiv()

The lldiv function divides two long long integers and returns both the quotient and 
the remainder. It is the long long equivalent of the ANSI function ldiv. The return 
type lldiv_t is a structure containing two long long members, called quot and rem.

<stdlib.h> is an ANSI header file, but the function is not allowed by the ANSI C 
library standard. it therefore not available if you use the compilers with the -strict 
option.

Syntax

lldiv_t lldiv(long longnum, long long denom)



The C and C++ Libraries

ARM DUI 0067B Copyright © 1999,2000 ARM Limited. All rights reserved. 4-93
-

4.13.7  llabs()

The llabs returns the absolute value of its input. It is the long long equivalent of the 
ANSI function labs.

<stdlib.h> is an ANSI header file, but the function is not allowed by the ANSI C 
library standard. it therefore not available if you use the compilers with the -strict 
option.

Syntax

 long long llabs(long longnum)

4.13.8  alloca()

The alloca function allocates local storage in a function. It returns a pointer to size 
bytes of memory, or NULL if not enough memory was available.

Memory returned from alloca should never be passed to free. Instead, the memory 
will be deallocated automatically when the function that called alloca returns.

alloca() should not be called via a function pointer. Care should be taken when using 
alloca and setjmp in the same function, since memory allocated by alloca() 
between calling setjmp and longjmp will be deallocated by the call to longjmp.

This function is a common non-standard extension to many C libraries.

Syntax

void* alloca(size_t size)

4.13.9  _fisatty()

The _fisatty function determines whether the given stdio stream is attached to a 
terminal device or a normal file. It calls the _sys_istty low-level function (see 
Tailoring the input/output functions on page 4-67) on the underlying file handle. It 
returns 1 for a terminal, 0 for a file, and less than 0 for an error.

This function is an ARM-specific library extension.

Syntax

int _fisatty(FILE *stream)



The C and C++ Libraries

4-94 Copyright © 1999,2000 ARM Limited. All rights reserved. ARM DUI 0067B
-

4.13.10  __heapstats()

The __heapstats function displays statistics on the state of the storage allocation 
heap. It calls the __Heap_Stats function, which you can re-implement if you choose 
to do your own storage management (see __Heap_Stats() on page 4-58). The ARM 
default implementation gives information on how many free blocks exist in various size 
ranges.

The function outputs its results by calling the supplied output function dprint, which 
should work essentially like fprintf(). The first parameter passed to dprint is the 
supplied pointer param. You can pass fprintf() itself, provided you cast it to the 
right function pointer type. This type is defined as a typedef for convenience: it is 
called __heapprt. For example:

__heapstats((__heapprt)fprintf, stderr);

If you call fprintf() on a stream that you have not already sent output to, the library 
will call malloc internally to create a buffer for the stream. If this happens in the middle 
of a call to __heapstats(), the heap may be corrupted. You should therefore ensure 
you have already sent some output to stderr in the above example.

This function is an ARM-specific library extension.

Syntax

void __heapstats(int (*dprint)( void*param, char const 
*format,...), void* param)

4.13.11  __heapvalid()

The __heapvalid function performs a consistency check on the heap. It outputs 
detailed information about every free block if the verbose parameter is non-zero, and 
only output errors otherwise.

The function outputs its results by calling the supplied output function dprint, which 
should work essentially like fprintf(). The first parameter passed to dprint is the 
supplied pointer param. You can pass fprintf() itself, provided you cast it to the 
right function pointer type. This type is defined as a typedef for convenience: it is 
called __heapprt. For example:

Example 4-21 Calling __heapvalid with fprintf

__heapvalid((__heapprt) fprintf, stderr, 0);



The C and C++ Libraries

ARM DUI 0067B Copyright © 1999,2000 ARM Limited. All rights reserved. 4-95
-

If you call fprintf() on a stream that you have not already sent output to, the library 
will call malloc() internally to create a buffer for the stream. If this happens in the 
middle of a call to __heapvalid(), the heap may be corrupted. You should therefore 
ensure you have already sent some output to stderr. The code in Example 4-21 will 
cause a major failure if you have not already written to the stream.

This function is an ARM-specific library extension.

Syntax

void __heapvalid(int (*dprint)( void*param, char const 
*format,...), void* param, intverbose)



The C and C++ Libraries

4-96 Copyright © 1999,2000 ARM Limited. All rights reserved. ARM DUI 0067B
-

4.14  Library naming conventions

The filename identifies how the variant was built as follows:

root_<arch><fpu><dfmt><stack><entrant>.<endian>

The values for the fields of the name are listed below:

root c ANSI C and basic runtime support

f C/Java rounding and exception options for fp arithmetic

g Full IEEE rounding and exception options for fp arithmetic

m Transcendental math functions

cpp High-level C++ functions

cpprt Low-level and runtime support C++ functions.

arch a An ARM library

t A Thumb library.

fpu f Uses FPA instruction set

v Uses VFP instruction set

_ Does not use floating-point instructions.

dfmt p Pure-endian double format

m Mixed-endian double format

_ No use of floating-point doubles.

stack u Does not use stack checking

s Uses software stack checking

_ Not applicable.

entrant n The functions are not reentrant

e The functions are reentrant

_ Not applicable.

endian l Little-endian

b Big-endian 

_ Not applicable.

The 8 C library names are c_{a,t}__{s,u}{e,n}

c_a__se ARM, stack checking, reentrant

c_a__sn ARM, stack checking, not reentrant

c_a__ue ARM, no stack checking, reentrant

c_a__un ARM, no stack checking, not reentrant (base PCS)



The C and C++ Libraries

ARM DUI 0067B Copyright © 1999,2000 ARM Limited. All rights reserved. 4-97
-

c_t__se Thumb, stack checking, reentrant

c_t__sn Thumb, stack checking, not reentrant

c_t__ue  Thumb, no stack checking, reentrant

c_t__un Thumb, no stack checking, not reentrant (base PCS).

The 10 FPLIB names are f_{a,t}[fm, vp, _m, _p]

f_afm ARM, FPA, mixed-endian double

f_avp ARM, VFP, pure-endian double

f_a_m ARM, soft FPA

f_a_p ARM, soft VFP

f_a ARM, used with -fpu none

f_tfm Thumb, FPA, mixed-endian double

f_tvp Thumb,VFP, pure-endian double

f_t_m Thumb, mixed-endian double

f_t_p Thumb, pure-endian double

f_t Thumb, used with -fpu none.

The 16 MATHLIB names are m_{a,t}{fm, vp, _m, _p}{s,u}

m_afms ARM, FPA, mixed-endian, stack checking

m_afmu ARM, FPA, mixed-endian, no stack checking

m_avps ARM, VFP, pure-endian, stack checking

m_avpu ARM, VFP, pure-endian, no stack checking

m_a_ms ARM, mixed-endian, stack checking

m_a_mu ARM, mixed-endian, no stack checking

m_a_ps ARM, pure-endian, stack checking

m_a_pu ARM, pure-endian, no stack checking

m_tfms Thumb, FPA, mixed-endian, stack checking

m_tfmu Thumb, FPA, mixed-endian, no stack checking

m_tvps Thumb, VFP, pure-endian, stack checking

m_tvpu Thumb, VFP, pure-endian, no stack checking 

m_t_ms Thumb, mixed-endian, stack checking

m_t_mu Thumb, mixed-endian, no stack checking

m_t_ps Thumb, pure-endian, stack checking

m_t_pu Thumb, pure-endian, no stack checking.

See Specifying the target processor or architecture on page 2-17 for details on selecting 
a specific architecture or processor selection.



The C and C++ Libraries

4-98 Copyright © 1999,2000 ARM Limited. All rights reserved. ARM DUI 0067B
-



ARM DUI 0067B Copyright © 1999,2000 ARM Limited. All rights reserved. 5-1
-

Chapter 5 
Assembler

This chapter describes the language features that are provided by the ARM assembler, 
such as pseudo-instructions, directives and macros. It does not contain information 
about the inline assemblers in the ARM C and C++ compilers (see the Mixed Language 
Programming chapter in ADS Developer Guide). It contains the following sections:

• Introduction on page 5-2

• Command syntax on page 5-4

• Format of source lines on page 5-9

• Predefined register and coprocessor names on page 5-10

• VFP directives and notation on page 5-11

• Built-in variables on page 5-12

• ARM pseudo-instructions on page 5-13

• Thumb pseudo-instructions on page 5-24

• Symbols on page 5-30

• Directives on page 5-36

• Expressions, literals and operators on page 5-114.

See Table 5-1 on page 5-2 to Table 5-7 on page 5-3 to locate individual directives or 
pseudo-instructions.



Assembler

5-2 Copyright © 1999,2000 ARM Limited. All rights reserved. ARM DUI 0067B
-

5.1  Introduction

This chapter does not contain detailed information on how to write ARM assembly 
language. See the assembly language chapter in the ADS Developer Guide for tutorial 
information.

For detailed information on ARM and Thumb instruction mnemonics, see ARM 
Architecture Reference Manual.

5.1.1  Location of directives and pseudo-instructions

 Table 5-1 Directives, symbol definition

CN on page 5-42 GBLA on page 5-79 LCLS on page 5-90

CP on page 5-45 GBLL on page 5-80 RLIST on page 5-100

DN on page 5-60 GBLS on page 5-81 RN on page 5-101

EQU or * on page 5-64 IMPORT on page 5-84 SETA on page 5-103

EXPORT or GLOBAL on page 5-65 KEEP on page 5-87 SETL on page 5-104

EXTERN on page 5-66 LCLA on page 5-88 SETS on page 5-105

FN on page 5-69 LCLL on page 5-89 SN on page 5-106

 Table 5-2 Directives, data definition

ALIGN on page 5-37 DCFDU on page 5-52 DCWU on page 5-59

DATA on page 5-46 DCFS on page 5-53 FIELD or # on page 5-68

DCB or = on page 5-47 DCFSU on page 5-54 LTORG on page 5-91

DCD or & on page 5-48 DCI on page 5-55 MAP or ^ on page 5-95

DCDO on page 5-49 DCQ on page 5-56 SPACE or % on page 5-107

DCDU on page 5-50 DCQU on page 5-57

DCFD on page 5-51 DCW on page 5-58

 Table 5-3 Directives, assembly control

ELSE or | on page 5-61 INCBIN on page 5-85 WEND on page 5-112

ENDIF or ] on page 5-62 MACRO on page 5-92 WHILE on page 5-113

GET or INCLUDE on page 5-82 MEND on page 5-96

IF or [ on page 5-83 MEXIT on page 5-96



Assembler

ARM DUI 0067B Copyright © 1999,2000 ARM Limited. All rights reserved. 5-3
-

 Table 5-4 Directives, structure

ENDFUNC on page 5-62 FRAME PUSH on page 5-72 FRAME STATE REMEMBER on page 5-76

ENDP on page 5-62 FRAME REGISTER on page 5-73 FRAME STATE RESTORE on page 5-77

FRAME ADDRESS on page 5-70 FRAME RESTORE on page 5-74 FUNCTION on page 5-78

FRAME POP on page 5-71 FRAME SAVE on page 5-75 PROC on page 5-99

 Table 5-5 Directives, miscellaneous

AREA on page 5-39 ENTRY on page 5-63 ROUT on page 5-102

ASSERT on page 5-41 INFO or ! on page 5-86 SUBT on page 5-108

CODE16 on page 5-43 NOFP on page 5-97 TTL on page 5-109

CODE32 on page 5-44 OPT on page 5-98 VFPASSERT SCALAR on page 5-110

END on page 5-61 REQUIRE on page 5-99 VFPASSERT VECTOR on page 5-111

 Table 5-6 Directives, symbolic synonyms

DCB or = on page 5-47 EQU or * on page 5-64 INFO or ! on page 5-86

DCD or & on page 5-48 FIELD or # on page 5-68 MAP or ^ on page 5-95

ELSE or | on page 5-61 IF or [ on page 5-83 SPACE or % on page 5-107

ENDIF or ] on page 5-62

 Table 5-7 Pseudo-instructions

ARM pseudo-instructions Thumb pseudo-instructions

ADR on page 5-14 ADR on page 5-25

ADRL on page 5-15 LDR on page 5-26

FLDD on page 5-17 MOV on page 5-28

FLDS on page 5-18 NOP on page 5-29

LDFD on page 5-19

LDFS on page 5-20

LDR on page 5-21

NOP on page 5-23



Assembler

5-4 Copyright © 1999,2000 ARM Limited. All rights reserved. ARM DUI 0067B
-

5.2  Command syntax

Invoke the ARM assembler using this command:

armasm [-16|-32] [-apcs [none|[/qualifier[/qualifier[...]]]]] 

[-bigend|-littleend] [-checkreglist] [-cpu cpu] 

[-depend dependfile|-m|-md] [-errors errorfile] [-fpu fparch] 

[-g] [-help] [-i dir [,dir]…] [-keep] [-list [listingfile] 

[options]] [-maxcache n] [-memaccess attributes] [-nocache] 

[-noesc] [-noregs] [-nowarn] [-o filename] 

[-predefine "directive"] [-unsafe] [-via file] inputfile

where:

-16 instructs the assembler to interpret instructions as Thumb instructions. 
This is equivalent to a CODE16 directive at the head of the source file.

-32 instructs the assembler to interpret instructions as ARM instructions. 
This is the default.

-apcs [none|[/qualifier[/qualifier[...]]]]

specifies whether you are using the ARM/Thumb Procedure Call 
Standard (ATPCS). It may also specify some attributes of code sections. 
See ADS Developer Guide for more information about the ATPCS.

/none specifies that inputfile does not use ATPCS. ATPCS 
registers are not set up. Qualifiers are not allowed.

Note

ATPCS qualifiers do not affect the code produced by the assembler. They 
are an assertion by the programmer that the code in inputfile complies 
with a particular variant of ATPCS. They cause attributes to be set in the 
object file produced by the assembler. The linker uses these attributes to 
check compatibility of files, and to select appropriate library variants.

Values for qualifier are:

/interwork

specifies that the code in inputfile is suitable for 
ARM/Thumb interworking. See ADS Developer Guide for 
information on interworking.

/nointerwork

specifies that the code in inputfile is not suitable for 
ARM/Thumb interworking. This is the default.



Assembler

ARM DUI 0067B Copyright © 1999,2000 ARM Limited. All rights reserved. 5-5
-

/ropi specifies that the content of inputfile is read-only 
position-independent. The default is /noropi.

/pic is a synonym for /ropi.

/nopic is a synonym for /noropi.

/rwpi specifies that the content of inputfile is read-write 
position-independent. The default is /norwpi.

/pid is a synonym for /rwpi.

/nopid is a synonym for /norwpi.

/swstackcheck

specifies that the code in inputfile carries out software 
stack-limit checking.

/noswstackcheck

specifies that the code in inputfile does not carry out 
software stack-limit checking. This is the default.

/swstna specifies that the code in inputfile is compatible both with 
code which carries out stack-limit checking, and with code 
that does not carry out stack-limit checking.

-bigend instructs the assembler to assemble code suitable for a big-endian ARM. 
The default is -littleend.

-littleend

instructs the assembler to assemble code suitable for a little-endian ARM.  
This is the default.

-checkreglist

instructs the assembler to check RLIST, LDM, and STM register lists to 
ensure that all registers are provided in increasing register number order. 
A warning is given if registers are not listed in order.

-cpu cpu sets the target cpu. Some instructions produce either errors or warnings if 
assembled for the wrong target cpu (see also the -unsafe assembler 
option). Valid values for cpu are:

• 3, or 3M

• 4, 4T, 4xM, or 4TxM

• 5T

or part numbers such as ARM7TDMI. See the  ARM Architecture Reference 
Manual for information about the architectures.



Assembler

5-6 Copyright © 1999,2000 ARM Limited. All rights reserved. ARM DUI 0067B
-

-depend dependfile

instructs the assembler to save source file dependency lists to 
dependfile. These are suitable for use with make utilities.

-m instructs the assembler to write source file dependency lists to stdout.

-md instructs the assembler to write source file dependency lists to 
inputfile.d.

-errors errorfile

instructs the assembler to output error messages to errorfile.

-fpu fparch

sets the target floating-point architecture. fparch can be any one of:

softvfp specifies that the code in inputfile uses VFP-format 
(pure-endian) double-precision floating-point representations, 
but does not use any floating-point coprocessor instructions. 
This is the default.

softfpa specifies that the code in inputfile uses FPA-format 
double-precision floating-point representations, but does not 
use any floating-point coprocessor instructions.

vfp selects the VFP coprocessor instruction set.

fpa selects the FPA coprocessor instruction set.

none specifies that the code in inputfile does not use any 
floating-point coprocessor instructions.

-g instructs the assembler to generate debug tables. Use the following 
command-line options to control the behavior of -g:

-dwarf1 to select DWARF1 debug tables. This option is not 
recommended for C++. It will not be supported in future 
releases of ADS.

-dwarf2 to select DWARF2 debug tables. This is the default and is 
selected if -g with no dwarf option is specified.

-help instructs the assembler to display a summary of the assembler 
command-line options.

-i dir [,dir]…

adds directories to the source file search path so that arguments to 
GET/INCLUDE directives do not need to be fully qualified (see GET or 
INCLUDE directive on page 5-82 and INCBIN directive on page 5-85).



Assembler

ARM DUI 0067B Copyright © 1999,2000 ARM Limited. All rights reserved. 5-7
-

-keep instructs the assembler to keep local labels in the symbol table of the 
object file, for use by the debugger (see KEEP directive on page 5-87).

-list [listingfile] [options]

instructs the assembler to output a detailed listing of the assembly 
language produced by the assembler to listingfile.. If - is given as 
listingfile, listing is sent to stdout. If no listingfile is given, 
listing is sent to inputfile.lst.

Use the following command-line options to control the behavior of 
-list:

-noterse

turns the terse flag off. When this option is on, lines skipped 
due to conditional assembly do not appear in the listing. If the 
terse option is off, these lines do appear in the listing. The 
default is on.

-width sets the listing page width. The default is 79 characters.

-length sets the listing page length. Length zero means an unpaged 
listing. The default is 66 lines.

-xref instructs the assembler to list cross-referencing information on 
symbols, including where they were defined and where they 
were used, both inside and outside macros. The default is off.

-maxcache n

sets the maximum source cache size to n. The default is 8MB.

-memaccess attributes

Specifies memory access attributes of the target memory system. The 
default is to allow aligned loads and saves of bytes, halfwords and words. 
attributes modify the default. They can be any one of the following:

+L41 Allow unaligned LDRs.

-L22 Disallow halfword loads.

-S22 Disallow halfword saves.

-L22-S22 Disallow halfword loads and saves.

-nocache turns off source caching. By default the assembler caches source files on 
the first pass and reads them from memory on the second pass.

-noesc instructs the assembler to ignore C-style escaped special characters, such 
as \n and \t.



Assembler

5-8 Copyright © 1999,2000 ARM Limited. All rights reserved. ARM DUI 0067B
-

-noregs instructs the assembler not to predefine register names. See Predefined 
register and coprocessor names on page 5-10 for a list of predefined 
register names.

-nowarn turns off warning messages.

-o filename

names the output object file. If this option is not specified, the assembler 
uses the second command-line argument that is not a valid command-line 
option as the name of the output file. If there is no such argument, the 
assembler creates an object filename of the form inputfilename.o.

-predefine "directive"

instructs the assembler to pre-execute one of the SET directives. You 
must enclose directive in quotes. See:

• SETA directive on page 5-103

• SETL directive on page 5-104

• SETS directive on page 5-105.

The assembler executes a corresponding GBLL, GBLS, or GBLA directive 
to define the variable before setting its value.

-unsafe allows assembly of a file containing instructions that are not available on 
the specified architecture and processor. Corresponding error messages 
are changed to warning messages.

-via file instructs the assembler to open file and read in command-line 
arguments to the assembler.

inputfile specifies the input file for the assembler. Input files must be ARM or 
Thumb assembly language source files.



Assembler

ARM DUI 0067B Copyright © 1999,2000 ARM Limited. All rights reserved. 5-9
-

5.3  Format of source lines

The general form of source lines in an ARM assembly language module is:

{symbol} {instruction|directive|pseudo-instruction} {;comment}

All three sections of the source line are optional.

Instructions cannot start in the first column. They must be preceded by white space even 
if there is no preceding symbol.

You may write directives in all upper case, as in this manual. Alternatively, you may 
write directives in all lower case. You must not write a directive in mixed upper and 
lower case.

You can use blank lines to make your code more readable.

symbol is usually a label (see Labels on page 5-33). In instructions and 
pseudo-instructions it is always a label. In some directives it is a symbol for a variable 
or a constant. The description of the directives makes this clear.

symbol must begin in the first column and cannot contain any whitespace character 
such as a space or a tab (see Symbol naming rules on page 5-30).



Assembler

5-10 Copyright © 1999,2000 ARM Limited. All rights reserved. ARM DUI 0067B
-

5.4  Predefined register and coprocessor names

All register and coprocessor names are case-sensitive.

5.4.1  Predeclared register names

The following register names are predeclared:

• r0-r15 and R0-R15

• a1-a4 (argument/result/scratch registers, synonyms for r0-r3)

• v1-v8 (variable registers, r4-r11)

• sb and SB (static base, r9)

• sl and SL (stack limit, r10)

• fp and FP (frame pointer, r11)

• ip and IP (intra-procedure-call scratch register, r12)

• sp and SP (stack pointer, r13)

• lr and LR (link register, r14)

• pc and PC (program counter, r15).

5.4.2  Predeclared program status register names

The following program status register names are predeclared:

• cpsr and CPSR (current program status register)

• spsr and SPSR (saved program status register).

5.4.3  Predeclared floating-point register names

The following floating-point register names are predeclared:

• f0-f7 and F0-F7 (FPA registers)

• s0-s31 and S0-S31 (VFP single-precision registers)

• d0-d15 and D0-D15 (VFP double-precision registers).

5.4.4  Predeclared coprocessor names

The following coprocessor names and coprocessor register names are predeclared:

• p0-p15 (coprocessors 0-15)

• c0-c15 (coprocessor registers 0-15).



Assembler

ARM DUI 0067B Copyright © 1999,2000 ARM Limited. All rights reserved. 5-11
-

5.5  VFP directives and notation

You can make assertions about VFP vector lengths in your code, and have them checked 
by the assembler. See:

• VFPASSERT SCALAR on page 5-110

• VFPASSERT VECTOR on page 5-111.

If you use VFPASSERT directives, you must specify vector details in all VFP data 
processing instructions. The notation is described below. If you do not use VFPASSERT 
directives you must not use this notation.

In VFP data processing instructions, specify vectors of VFP registers using angle 
brackets:

• sn is a single-precision scalar register n

• sn<> is a single-precision vector whose length and stride are given by the current 
vector length and stride, starting at register n

• sn<L> is a single-precision vector of length L, stride 1, starting at register n

• sn<L:S> is a single-precision vector of length L, stride S, starting at register n

• dn is a double-precision scalar register n

• dn<> is a double-precision vector whose length and stride are given by the 
current vector length and stride, starting at register n

• dn<L> is a double-precision vector of length L, stride 1, starting at register n

• dn<L:S> is a double-precision vector of length L, stride S, starting at register n.

You can use this notation with names defined using the DN and SN directives (see DN 
directive on page 5-60 and SN directive on page 5-106).

You must not use this notation in the DN and SN directives themselves.



Assembler

5-12 Copyright © 1999,2000 ARM Limited. All rights reserved. ARM DUI 0067B
-

5.6  Built-in variables

Table 5-8 lists the built-in variables defined by the ARM assembler.

Built-in variables cannot be set using the SETA, SETL, or SETS directives. They can be 
used in expressions or conditions, for example:

        IF {ARCHITECTURE} = "4T"

 Table 5-8 Built-in variables

{PC} or . Address of current instruction.

{VAR} or @ Current value of the storage area location counter.

{TRUE} Logical constant true.

{FALSE} Logical constant false.

{OPT} Value of the currently-set listing option. The OPT directive can be used to save the current 
listing option, force a change in it, or restore its original value.

{CONFIG} Has the value 32 if the assembler is assembling ARM code, and the value 16 if it is 
assembling Thumb code.

{ENDIAN} Has the value big if the assembler is in big-endian mode, and the value little if it is in 
little-endian mode.

{CODESIZE} Is a synonym for {CONFIG}.

{CPU} Holds the name of the selected cpu. The default is ARM7TDMI.

{FPU} Holds the name of the selected fpu. The default is SoftVFP.

{ARCHITECTURE} Holds the name of the selected ARM architecture.

{PCSTOREOFFSET} Is the offset between the address of the STR pc,[...] or STM Rb,{..., pc} 
instruction and the value of pc stored out. This varies depending on the CPU and architecture 
specified.

{ARMASM_VERSION} Holds an integer that increases with each version.

{INTER} Has the value True if /inter is set. The default is False.

{ROPI} Has the value True if /ropi is set. The default is False.

{RWPI} Has the value True if /rwpi is set. The default is False.

{SWST} Has the value True if /swst is set. The default is False.

{NOSWST} Has the value True if /noswst is set. The default is False.



Assembler

ARM DUI 0067B Copyright © 1999,2000 ARM Limited. All rights reserved. 5-13
-

5.7  ARM pseudo-instructions

The ARM assembler supports a number of pseudo-instructions that are translated into 
the appropriate combination of ARM or Thumb instructions at assembly time.

The pseudo-instructions available in ARM state are described in the following sections:

• ADR ARM pseudo-instruction on page 5-14

• ADRL ARM pseudo-instruction on page 5-15

• FLDD ARM pseudo-instruction on page 5-17

• FLDS ARM pseudo-instruction on page 5-18

• LDFD ARM pseudo-instruction on page 5-19

• LDFS ARM pseudo-instruction on page 5-20

• LDR ARM pseudo-instruction on page 5-21

• NOP ARM pseudo-instruction on page 5-23.

See Thumb pseudo-instructions on page 5-24 for information on pseudo-instructions 
that are available in Thumb state.



Assembler

5-14 Copyright © 1999,2000 ARM Limited. All rights reserved. ARM DUI 0067B
-

5.7.1  ADR ARM pseudo-instruction

The ADR pseudo-instruction loads a program-relative or register-relative address into a 
register.

Syntax

ADR{condition} register,expression

where:

condition is an optional condition code

register is the register to load.

expression is a program-relative or register-relative expression that evaluates 
to:

• a non word-aligned address within 255 bytes

• a word-aligned address within 1020 bytes.

The address can be either before or after the address of the 
instruction or the base register (see Register-relative and 
program-relative expressions on page 5-119).

Usage

ADR always assembles to one instruction. The assembler attempts to produce a single 
ADD or SUB instruction to load the address. If the address cannot be constructed in a 
single instruction, an error is generated and the assembly fails.

ADR produces position-independent code, because the address is program-relative or 
register-relative.

Use the ADRL pseudo-instruction to assemble a wider range of effective addresses.

If expression is program-relative, it must evaluate to an address in the same code 
section as the ADR pseudo-instruction. Otherwise, it may be out of range after linking.

Example

start   MOV     r0,#10
        ADR     r4,start    ; => SUB r4,pc,#0xc



Assembler

ARM DUI 0067B Copyright © 1999,2000 ARM Limited. All rights reserved. 5-15
-

5.7.2  ADRL ARM pseudo-instruction

The ADRL pseudo-instruction loads a program-relative or register-relative address into 
a register. It is similar to the ADR pseudo-instruction. ADRL can load a wider range of 
addresses than ADR because it generates two data processing instructions.

Note

ADRL is not available when assembling Thumb instructions. Use it only in ARM code.

Syntax

ADRL{condition} register,expression

where:

condition is an optional condition code.

register is the register to load.

expression is a relative expression that evaluates to:

• a non word-aligned address within ±64KB

• a word-aligned address within ±256KB.

The address can be relative to either the current instruction or a 
base register (see Register-relative and program-relative 
expressions on page 5-119).

Usage

ADRL always assembles to two instructions. Even if the address can be reached in a 
single instruction, a second, redundant instruction is produced.

If the assembler cannot construct the address in two instructions, it generates an error 
message and the assembly fails. See LDR ARM pseudo-instruction on page 5-21 for 
information on loading a wider range of addresses (see also the assembly language 
chapter in ADS Developer Guide).

ADRL produces position-independent code, because the address is program-relative or 
register-relative.

If expression is program-relative, it must evaluate to an address in the same code 
section as the ADRL pseudo-instruction. Otherwise, it may be out of range after linking.



Assembler

5-16 Copyright © 1999,2000 ARM Limited. All rights reserved. ARM DUI 0067B
-

Example

start   MOV     r0,#10
        ADRL    r4,start + 60000     ; => ADD r4,pc,#0xe800
                                     ;    ADD r4,r4,#0x254



Assembler

ARM DUI 0067B Copyright © 1999,2000 ARM Limited. All rights reserved. 5-17
-

5.7.3  FLDD ARM pseudo-instruction

The FLDD pseudo-instruction loads a VFP floating-point register with a 
double-precision floating-point constant.

Note

You can use FLDD only if the command line option -fpu is set to vfp.

This section describes the FLDD pseudo-instruction only. See the ARM Architecture 
Reference Manual for information on the FLDD instruction.

Syntax

FLDD{condition} fp-register,=fp-literal

where:

condition is an optional condition code.

fp-register is the floating-point register to be loaded.

fp-literal is a double-precision floating-point literal (see Floating-point 
literals on page 5-118).

Usage

The range for double-precision numbers is:

• maximum 1.79769313486231571e+308

• minimum 2.22507385850720138e–308.

The assembler places the constant in a literal pool and generates a program-relative 
FLDD instruction to read the constant from the literal pool. Two words are used to store 
the constant in the literal pool.

The offset from pc to the constant must be less than 1KB. You are responsible for 
ensuring that there is a literal pool within range. See LTORG directive on page 5-91 for 
more information.

Example

        FLDD    d1,=3.12E106    ; loads 3.12E106 into d1



Assembler

5-18 Copyright © 1999,2000 ARM Limited. All rights reserved. ARM DUI 0067B
-

5.7.4  FLDS ARM pseudo-instruction

The FLDS pseudo-instruction loads a VFP floating-point register with a single-precision 
floating-point constant.

Note

You can use FLDS only if the command line option -fpu is set to vfp.

This section describes the FLDS pseudo-instruction only. See the ARM Architecture 
Reference Manual for information on the FLDS instruction.

Syntax

FLDS{condition} fp-register,=fp-literal

where:

condition is an optional condition code.

fp-register is the floating-point register to be loaded.

fp-literal is a single-precision floating-point literal (see Floating-point 
literals on page 5-118).

Usage

The range for single-precision values is:

• maximum 3.40282347e+38

• minimum 1.17549435e–38.

The assembler places the constant in a literal pool and generates a program-relative 
FLDS instruction that reads the constant from the literal pool.

The offset from the pc to the constant must be less than 1KB. You are responsible for 
ensuring that there is a literal pool within range. See LTORG directive on page 5-91 for 
more information.

Example

        FLDS    s1,=3.12E-6    ; loads 3.12E-6 into s1



Assembler

ARM DUI 0067B Copyright © 1999,2000 ARM Limited. All rights reserved. 5-19
-

5.7.5  LDFD ARM pseudo-instruction

The LDFD pseudo-instruction loads an FPA floating-point register with a 
double-precision floating-point constant.

Note

You can use LDFD only if the command line option -fpu is set to fpa.

This section describes the LDFD pseudo-instruction only.

Syntax

LDFD{condition} fp-register,=fp-literal

where:

condition is an optional condition code.

fp-register is the floating-point register to be loaded.

fp-literal is a double-precision floating-point literal (see Floating-point 
literals on page 5-118).

Usage

The range for double-precision numbers is:

• maximum 1.79769313486231571e+308

• minimum 2.22507385850720138e–308.

The assembler places the constant in a literal pool and generates a program-relative 
LDFD instruction to read the constant from the literal pool. Two words are used to store 
the constant in the literal pool.

The offset from pc to the constant must be less than 1KB. You are responsible for 
ensuring that there is a literal pool within range. See LTORG directive on page 5-91 for 
more information.

Example

        LDFD    f1,=3.12E106    ; loads 3.12E106 into f1



Assembler

5-20 Copyright © 1999,2000 ARM Limited. All rights reserved. ARM DUI 0067B
-

5.7.6  LDFS ARM pseudo-instruction

The LDFS pseudo-instruction loads an FPA floating-point register with a 
single-precision floating-point constant.

Note

You can use LDFS only if the command line option -fpu is set to fpa.

This section describes the LDFS pseudo-instruction only.

Syntax

LDFS{condition} fp-register,=fp-literal

where:

condition is an optional condition code.

fp-register is the floating-point register to be loaded.

fp-literal is a single-precision floating-point literal (see Floating-point 
literals on page 5-118).

Usage

The range for single-precision values is:

• maximum 3.40282347e+38

• minimum 1.17549435e–38.

The assembler places the constant in a literal pool and generates a program-relative 
LDFS instruction that reads the constant from the literal pool.

The offset from the pc to the constant must be less than 1KB. You are responsible for 
ensuring that there is a literal pool within range. See LTORG directive on page 5-91 for 
more information.

Example

        LDFS    f1,=3.12E-6    ; loads 3.12E-6 into f1



Assembler

ARM DUI 0067B Copyright © 1999,2000 ARM Limited. All rights reserved. 5-21
-

5.7.7  LDR ARM pseudo-instruction

The LDR pseudo-instruction loads a register with either:

• a 32-bit constant value

• an address.

Note

This section describes the LDR pseudo-instruction only. See the ARM Architecture 
Reference Manual for information on the LDR instruction.

Syntax

LDR{condition} register,=[expression | label-expression]

where:

condition is an optional condition code.

register is the register to be loaded.

expression

evaluates to a numeric constant:

• the assembler generates a MOV or MVN instruction, if the value of 
expression is within range

• if the value of expression is not within range of a MOV or MVN 
instruction, the assembler places the constant in a literal pool and 
generates a program-relative LDR instruction that reads the constant 
from the literal pool.

label-expression

is a program-relative or external expression. The assembler places the 
value of label-expression in a literal pool and generates a 
program-relative LDR instruction that loads the value from the literal 
pool.

If label-expression is an external expression, or is not contained in 
the current section, the assembler places a linker relocation directive in 
the object file. The linker generates the address at link time.



Assembler

5-22 Copyright © 1999,2000 ARM Limited. All rights reserved. ARM DUI 0067B
-

Usage

The LDR pseudo-instruction is used for two main purposes:

• To generate literal constants when an immediate value cannot be moved into a 
register because it is out of range of the MOV and MVN instructions

• To load a program-relative or external address into a register. The address remains 
valid regardless of where the linker places the ELF section containing the LDR.

Note

An address loaded in this way is fixed at link time, so the code is not 
position-independent.

The offset from the pc to the value in the literal pool must be less than 4KB. You are 
responsible for ensuring that there is a literal pool within range. See LTORG directive 
on page 5-91 for more information.

See the assembly language chapter in ADS Developer Guide for a more detailed 
explanation of how to use LDR, and for more information on MOV and MVN.

Example

        LDR     r3,=0xff0    ; loads 0xff0 into r3
                             ; =>  MOV r3,#0xff0

        LDR     r1,=0xfff    ; loads 0xfff into r1
                             ; =>  LDR r1,[pc,offset_to_litpool]
                             ;     ...
                             ;     litpool DCD 0xfff

        LDR     r2,=place    ; loads the address of
                             ; place into r2
                             ; =>  LDR r2,[pc,offset_to_litpool]
                             ;     ...
                             ;     litpool DCD place



Assembler

ARM DUI 0067B Copyright © 1999,2000 ARM Limited. All rights reserved. 5-23
-

5.7.8  NOP ARM pseudo-instruction

NOP generates the preferred ARM no-operation code. This is:

MOV r0,r0

Syntax

NOP

Usage

NOP cannot be used conditionally. Not executing a no-operation is the same as executing 
it, so conditional execution is not required.

ALU status flags are unaltered by NOP.



Assembler

5-24 Copyright © 1999,2000 ARM Limited. All rights reserved. ARM DUI 0067B
-

5.8  Thumb pseudo-instructions

The ARM assembler supports a number of pseudo-instructions that are translated into 
the appropriate combination of ARM or Thumb instructions at assembly time. 

The pseudo-instructions that are available in Thumb state are in the following sections:

• ADR Thumb pseudo-instruction on page 5-25

• LDR Thumb pseudo-instruction on page 5-26

• MOV Thumb pseudo-instruction on page 5-28

• NOP Thumb pseudo-instruction on page 5-29.

See ARM pseudo-instructions on page 5-13 for information on pseudo-instructions that 
are available in ARM state.



Assembler

ARM DUI 0067B Copyright © 1999,2000 ARM Limited. All rights reserved. 5-25
-

5.8.1  ADR Thumb pseudo-instruction

The ADR pseudo-instruction loads a program-relative or register-relative address into a 
register.

Syntax

ADR register, expression

where:

register is the register to load.

expression

is a program-relative or register-relative expression. The offset must be 
positive and less than 1KB. expression must be defined locally, it 
cannot be imported.

See MAP or ^ directive on page 5-95 for more information on 
register-relative expressions.

Usage

In Thumb state, ADR can generate word-aligned addresses only. Use the ALIGN directive 
to ensure that expression is aligned.

If expression is program-relative, it must evaluate to an address in the same code 
section as the ADR pseudo-instruction. There is no guarantee that the address will be 
within range after linking if it resides in another ELF section.

Example

        ADR     r4,txampl    ; => ADD r4,pc,#nn
        ; code
        ALIGN
txampl  DCW     0,0,0,0



Assembler

5-26 Copyright © 1999,2000 ARM Limited. All rights reserved. ARM DUI 0067B
-

5.8.2  LDR Thumb pseudo-instruction

The LDR pseudo-instruction loads a low register with either:

• a 32-bit constant value

• an address.

Note

This section describes the LDR pseudo-instruction only. See the ARM Architecture 
Reference Manual for information on the LDR instruction.

Syntax

LDR register, =[expression | label-expression]

where:

register is the register to be loaded. LDR can access the low registers (r0-r7) only.

expression

evaluates to a numeric constant:

• if the value of expression is within range of a MOV instruction, 
the assembler generates the instruction

• if the value of expression is not within range of a MOV 
instruction, the assembler places the constant in a literal pool and 
generates a program-relative LDR instruction that reads the constant 
from the literal pool.

label-expression

is a program-relative or external expression. The assembler places the 
value of label-expression in a literal pool and generates a 
program-relative LDR instruction that loads the value from the literal 
pool.

If label-expression is an external expression, or is not contained in 
the current section, the assembler places a linker relocation directive in 
the object file. The linker ensures that the correct address is generated at 
link time.

The offset from the pc to the value in the literal pool must be positive and less than 1KB. 
You are responsible for ensuring that there is a literal pool within range. See LTORG 
directive on page 5-91 for more information.



Assembler

ARM DUI 0067B Copyright © 1999,2000 ARM Limited. All rights reserved. 5-27
-

Usage

The LDR pseudo-instruction is used for two main purposes:

• To generate literal constants when an immediate value cannot be moved into a 
register because it is out of range of the MOV instruction.

• To load a program-relative or external address into a register. The address remains 
valid regardless of where the linker places the ELF section containing the LDR.

See the assembly language chapter in ADS Developer Guide for a more detailed 
explanation of how to use LDR, and for more information on MOV.

Example

        LDR     r1, =0xfff      ; loads 0xfff into r1
                                ;
        LDR     r2, =labelname  ; loads the address of
                                ; labelname into r2



Assembler

5-28 Copyright © 1999,2000 ARM Limited. All rights reserved. ARM DUI 0067B
-

5.8.3  MOV Thumb pseudo-instruction

The Thumb MOV pseudo-instruction moves the value of a low register to another low 
register (r0-r7).

The Thumb MOV instruction cannot move values from one low register to another.

Note

The ADD immediate instruction generated by the assembler has the side-effect of 
updating the condition codes.

Syntax

MOV Rd,Rs

where:

Rd is the destination register.

Rs is the source register.

Usage

The MOV pseudo-instruction uses an ADD immediate instruction with a zero immediate 
value.

See the ARM Architecture Reference Manual for more information on the Thumb MOV 
instruction.

Example

    MOV     Rd, Rs  ; generates the opcode for ADD Rd, Rs, #0



Assembler

ARM DUI 0067B Copyright © 1999,2000 ARM Limited. All rights reserved. 5-29
-

5.8.4  NOP Thumb pseudo-instruction

NOP generates the preferred Thumb no-operation instruction. This is:

MOV r8,r8

Syntax

The syntax for NOP is:

NOP

Usage

ALU status flags are unaltered by NOP.



Assembler

5-30 Copyright © 1999,2000 ARM Limited. All rights reserved. ARM DUI 0067B
-

5.9  Symbols

You can use symbols to represent variables, addresses, and numeric constants. Symbols 
representing addresses are also called labels. See:

• Variables on page 5-31

• Numeric constants on page 5-31

• Labels on page 5-33.

5.9.1  Symbol naming rules

The following general rules apply to symbol names:

• You can use uppercase letters, lowercase letters, numeric characters, or the 
underscore character in symbol names.

• Do not use numeric characters for the first character of symbol names, except in 
local labels (see Local labels on page 5-34).

• Symbol names are case-sensitive.

• All characters in the symbol name are significant.

• Symbol names must be unique within their scope.

• Symbols must not use built-in variable names or predefined symbol names (see 
Predefined register and coprocessor names on page 5-10 and Built-in variables 
on page 5-12).

• Symbols should not use the same name as instruction mnemonics or directives. If 
you need to use the same name as an instruction mnemonic or directive, use 
double bars to delimit the symbol name. For example:

||ASSERT||

The bars are not part of the symbol. You cannot use bars, semicolons, or newlines 
within the bars.

If you need to use a wider range of characters in symbols, use single bars to delimit the 
symbol name.

The bars are not part of the symbol. You cannot use bars, semicolons, or newlines within 
the bars.



Assembler

ARM DUI 0067B Copyright © 1999,2000 ARM Limited. All rights reserved. 5-31
-

5.9.2  Variables

The value of a variable can be changed as assembly proceeds. Variables are of three 
types:

• numeric

• logical

• string.

The type of a variable cannot be changed.

The range of possible values of a numeric variable is the same as the range of possible 
values of a numeric constant or numeric expression (see Numeric constants on 
page 5-31 and Numeric expressions on page 5-116).

The possible values of a logical variable are {TRUE} or {FALSE} (see Logical 
expressions on page 5-119).

The range of possible values of a string variable is the same as the range of values of a 
string expression (see String expressions on page 5-115).

Use the GBLA, GBLL, GBLS, LCLA, LCLL, and LCLS directives to declare symbols 
representing variables, and assign values to them using the SETA, SETL, and SETS 
directives. See:

• GBLA directive on page 5-79

• GBLL directive on page 5-80

• GBLS directive on page 5-81

• LCLA directive on page 5-88

• LCLL directive on page 5-89

• LCLS directive on page 5-90

• SETA directive on page 5-103

• SETL directive on page 5-104

• SETS directive on page 5-105.

5.9.3  Numeric constants

Numeric constants are 32-bit integers. You can set them using unsigned numbers in the 
range 0 to 232 – 1, or signed numbers in the range –231 to 231 – 1. However, the 
assembler makes no distinction between –n and 232 – n. Relational operators such as >= 
use the unsigned interpretation. This means that 0 > –1 is {FALSE}.

Use the EQU directive to define constants (see EQU or * directive on page 5-64). You 
cannot change the value of a numeric constant after you define it.

See also Numeric expressions on page 5-116 and Numeric literals on page 5-117.



Assembler

5-32 Copyright © 1999,2000 ARM Limited. All rights reserved. ARM DUI 0067B
-

5.9.4  Assembly time substitution of variables

You can use a string variable for a whole line of assembly language, or any part of a 
line. Use the variable with a $ prefix in the places where the value is to be substituted 
for the variable. The dollar character instructs the assembler to substitute the string into 
the source code line before checking the syntax of the line.

Numeric and logical variables can also be substituted. The current value of the variable 
is converted to a hexadecimal string (or T or F for logical variables) before substitution.

Use a dot to mark the end of the variable name if the following character would be 
permissible in a symbol name (see Symbol naming rules on page 5-30). You must set 
the contents of the variable before you can use it.

If you need a $  that you do not want to be substituted, use $$. This is converted to a 
single $.

You can include a variable with a $ prefix in a string. Substitution occurs in the same 
way as anywhere else.

Substitution does not occur within vertical bars, except that vertical bars within double 
quotes do not affect substitution.

Examples

    ; straightforward substitution
        GBLS    add4ff
        ;
add4ff  SETS    "ADD  r4,r4,#0xFF"    ; set up add4ff
        $add4ff.00                    ; invoke add4ff
        ; this produces
        ADD  r4,r4,#0xFF00

    ; elaborate substitution
            GBLS    s1
            GBLS    s2
            GBLS    fixup
            GBLA    count
            ;
count       SETA    14
s1          SETS    "a$$b$count" ; s1 now has value a$b0000000E
s2          SETS    "abc"
fixup       SETS    "|xy$s2.z|"  ; fixup now has value |xyabcz|
|C$$code|    MOV     r4,#16      ; but the label here is C$$code



Assembler

ARM DUI 0067B Copyright © 1999,2000 ARM Limited. All rights reserved. 5-33
-

5.9.5  Labels

Labels are symbols representing the addresses in memory of instructions or data. They 
may be program-relative, register-relative, or absolute.

Program-relative labels

These represent the program counter plus or minus a numeric constant. Use them as 
targets for branch instructions, or to access small items of data embedded in code 
sections. You can define program-relative labels using a label on an instruction or on 
one of the Define Constant directives. See:

• DCB or = directive on page 5-47

• DCD or & directive on page 5-48

• DCDU directive on page 5-50

• DCFD directive on page 5-51

• DCFDU directive on page 5-52

• DCFS directive on page 5-53

• DCFSU directive on page 5-54

• DCW directive on page 5-58

• DCWU directive on page 5-59.

Register-relative labels

These represent a named register plus a numeric constant. They are most often used to 
access data in data sections. You can define them with a storage map. You can use the 
EQU directive to define additional register-relative labels, based on labels defined in 
storage maps. See:

• DCDO directive on page 5-49

• MAP or ^ directive on page 5-95

• SPACE or % directive on page 5-107

• EQU or * directive on page 5-64.

Absolute addresses

These are numeric constants. They are integers in the range 0 to 232–1. They See 
memory directly.



Assembler

5-34 Copyright © 1999,2000 ARM Limited. All rights reserved. ARM DUI 0067B
-

5.9.6  Local labels

A local label is a number in the range 0-99, optionally followed by a name. The same 
number can be used for more than one local label in an ELF section.

Local labels are used for instructions that are the target for branches. You cannot use 
them for data. Typically they are used for loops and conditional code within a routine, 
or for small subroutines that are only used locally. They are particularly useful in 
macros (see MACRO directive on page 5-92).

Use the ROUT directive to limit the scope of local labels (see ROUT directive on 
page 5-102). A reference to a local label refers to a matching label within the same 
scope. If there is no matching label within the scope in either direction, the assembler 
generates an error message and the assembly fails.

You can use the same number for more than one local label even within the same scope. 
By default, the assembler links a local label reference to:

• the most recent local label of the same number, if there is one within the scope

• the next following local label of the same number, if there is not a preceding one 
within the scope.

Use the optional parameters to modify this search pattern if required.



Assembler

ARM DUI 0067B Copyright © 1999,2000 ARM Limited. All rights reserved. 5-35
-

Syntax

The syntax of a local label is:

n{routname}

The syntax of a reference to a local label is:

%{F|B}{A|T}n{routname}

where:

n is the number of the local label.

routname is the name of the current scope.

% introduces the reference.

F instructs the assembler to search forwards only.

B instructs the assembler to search backwards only.

A instructs the assembler to search all macro levels.

T instructs the assembler to look at this macro level only.

If neither F or B is specified, the assembler searches backwards first, then forwards.

If neither A or T is specified, the assembler searches all macros from the current level to 
the top level, but does not search lower level macros.

If routname is specified in either a label or a reference to a label, the assembler checks 
it against the name of the nearest preceding ROUT directive. If it does not match, the 
assembler generates an error message and the assembly fails.



Assembler

5-36 Copyright © 1999,2000 ARM Limited. All rights reserved. ARM DUI 0067B
-

5.10  Directives

The assembler provides directives to support:

• data structure definitions and allocation of space for data

• partitioning of files into logical subdivisions

• error reporting and control of assembly listing

• definition of symbols

• conditional and repetitive assembly, and inclusion of subsidiary files.

See Table 5-2 on page 5-2 to locate individual directives within this section. The 
directives are described in the following sections in alphabetical order.

5.10.1  Nesting directives

MACRO definitions, WHILE...WEND loops, IF...ENDIF conditions and GET or 
INCLUDE directives can be nested within themselves or within each other to a total 
depth of 256.



Assembler

ARM DUI 0067B Copyright © 1999,2000 ARM Limited. All rights reserved. 5-37
-

5.10.2  ALIGN directive

The ALIGN directive aligns the current location to a specified boundary by padding with 
zeroes.

Syntax

ALIGN {expression{,offset}}

where:

expression can be any power of 2 from 20 to 231.

offset can be any numeric expression.

The current location is aligned to the next address of the form:

offset + n * expression

If expression is not specified, ALIGN sets the current location to the next word 
boundary.

Usage

Use ALIGN to ensure that your code and data is correctly aligned. As a general rule it is 
safer to use ALIGN frequently through your code.

Use ALIGN to ensure that Thumb addresses are word-aligned when required. For 
example, the ADR Thumb pseudo-instruction can only load addresses that are word 
aligned.

Use ALIGN when data definition directives appear in code sections. When data 
definition directives (DCB, DCW, DCWU, DCDU and SPACE) are used in code sections, the 
program counter does not necessarily point to a word boundary. When the assembler 
encounters the next instruction mnemonic it inserts up to 3 bytes, if required, to ensure 
that the instruction is:

• word-aligned in ARM state

• halfword-aligned in Thumb state.

In this case, a label that appears on a source line by itself does not address the following 
instruction. Use an ALIGN directive before the label to ensure that the label addresses 
the following instruction. You can use ALIGN 2 to align on a halfword (2-byte) 
boundary in Thumb code.

Use ALIGN with a coarser setting to take advantage of caches on some ARM processors. 
For example, the ARM940T has a cache with 16-byte lines. Use ALIGN 16 to align 
function entries on 16-byte boundaries and maximize the efficiency of the cache.



Assembler

5-38 Copyright © 1999,2000 ARM Limited. All rights reserved. ARM DUI 0067B
-

Alignment is relative to the start of the ELF section where the routine is located. You 
must ensure that the section is also aligned to the same, or coarser, boundaries. The 
ALIGN attribute on the AREA directive is specified differently (see AREA directive on 
page 5-39 and the example below).

Examples

        AREA    Example, CODE, READONLY
start   LDR     r6,=label1
        ; code
        MOV     pc,lr
label1  DCB     1           ; pc now misaligned
        ALIGN               ; ensures that label1 addresses
                            ; the following instruction.
subr1   MOV r5,#0x5

        AREA    cacheable, CODE, ALIGN=3
rout1   ; code              ; aligned on 8-byte boundary
        ; code
        MOV     pc,lr       ; aligned only on 4-byte boundary
        ALIGN   8           ; now aligned on 8-byte boundary
rout2   ; code

        AREA    OffsetExample, CODE
        DCB     1           ; This example places the two
        ALIGN   4,3         ; bytes in the first and fourth
        DCB     1           ; bytes of the same word.



Assembler

ARM DUI 0067B Copyright © 1999,2000 ARM Limited. All rights reserved. 5-39
-

5.10.3  AREA directive

The AREA directive instructs the assembler to assemble a new code or data section. 
Sections are independent, named, indivisible chunks of code or data that are 
manipulated by the linker. See the assembly language chapter in ADS Developer Guide 
for more information.

Syntax

AREA sectionname{,attr}{,attr}...

where:

sectionname

is the name that the section is to be given.

You can choose any name for your sections. However, names starting 
with a digit must be enclosed in bars or a missing section name error is 
generated. For example, |1_DataArea|.

Certain names are conventional. For example, |.text| is used for code 
sections produced by the C compiler, or for code sections otherwise 
associated with the C library.

attr are one or more comma-delimited section attributes. Valid attributes are: 

ALIGN=expression

By default, ELF sections are aligned on a 4-byte boundary. 

expression can have any integer value between 2 and 31. 
The section is aligned on a 2expression-byte boundary. For 
example, if expression is 10, the section is aligned on a 1KB 
boundary. This is not the same as the way that the ALIGN 
directive is specified. See ALIGN directive on page 5-37.

ASSOC=section

section specifies an associated ELF section. sectionname 
must be included in any link that includes section.

CODE Contains machine instructions. READONLY is the default.

COMDEF Is a common section definition. This ELF section may contain 
code or data. It must be identical to any other section of the 
same name in other source files.

Identical ELF sections with the same name are overlaid in the 
same section of memory by the linker. If any are different, the 
linker generates a warning and does not overlay the sections.



Assembler

5-40 Copyright © 1999,2000 ARM Limited. All rights reserved. ARM DUI 0067B
-

COMMON Is a common data section. You must not define any code or 
data in it. It is initialized to zeroes by the linker. All common 
sections with the same name are overlaid in the same section 
of memory by the linker. They do not all need to be the same 
size. The linker allocates as much space as is required by the 
largest common section of each name.

DATA Contains data, not instructions. READWRITE is the default.

NOINIT Indicates that the data section is uninitialized, or initialized to 
zero. It contains only space reservation directives (DCB, DCD, 
DCDU, DCQ, DCQU, DCW, DCWU, or SPACE), with no initialized 
values.

READONLY

Indicates that this section should not be written to.

READWRITE

Indicates that this section may be read from and written to.

Usage

Use the AREA directive to subdivide your source file into ELF sections. You can use the 
same name in more than one AREA directive. All areas with the same name are placed 
in the same ELF section.

You should normally use separate ELF sections for code and data. Large programs can 
usually be conveniently divided into several code sections. Large independent data sets 
are also usually best placed in separate sections.

The scope of local labels is defined by AREA directives, optionally subdivided by ROUT 
directives (see Local labels on page 5-34 and ROUT directive on page 5-102).

There must be at least one AREA directive for an assembly. If no AREA directive is 
specified, the assembler generates an ELF section with the name |$$$$$$$|, and 
produces a diagnostic message. This limits the number of error messages caused by the 
missing directive, but does not lead to a successful assembly.

Example

The following example defines a read-only code section named Example.

    AREA    Example,CODE,READONLY   ; An example code section.
            ; code



Assembler

ARM DUI 0067B Copyright © 1999,2000 ARM Limited. All rights reserved. 5-41
-

5.10.4  ASSERT directive

The ASSERT directive generates an error message during the second pass of the 
assembly if a given assertion is false.

Syntax

ASSERT logical-expression

where:

logical-expression

is an assertion that can evaluate to either {TRUE} or {FALSE}.

Usage

Use ASSERT to ensure that any necessary condition is met during assembly.

If the assertion is false an error message is generated and assembly fails.

See also INFO or ! directive on page 5-86.

Example

        ASSERT  label1 <= label2    ; Tests if the address
                                    ; represented by label1
                                    ; is <= the address 
                                    ; represented by label2.



Assembler

5-42 Copyright © 1999,2000 ARM Limited. All rights reserved. ARM DUI 0067B
-

5.10.5  CN directive

The CN directive defines a name for a coprocessor register.

Syntax

name CN numeric-expression

where:

name is the name to be defined for the coprocessor register.

numeric-expression

evaluates to a coprocessor register number from 0 to 15.

Usage

Use CN to allocate convenient names to registers, to help you remember what you use 
each register for. Be careful to avoid conflicting uses of the same register under different 
names.

The names c0 to c15 are predefined.

Example

power    CN  6        ; defines power as a symbol for
                      ; coprocessor register 6



Assembler

ARM DUI 0067B Copyright © 1999,2000 ARM Limited. All rights reserved. 5-43
-

5.10.6  CODE16 directive

The CODE16 directive instructs the assembler to interpret subsequent instructions as 
16-bit Thumb instructions.

Syntax

CODE16

Usage

In files that contain a mixture of ARM and Thumb code, use CODE16 when changing 
from ARM state to Thumb state. CODE16 must precede any Thumb code.

The assembler inserts a byte of padding, if necessary, to bring following Thumb code 
into halfword alignment. CODE16 does not assemble to an instruction that changes the 
state. It only instructs the assembler to assemble Thumb instructions.

See also CODE32 directive on page 5-44.

Example

This example shows how CODE16 can be used to branch from ARM to Thumb 
instructions.

        AREA    ThumbEx, CODE, READONLY

                             ; This section starts in ARM state
        LDR     r0,=start+1  ; Load the address and set the
                             ; least significant bit
        BX      r0           ; Branch and exchange
                             ; instruction sets

                             ; Not necessarily in same section

        CODE16               ; Following instructions are Thumb
start   MOV     r1,#10       ; Thumb instructions



Assembler

5-44 Copyright © 1999,2000 ARM Limited. All rights reserved. ARM DUI 0067B
-

5.10.7  CODE32 directive

The CODE32 directive instructs the assembler to interpret subsequent instructions as 
32-bit ARM instructions.

Syntax

CODE32

Usage

In files that contain a mixture of ARM and Thumb code, use CODE32 when branching 
from Thumb state to ARM state. CODE32 precedes the ARM code.

The assembler inserts up to three bytes of padding, if necessary, to bring following 
ARM code into word alignment. CODE32 does not assemble to an instruction that 
changes the state. It only instructs the assembler to assemble ARM instructions.

See also CODE16 directive on page 5-43.

Example

        CODE16             ; Start this section in Thumb state

        AREA    ThumbEx, CODE, READONLY

        MOV     r1,#10     ; Thumb instructions
        LDR     r0,=goarm  ; Load the address and leave the
                           ; least significant bit clear.
        BX      r0         ; Branch and exchange instruction
                           ; sets

                           ; Not necessarily in the same section
        CODE32             ; Following instructions are ARM
goarm   MOV     r4,#15     ; ARM instructions



Assembler

ARM DUI 0067B Copyright © 1999,2000 ARM Limited. All rights reserved. 5-45
-

5.10.8  CP directive

The CP directive defines a name for a specified coprocessor. The coprocessor number 
must be within the range 0 to 15. 

Syntax

name CP numeric-expression

where:

name is the name to be assigned to the coprocessor. name cannot be the same 
as any of the predefined names listed in Predefined register and 
coprocessor names on page 5-10.

numeric-expression

evaluates to a coprocessor number from 0 to 15.

Usage

Use CP to allocate convenient names to coprocessors, to help you to remember what you 
use each one for. Be careful to avoid conflicting uses of the same coprocessor under 
different names.

The names p0 to p15 are predefined for coprocessors 0 to 15.

Example

dmu    CP  6       ; defines dmu as a symbol for
                   ; coprocessor 6



Assembler

5-46 Copyright © 1999,2000 ARM Limited. All rights reserved. ARM DUI 0067B
-

5.10.9  DATA directive

The DATA directive informs the assembler that a label is a data-in-code label. This 
means that the label is the address of data within a code segment.

Syntax

label DATA

where:

label is the label of the data definition. The DATA directive must be on the same 
line as label.

Usage

You must use the DATA directive when you define data in a Thumb code section with 
any of the data-defining directives such as DCD, DCB, and DCW.

When the linker relocates a label in a Thumb code section, it assumes that the label 
represents the address of a Thumb routine. The linker adds one to the value of the label 
so that the processor is switched to Thumb state if the routine is called with a BX 
instruction.

If a label represents the address of data in a Thumb code section, you do not want the 
linker to add one to the label. The DATA directive marks the label as pointing to data 
within a code section and the linker does not add one to the value.

You can use DATA to mark data-in-code in ARM code areas. The DATA directive is 
ignored by the assembler in ARM code areas.

Example

            AREA    example, CODE
Thumb_fn    ; code
            ; code
            MOV     pc, lr

Thumb_Data  DATA
            DCB     1, 3, 4



Assembler

ARM DUI 0067B Copyright © 1999,2000 ARM Limited. All rights reserved. 5-47
-

5.10.10  DCB or = directive

The DCB directive allocates one or more bytes of memory, and defines the initial runtime 
contents of the memory. = is a synonym for DCB.

Syntax

{label} DCB expression{,expression}...

where:

expression

is either:

• A numeric expression that evaluates to an integer in the range –128 
to 255 (see Numeric expressions on page 5-116).

• A quoted string. The characters of the string are loaded into 
consecutive bytes of store.

Usage

You must use the DATA directive if you use DCB to define labeled data within Thumb 
code. See DATA directive on page 5-46 for more information.

If DCB is followed by an instruction, use an ALIGN directive to ensure that the 
instruction is aligned. See ALIGN directive on page 5-37 for more information.

See also:

• DCD or & directive on page 5-48

• DCDU directive on page 5-50

• DCQ directive on page 5-56

• DCQU directive on page 5-57

• DCW directive on page 5-58

• DCWU directive on page 5-59

• SPACE or % directive on page 5-107.

Example

Unlike C strings, ARM assembler strings are not null-terminated. You can construct a 
null-terminated C string using DCB as follows:

C_string   DCB  "C_string",0



Assembler

5-48 Copyright © 1999,2000 ARM Limited. All rights reserved. ARM DUI 0067B
-

5.10.11  DCD or & directive

The DCD directive allocates one or more words of memory, aligned on 4-byte 
boundaries, and defines the initial runtime contents of the memory. & is a synonym for 
DCD.

Syntax

{label} DCD expression{,expression}

where:

expression

is either:

• a numeric expression (see Numeric expressions on page 5-116).

• a program-relative expression.

Usage

DCD inserts up to 3 bytes of padding before the first defined word, if necessary, to 
achieve 4-byte alignment. Use DCDU if you do not require alignment.

See also:

• DCB or = directive on page 5-47

• DCW directive on page 5-58

• DCQ directive on page 5-56

• DCDU directive on page 5-50

• SPACE or % directive on page 5-107.

Example

data1   DCD     1,5,20          ; Defines 3 words containing
                                ; decimal values 1, 5, and 20

data2   DCD     mem06           ; Defines 1 word containing the
                                ; address of the label mem06

data3   DCD     glb + 4         ; Defines 1 word containing
                                ; 4 + the value of glb



Assembler

ARM DUI 0067B Copyright © 1999,2000 ARM Limited. All rights reserved. 5-49
-

5.10.12  DCDO directive

The DCDO directive allocates one or more words of memory, aligned on 4-byte 
boundaries, and defines the initial runtime contents of the memory as an offset from the 
static base register, sb (r9).

Syntax

{label} DCDO expression{,expression}...

where:

expression

is a register-relative expression or label. The base register must be sb.

Usage

Use DCDO to allocate space in memory for static base register relative relocatable 
addresses.

See also:

• DCD or & directive on page 5-48

• Labels on page 5-33

• MAP or ^ directive on page 5-95.

Example

        IMPORT  externsym
        DCDO    externsym   ; 32-bit word relocated by offset of
                            ; externsym from base of SB section.



Assembler

5-50 Copyright © 1999,2000 ARM Limited. All rights reserved. ARM DUI 0067B
-

5.10.13  DCDU directive

The DCDU directive allocates one or more words of memory, not necessarily aligned, 
and defines the initial runtime contents of the memory.

Syntax

{label} DCDU expression{,expression}...

where:

expression

is either:

• A numeric expression (see Numeric expressions on page 5-116).

• A program-relative expression.

Usage

Use DCDU to define data words with arbitrary alignment.

If DCDU is followed by code, use an ALIGN directive to ensure that the instructions are 
word aligned. See ALIGN directive on page 5-37 for more information.

DCDU does not insert padding when preceding code is unaligned. Use DCD if you require 
alignment.

See also:

• DCB or = directive on page 5-47

• DCD or & directive on page 5-48

• DCQU directive on page 5-57

• DCWU directive on page 5-59

• SPACE or % directive on page 5-107.

Example

        AREA    MyData, DATA, READWRITE
        DCB     255         ; Now misaligned ...
data1   DCDU    1,5,20      ; Defines 3 words containing
                            ; 1, 5 and 20, not word aligned



Assembler

ARM DUI 0067B Copyright © 1999,2000 ARM Limited. All rights reserved. 5-51
-

5.10.14  DCFD directive

The DCFD directive allocates memory for word-aligned double-precision floating-point 
numbers, and defines the initial runtime contents of the memory. Double-precision 
numbers occupy two words and must be word aligned to be used in arithmetic 
operations.

Syntax

{label} DCFD fp-literal{,fp-literal}...

where:

fp-literal

is a double-precision floating-point literal (see Floating-point literals on 
page 5-118).

Usage

The assembler inserts up to three bytes of padding before the first defined number, if 
necessary, to achieve 4-byte alignment. Use DCFDU if you do not require alignment.

The word order used when converting fp-literal to internal form is controlled by 
the floating-point architecture selected.

The range for double-precision numbers is:

• maximum 1.79769313486231571e+308

• minimum 2.22507385850720138e–308.

See also:

• DCFDU directive on page 5-52

• DCFS directive on page 5-53

• DCFSU directive on page 5-54.

Examples

        DCFD    1E308,-4E-100
        DCFD    10000,-.1,3.1E26



Assembler

5-52 Copyright © 1999,2000 ARM Limited. All rights reserved. ARM DUI 0067B
-

5.10.15  DCFDU directive

The DCFDU directive allocates eight bytes of memory for arbitrarily aligned 
double-precision floating-point numbers, and defines the initial runtime contents of the 
memory.

Syntax

{label} DCFDU fp-literal{,fp-literal}...

where:

fp-literal

is a double-precision floating-point literal (see Floating-point literals on 
page 5-118).

Usage

DCFDU defines floating-point values with arbitrary alignment. Use DCFD if you require 
alignment.

The word order used when converting fp-literal to internal form is controlled by 
the floating-point architecture selected.

The range for double-precision numbers is:

• maximum 1.79769313486231571e+308

• minimum 2.22507385850720138e–308.

See also:

• DCFD directive on page 5-51

• DCFS directive on page 5-53

• DCFSU directive on page 5-54.

Examples

        DCFDU   1E308,-4E-100
        DCFDU   100,-.1,3.1E26



Assembler

ARM DUI 0067B Copyright © 1999,2000 ARM Limited. All rights reserved. 5-53
-

5.10.16  DCFS directive

The DCFS directive allocates memory for word-aligned single-precision floating-point 
numbers, and defines the initial runtime contents of the memory. Single-precision 
numbers occupy one word and must be word aligned to be used in arithmetic operations. 

Syntax

{label} DCFS fp-literal{,fp-literal}...

where:

fp-literal

is a single-precision floating-point literal (see Floating-point literals on 
page 5-118).

Usage

DCFS inserts up to three bytes of padding before the first defined number, if necessary 
to achieve 4-byte alignment. Use DCFSU if you do not require alignment.

The range for single-precision values is:

• maximum 3.40282347e+38

• minimum 1.17549435e–38.

See also:

• DCFD directive on page 5-51

• DCFDU directive on page 5-52

• DCFSU directive on page 5-54.

Example

        DCFS    1E3,-4E-9
        DCFS    1.0,-.1,3.1E6



Assembler

5-54 Copyright © 1999,2000 ARM Limited. All rights reserved. ARM DUI 0067B
-

5.10.17  DCFSU directive

The DCFSU directive allocates memory for arbitrarily aligned single-precision 
floating-point numbers, and defines the initial runtime contents of the memory. 

Syntax

{label} DCFSU fp-literal{,fp-literal}...

where:

fp-literal

is a single-precision floating-point literal (see Floating-point literals on 
page 5-118).

Usage

Use DCFSU to define floating-point values with arbitrary alignment.

DCFSU does not insert padding when preceding data is unaligned. Use DCFS if you 
require alignment.

The range for single-precision values is:

• maximum 3.40282347e+38

• minimum 1.17549435e–38.

See also:

• DCFD directive on page 5-51

• DCFDU directive on page 5-52

• DCFS directive on page 5-53.

Example

        DCFSU   1E3,-4E-9
        DCFSU   1.0,-.1,3.1E6



Assembler

ARM DUI 0067B Copyright © 1999,2000 ARM Limited. All rights reserved. 5-55
-

5.10.18  DCI

In ARM code, the DCI directive allocates one or more words of memory, aligned on 
4-byte boundaries, and defines the initial runtime contents of the memory.

In Thumb code, the DCI directive allocates one or more halfwords of memory, aligned 
on 2-byte boundaries, and defines the initial runtime contents of the memory.

Syntax

{label} DCI expression{,expression}

where:

expression is a numeric expression (see Numeric expressions on page 5-116).

Usage

The DCI directive is very like the DCD or DCW directives, but the location is marked as 
code instead of data. Use DCI when writing macros for new instructions not supported 
by the version of the assembler you are using.

In ARM code, DCI inserts up to three bytes of padding before the first defined word, if 
necessary, to achieve 4-byte alignment. In Thumb code, DCI inserts an initial byte of 
padding, if necessary, to achieve 2-byte alignment.

See also DCD or & directive on page 5-48 and DCW directive on page 5-58.

Example

    MACRO           ; this macro translates newinstr Rd,Rm
                    ; to the appropriate machine code
    newinst     $Rd,$Rm
    DCI         0xe16f0f10 :OR: ($Rd:SHL:12) :OR: $Rm
    MEND



Assembler

5-56 Copyright © 1999,2000 ARM Limited. All rights reserved. ARM DUI 0067B
-

5.10.19  DCQ directive

The DCQ directive allocates one or more 8-byte blocks of memory, aligned on 4-byte 
boundaries, and defines the initial runtime contents of the memory.

Syntax

{label} DCQ {-}literal{,{-}literal}...

where:

literal is a 64-bit numeric literal (see Numeric literals on page 5-117).

The range of numbers allowed is 0 to 264 – 1.

In addition to the characters normally allowed in a numeric literal, you 
may prefix literal with a minus sign. In this case, the range of numbers 
allowed is –263 to –1.

The result of specifying -n is the same as the result of specifying 264 – n..

Usage

DCQ inserts up to 3 bytes of padding before the first defined 8-byte block, if necessary, 
to achieve 4-byte alignment. Use DCQU if you do not require alignment.

See also:

• DCB or = directive on page 5-47

• DCD or & directive on page 5-48

• DCQU directive on page 5-57

• DCW directive on page 5-58

• SPACE or % directive on page 5-107.

Example

        AREA    MiscData, DATA, READWRITE
data    DCQ     -225,2_101     ; 2_101 means binary 101.
        DCQ     number+4       ; number must already be defined.



Assembler

ARM DUI 0067B Copyright © 1999,2000 ARM Limited. All rights reserved. 5-57
-

5.10.20  DCQU directive

The DCQU directive allocates one or more 8-byte blocks of memory, arbitrarily aligned, 
and defines the initial runtime contents of the memory.

Syntax

{label} DCQU {-}literal{,{-}literal}...

where:

literal is a 64-bit numeric literal (see Numeric literals on page 5-117).

The range of numbers allowed is 0 to 264 – 1.

In addition to the characters normally allowed in a numeric literal, you 
may prefix literal with a minus sign. In this case, the range of numbers 
allowed is –263 to –1.

The result of specifying -n is the same as the result of specifying 264 – n..

Usage

If an instruction follows DCQU, use an ALIGN directive to ensure that the instruction is 
word aligned. See ALIGN directive on page 5-37 for more information.

DCQU does not insert padding if preceding code is unaligned. Use DCQ if you require 
alignment.

See also:

• DCB or = directive on page 5-47

• DCDU directive on page 5-50

• DCQ directive on page 5-56

• DCWU directive on page 5-59

• SPACE or % directive on page 5-107.

Example

        AREA    MiscData, DATA, READWRITE
data    DCQ     -225,2_101     ; 2_101 means binary 101.
        DCQ     number+4       ; number must already be defined.



Assembler

5-58 Copyright © 1999,2000 ARM Limited. All rights reserved. ARM DUI 0067B
-

5.10.21  DCW directive

The DCW directive allocates one or more halfwords of memory, aligned on 2-byte 
boundaries, and defines the initial runtime contents of the memory.

Syntax

{label} DCW expression{,expression}...

where:

expression

is a numeric expression that evaluates to an integer in the range –32768 
to 65535 (see Numeric expressions on page 5-116).

Usage

If DCW is followed by an instruction, use an ALIGN directive to ensure that the 
instruction is word aligned. See ALIGN directive on page 5-37 for more information.

DCW inserts a byte of padding before the first defined halfword if necessary to achieve 
2-byte alignment. Use DCWU if you do not require alignment.

See also:

• DCB or = directive on page 5-47

• DCD or & directive on page 5-48

• DCQ directive on page 5-56

• DCWU directive on page 5-59

• SPACE or % directive on page 5-107.

Example

        AREA    MiscData, DATA, READWRITE
data    DCW     -225,2*number         ; number must already be
        DCW     number+4              ; defined



Assembler

ARM DUI 0067B Copyright © 1999,2000 ARM Limited. All rights reserved. 5-59
-

5.10.22  DCWU directive

The DCWU directive allocates one or more unaligned halfwords of memory, and defines 
the initial runtime contents of the memory.

Syntax

{label} DCWU expression{,expression}...

where:

expression

is a numeric expression that evaluates to an integer in the range –32768 
to 65535 (see Numeric expressions on page 5-116).

Usage

Use DCWU to define data halfwords with arbitrary alignment, in packed structures for 
example.

If DCWU is followed by code, use an ALIGN directive to ensure that instructions are 
word-aligned. See ALIGN directive on page 5-37 for more information.

DCWU does not insert padding when preceding code is unaligned. Use DCW if you require 
alignment.

See also:

• DCB or = directive on page 5-47

• DCDU directive on page 5-50

• DCQU directive on page 5-57

• DCW directive on page 5-58

• SPACE or % directive on page 5-107.

Example

        AREA    DataB2, DATA, READWRITE
oddbits DCB     1,2,3           ; now not word aligned
        DCWU    number,-255,4   ; these will each occupy two
                                ; bytes, but not necessarily
                                ; aligned



Assembler

5-60 Copyright © 1999,2000 ARM Limited. All rights reserved. ARM DUI 0067B
-

5.10.23  DN directive

The DN directive defines a name for a specified double-precision VFP register. The 
names d0-d15 and D0-D15 are predefined.

Syntax

name DN numeric-expression

where:

name is the name to be assigned to the VFP register. name cannot be the same 
as any of the predefined names listed in Predefined register and 
coprocessor names on page 5-10.

numeric-expression

evaluates to a double-precision VFP register number from 0 to 15.

Usage

Use DN to allocate convenient names to double-precision VFP registers, to help you to 
remember what you use each one for. Be careful to avoid conflicting uses of the same 
register under different names.

You cannot specify a vector length in a DN directive (see VFP directives and notation 
on page 5-11).

See also SN directive on page 5-106.

Example

energy  DN  6               ; defines energy as a symbol for
                            ; VFP double-precision register 6



Assembler

ARM DUI 0067B Copyright © 1999,2000 ARM Limited. All rights reserved. 5-61
-

5.10.24  ELSE or | directive

The ELSE directive marks the beginning of a sequence of instructions and/or directives 
that are to be assembled if the preceding condition fails. | and ELSE are synonyms.

Syntax

ELSE

Usage

See IF or [ directive on page 5-83.

5.10.25  END directive

The END directive informs the assembler that it has reached the end of a source file. 

Syntax

END

Usage

Every assembly language source file must end with END on a line by itself.

If the source file has been included in a parent file by a GET directive, the assembler 
returns to the parent file and continues assembly at the first line following the GET 
directive. See GET or INCLUDE directive on page 5-82 for more information. 

If END is reached in the top-level source file during the first pass without any errors, the 
second pass begins.

If END is reached in the top-level source file during the second pass, the assembler 
finishes the assembly and writes the appropriate output.



Assembler

5-62 Copyright © 1999,2000 ARM Limited. All rights reserved. ARM DUI 0067B
-

5.10.26  ENDFUNC directive

The ENDFUNC directive marks the end of an ATPCS-conforming function. ENDP and 
ENDFUNC are synonyms (see FUNCTION directive on page 5-78).

5.10.27  ENDIF or ] directive

The ENDIF directive marks the end of a sequence of instructions and/or directives that 
are to be conditionally assembled. ] and ENDIF are synonyms.

Syntax

ENDIF

Usage

See IF or [ directive on page 5-83.

5.10.28  ENDP directive

The ENDP directive marks the end of an ATPCS-conforming function. ENDP and 
ENDFUNC are synonyms (see FUNCTION directive on page 5-78).



Assembler

ARM DUI 0067B Copyright © 1999,2000 ARM Limited. All rights reserved. 5-63
-

5.10.29  ENTRY directive

The ENTRY directive declares an entry point to a program.

Syntax

ENTRY

Usage

You must specify at least one ENTRY point for a program. If no ENTRY exists, a warning 
is generated at link time.

You must not use more than one ENTRY directive in a single source file. Not every 
source file has to have an ENTRY directive. If more than one ENTRY exists in a single 
source file, an error message is generated at assembly time.

Example

        AREA    ARMex, CODE, READONLY
        ENTRY                 ; Entry point for the application



Assembler

5-64 Copyright © 1999,2000 ARM Limited. All rights reserved. ARM DUI 0067B
-

5.10.30  EQU or * directive

The EQU directive gives a symbolic name to a numeric constant, a register-relative value 
or a program-relative value. * is a synonym for EQU.

Syntax

name EQU expression

where:

name is the symbolic name to assign to the value.

expression

is a fixed, register-relative, or program-relative value.

Usage

Use EQU to define constants. This is similar to the use of #define to define a constant 
in C.

See also:

• Symbols on page 5-30

• Numeric constants on page 5-31

• MAP or ^ directive on page 5-95

• FIELD or # directive on page 5-68

• Register-relative and program-relative expressions on page 5-119

• Numeric expressions on page 5-116

• Numeric literals on page 5-117.

Examples

abc     EQU     2       ; assigns the value 2 to the symbol abc.

xyz     EQU     label+8 ; assigns the value (label+8) to the
                        ; symbol xyz.



Assembler

ARM DUI 0067B Copyright © 1999,2000 ARM Limited. All rights reserved. 5-65
-

5.10.31  EXPORT or GLOBAL directive

The EXPORT directive declares a symbol that can be used by the linker to resolve symbol 
references in separate object and library files. GLOBAL is a synonym for EXPORT.

Syntax

EXPORT symbol{[WEAK]}

where:

symbol is the symbol name to export. The symbol name is case-sensitive.

[WEAK] means that this instance of symbol should only be imported into other 
sources if no other source exports an alternative instance.

Usage

Use EXPORT to allow code in other files to See symbols in the current file.

Use the [WEAK] attribute to inform the linker that a different instance of symbol should 
take precedence over this one, if a different one is available from another source.

See also IMPORT directive on page 5-84.

Example

        AREA    Example,CODE,READONLY
        EXPORT  DoAdd           ; Export the function name
                                ; to be used by external
                                ; modules.
DoAdd   ADD     r0,r0,r1



Assembler

5-66 Copyright © 1999,2000 ARM Limited. All rights reserved. ARM DUI 0067B
-

5.10.32  EXTERN directive

The EXTERN directive provides the assembler with a name that is not defined in the 
current assembly.

EXTERN is very similar to IMPORT, except that the name is not imported if no reference 
to it is found in the current assembly (see IMPORT directive on page 5-84, and 
EXPORT or GLOBAL directive on page 5-65).

Syntax

EXTERN symbol{[WEAK]}

where:

symbol is a symbol name defined in a separately assembled source file, object 
file, or library. The symbol name is case-sensitive.

[WEAK] prevents the linker generating an error message if the symbol is not 
defined elsewhere. It also prevents the linker searching libraries that are 
not already included.

Usage

The name is resolved at link time to a symbol defined in a separate object file. The 
symbol is treated as a program address. If [WEAK] is not specified, the linker generates 
an error if no corresponding symbol is found at link time.

If [WEAK] is specified and no corresponding symbol is found at link time:

• If the reference is the destination of a B or BL instruction, the value of the symbol 
is taken as the address of the following instruction. This makes the B or BL 
instruction effectively a NOP.

• Otherwise, the value of the symbol is taken as zero.

Example

This example tests to see if the C++ library has been linked, and branches conditionally 
on the result.



Assembler

ARM DUI 0067B Copyright © 1999,2000 ARM Limited. All rights reserved. 5-67
-

    AREA    Example, CODE, READONLY
    EXTERN  __CPP_INITIALIZE[WEAK]  ; If C++ library linked,
                                    ; gets the address of
                                    ; __CPP_INITIALIZE function.
    LDR     r0,__CPP_INITIALIZE     ; If not linked, address
                                    ; is zeroed.
    CMP     r0,#0                   ; Test if zero.
    BEQ     nocplusplus             ; Branch on the result.



Assembler

5-68 Copyright © 1999,2000 ARM Limited. All rights reserved. ARM DUI 0067B
-

5.10.33  FIELD or # directive

The FIELD directive describes space within a storage map that has been defined using 
the MAP directive. # is a synonym for FIELD.

Syntax

{label} FIELD expression

where:

label is an optional label. If specified, label is assigned the value of the 
storage location counter, {VAR}. The storage location counter is then 
incremented by the value of expression.

expression

is an expression that evaluates to the number of bytes to increment the 
storage counter.

Usage

If a storage map is set by a MAP directive that specifies a base-register, the base register 
is implicit in all labels defined by following FIELD directives, until the next MAP 
directive. These register-relative labels can be quoted in load and store instructions (see 
MAP or ^ directive on page 5-95).

Note

You must be careful when using MAP, FIELD, and register-relative labels. See the 
assembly language chapter in ADS Developer Guide for more information.

Example

The following example shows how register-relative labels are defined using the MAP 
and FIELD directives.

    MAP     0,r9        ; set {VAR} to the address stored in r9
    FIELD   4           ; increment {VAR} by 4 bytes
Lab FIELD   4           ; set Lab to the address [r9 + 4] 
                        ; and then increment {VAR} by 4 bytes
    LDR     r0,Lab      ; equivalent to LDR r0,[r9,#4]



Assembler

ARM DUI 0067B Copyright © 1999,2000 ARM Limited. All rights reserved. 5-69
-

5.10.34  FN directive

The FN directive defines a name for a specified FPA floating-point register. The names 
f0-f7 and F0-F7 are predefined.

Syntax

name FN numeric-expression

where:

name is the name to be assigned to the floating-point register. name cannot be 
the same as any of the predefined names listed in Predefined register and 
coprocessor names on page 5-10.

numeric-expression

evaluates to a floating-point register number from 0 to 7.

Usage

Use FN to allocate convenient names to FPA floating-point registers, to help you to 
remember what you use each one for. Be careful to avoid conflicting uses of the same 
register under different names.

Example

energy  FN  6   ; defines energy as a symbol for
                ; floating-point register 6



Assembler

5-70 Copyright © 1999,2000 ARM Limited. All rights reserved. ARM DUI 0067B
-

5.10.35  FRAME ADDRESS directive

The FRAME ADDRESS directive describes how to calculate the canonical frame address 
for following instructions. You can only use it in functions with FUNCTION and 
ENDFUNC or PROC and ENDP directives.

Syntax

FRAME ADDRESS reg[,offset]

where:

reg is the register on which the canonical frame address is to be based. This 
is sp unless the function uses a separate frame pointer.

offset is the offset of the canonical frame address from reg. If offset is zero, 
you may omit it.

Usage

Use FRAME ADDRESS if your code alters which register the canonical frame address is 
based on, or if it alters the offset of the canonical frame address from the register. You 
must use FRAME ADDRESS immediately after the instruction which changes the 
calculation of the canonical frame address.

Note

If your code uses a single instruction to save registers and alter the stack pointer, you 
can use FRAME PUSH instead of using both FRAME ADDRESS and FRAME SAVE (see 
FRAME PUSH directive on page 5-72).

If your code uses a single instruction to load registers and alter the stack pointer, you 
can use FRAME POP instead of using both FRAME ADDRESS and FRAME RESTORE (see 
FRAME POP directive on page 5-71).

Example

_fn     FUNCTION        ; CFA (Canonical Frame Address) is value
                        ; of sp on entry to function
        STMFD   sp!, {r4,fp,ip,lr,pc}
        FRAME PUSH {r4,fp,ip,lr,pc}
        SUB     sp,sp,#4            ; CFA offset now changed
        FRAME ADDRESS sp,24         ; - so we correct it
        ADD     fp,sp,#20
        FRAME ADDRESS fp,4          ; New base register
        ; code using fp to base call-frame on, instead of sp



Assembler

ARM DUI 0067B Copyright © 1999,2000 ARM Limited. All rights reserved. 5-71
-

5.10.36  FRAME POP directive

Use the FRAME POP directive to inform the assembler when the callee reloads registers. 
You can only use it within functions with FUNCTION and ENDFUNC or PROC and ENDP 
directives.

You need not do this after the last instruction in a function.

Syntax

FRAME POP {reg | reglist}

where:

reg is the one register restored to the value it had on entry to the function.

reglist is a list of registers restored to the values they had on entry to the 
function.

Usage

FRAME POP is equivalent to a FRAME ADDRESS and a FRAME RESTORE directive. You 
may use it when a single instruction loads registers and alters the stack pointer.

You must use FRAME POP immediately after the instruction it refers to.

The assembler calculates the new offset for the canonical frame address. It assumes 
that:

• each ARM register popped occupied 4 bytes on the stack

• each FPA floating-point register popped occupied 12 bytes on the stack

• each VFP single-precision register popped occupied 4 bytes on the stack, plus an 
extra 4-byte word for each list.

See FRAME ADDRESS directive on page 5-70 and FRAME RESTORE directive on 
page 5-74.



Assembler

5-72 Copyright © 1999,2000 ARM Limited. All rights reserved. ARM DUI 0067B
-

5.10.37  FRAME PUSH directive

Use the FRAME PUSH directive to inform the assembler when the callee saves registers, 
normally at function entry. You can only use it within functions with FUNCTION and 
ENDFUNC or PROC and ENDP directives.

Syntax

FRAME PUSH {reg | reglist}

where:

reg is a register stored immediately below the canonical frame address.

reglist is a list of registers stored consecutively below the canonical frame 
address.

Usage

FRAME PUSH is equivalent to a FRAME ADDRESS and a FRAME SAVE directive. You 
may use it when a single instruction saves registers and alters the stack pointer.

You must use FRAME PUSH immediately after the instruction it refers to.

The assembler calculates the new offset for the canonical frame address. It assumes 
that:

• each ARM register pushed occupies 4 bytes on the stack

• each FPA floating-point register pushed occupies 12 bytes on the stack

• each VFP single-precision register pushed occupies 4 bytes on the stack, plus an 
extra 4-byte word for each list.

See FRAME ADDRESS directive on page 5-70 and FRAME SAVE directive on 
page 5-75.

Example

p   PROC ; Canonical frame address is sp + 0
    EXPORT  p
    STMFD   sp!,{r4-r6,lr}
         ; sp has moved relative to the canonical frame address,
         ; and registers r4, r5, r6 and lr are now on the stack
    FRAME PUSH {r4-r6,lr}
         ; Equivalent to:
         ; FRAME ADDRESS    sp,16       ; 16 bytes in {r4-r6,lr}
         ; FRAME SAVE    {r4-r6,lr},-16



Assembler

ARM DUI 0067B Copyright © 1999,2000 ARM Limited. All rights reserved. 5-73
-

5.10.38  FRAME REGISTER directive

Use the FRAME REGISTER directive to maintain a record of the locations of function 
arguments held in registers. You can only use it within functions with FUNCTION and 
ENDFUNC or PROC and ENDP directives.

Syntax

FRAME REGISTER reg1,reg2

where:

reg1 is the register that held the argument on entry to the function.

reg2 is the register in which the value is preserved.

Usage

Use the FRAME REGISTER directive when you use a register to preserve an argument 
that was held in a different register on entry to a function.



Assembler

5-74 Copyright © 1999,2000 ARM Limited. All rights reserved. ARM DUI 0067B
-

5.10.39  FRAME RESTORE directive

Use the FRAME RESTORE directive to inform the assembler that the contents of 
specified registers have been restored to the values they had on entry to the function. 
You can only use it within functions with FUNCTION and ENDFUNC or PROC and ENDP 
directives.

Syntax

FRAME RESTORE {reg | reglist}

where:

reg is the one register whose contents have been restored.

reglist is a list of registers whose contents have been restored.

Usage

Use FRAME RESTORE immediately after the callee reloads registers from the stack. You 
need not do this after the last instruction in a function.

reglist may contain integer registers or floating-point registers, but not both.

Note

If your code uses a single instruction to load registers and alter the stack pointer, you 
can use FRAME POP instead of using both FRAME RESTORE and FRAME ADDRESS (see 
FRAME POP directive on page 5-71).



Assembler

ARM DUI 0067B Copyright © 1999,2000 ARM Limited. All rights reserved. 5-75
-

5.10.40  FRAME SAVE directive

The FRAME SAVE directive describes the location of saved register contents relative to 
the canonical frame address. You can only use it within functions with FUNCTION and 
ENDFUNC or PROC and ENDP directives.

Syntax

FRAME SAVE {reg | reglist}, offset

where:

reg is the one register stored at offset from the canonical frame address.

reglist is a list of registers stored consecutively starting at offset from the 
canonical frame address.

Usage

Use FRAME SAVE immediately after the callee stores registers onto the stack.

reglist may include registers which are not required for backtracing. The assembler 
determines which registers it needs to record in the DWARF call frame information.

Note

If your code uses a single instruction to save registers and alter the stack pointer, you 
can use FRAME PUSH instead of using both FRAME SAVE and FRAME ADDRESS (see 
FRAME PUSH directive on page 5-72).



Assembler

5-76 Copyright © 1999,2000 ARM Limited. All rights reserved. ARM DUI 0067B
-

5.10.41  FRAME STATE REMEMBER directive

The FRAME STATE REMEMBER directive saves the current information on how to 
calculate the canonical frame address and locations of saved register values. You can 
only use it within functions with FUNCTION and ENDFUNC or PROC and ENDP directives.

Syntax

FRAME STATE REMEMBER

Usage

During an inline exit sequence the information about calculation of canonical frame 
address and locations of saved register values may change. After the exit sequence 
another branch may continue using the same information as before. Use FRAME STATE 
REMEMBER to preserve this information, and FRAME STATE RESTORE to restore it.

These directives may be nested. Each FRAME STATE RESTORE directive must have a 
corresponding FRAME STATE REMEMBER directive. See:

• FRAME STATE RESTORE directive on page 5-77

• FUNCTION directive on page 5-78.

Example

        ; function code
        FRAME STATE REMEMBER
            ; save frame state before in-line exit sequence
        LDMFD   sp!,{r4-r6,pc}
            ; no need to FRAME POP here, as control has
            ; transferred out of the function
        FRAME STATE RESTORE
            ; end of exit sequence, so restore state
exitB   ; code for exitB
        LDMFD   sp!,{r4-r6,pc}
        ENDP



Assembler

ARM DUI 0067B Copyright © 1999,2000 ARM Limited. All rights reserved. 5-77
-

5.10.42  FRAME STATE RESTORE directive

The FRAME STATE RESTORE directive restores information about how to calculate the 
canonical frame address and locations of saved register values. You can only use it 
within functions with FUNCTION and ENDFUNC or PROC and ENDP directives.

Syntax

FRAME STATE RESTORE

Usage

See:

• FRAME STATE REMEMBER directive on page 5-76

• FUNCTION directive on page 5-78.



Assembler

5-78 Copyright © 1999,2000 ARM Limited. All rights reserved. ARM DUI 0067B
-

5.10.43  FUNCTION directive

The FUNCTION directive marks the start of an ATPCS-conforming function. FUNCTION 
and PROC are synonyms.

Syntax

label FUNCTION

Usage

FUNCTION:

• helps you to avoid errors in function construction, particularly when you are 
modifying existing code

• allows the assembler to alert you to errors in function construction

• enables backtracing of function calls during debugging.

Use FUNCTION to mark the start of functions. The assembler uses FUNCTION to identify 
the start of a function when producing DWARF call frame information for ELF.

FUNCTION sets the canonical frame address to be SP, and the frame state stack to be 
empty.

Each FUNCTION directive must have a matching ENDFUNC directive. You must not nest 
FUNCTION/ENDFUNC pairs, and they must not contain PROC or ENDP directives.

See the assembly language chapter in ADS Developer Guide for information about the 
usage of FUNCTION.

See also FRAME ADDRESS directive on page 5-70 to FRAME STATE RESTORE 
directive on page 5-77.

Example

dadd    FUNCTION
        EXPORT  dadd
        STMFD   sp!,{r4-r6,lr}
        FRAME PUSH {r4-r6,lr}
        ; subroutine body
        LDMFD   sp!,{r4-r6,pc}
        ENDFUNC



Assembler

ARM DUI 0067B Copyright © 1999,2000 ARM Limited. All rights reserved. 5-79
-

5.10.44  GBLA directive

The GBLA directive declares and initializes a global arithmetic variable. The range of 
values that arithmetic variables may take is the same as that of numeric expressions (see 
Numeric expressions on page 5-116).

Syntax

GBLA variable-name

where:

variable-name

is the name of the arithmetic variable. variable-name must be unique 
amongst symbols within a source file.

variable-name is initialized to 0.

Usage

Using GBLA for a variable that is already defined re-initializes the variable to 0. The 
scope of the variable is limited to the source file that contains it.

Set the value of the variable with the SETA directive (see SETA directive on page 5-103).

See LCLA directive on page 5-88 for information on setting local arithmetic variables.

Global variables can also be set with the -predefine assembler command-line option. 
See Command syntax on page 5-4 for more information.

Example

            GBLA    objectsize    ; declare the variable name
objectsize  SETA    0xff          ; set its value
            SPACE   objectsize    ; quote the variable



Assembler

5-80 Copyright © 1999,2000 ARM Limited. All rights reserved. ARM DUI 0067B
-

5.10.45  GBLL directive

The GBLL directive declares and initializes a global logical variable. Possible values of 
a logical variable are {TRUE} and {FALSE}.

Syntax

GBLL variable-name

where:

variable-name

is the name of the logical variable. variable-name must be unique 
amongst symbols within a source file.

variable-name is initialized to {FALSE}.

Usage

Using GBLL for a variable that is already defined re-initializes the variable to {FALSE}. 
The scope of the variable is limited to the source file that contains it.

Set the value of the variable with the SETL directive (see SETL directive on page 5-104).

See LCLL directive on page 5-89 for information on setting local logical variables.

Global variables can also be set with the -predefine assembler command-line option. 
See Command syntax on page 5-4 for more information.

Example

        GBLL    testrun
testrun SETL    {TRUE}

        IF      testrun
        ; testcode
        ENDIF



Assembler

ARM DUI 0067B Copyright © 1999,2000 ARM Limited. All rights reserved. 5-81
-

5.10.46  GBLS directive

The GBLS directive declares and initializes a global string variable. The range of values 
that string variables may take is the same as that of string expressions (see String 
expressions on page 5-115).

Syntax

GBLS variable-name

where:

variable-name

is the name of the string variable. variable-name must be unique 
amongst symbols within a source file.

variable-name is initialized to a null string, "".

Usage

Using GBLS for a variable that is already defined re-initializes the variable to a null 
string. The scope of the variable is limited to the source file that contains it.

Set the value of the variable with the SETS directive (see SETS directive on page 5-105).

See LCLS directive on page 5-90 for information on setting local string variables.

Global variables can also be set with the -predefine assembler command-line option. 
See Command syntax on page 5-4 for more information.

Example

        GBLS    version          ; declare the variable
version SETS    "Version 1.0"    ; set its value
        ; code
        INFO    0,version        ; use the variable



Assembler

5-82 Copyright © 1999,2000 ARM Limited. All rights reserved. ARM DUI 0067B
-

5.10.47  GET or INCLUDE directive

The GET directive includes a file within the file being assembled. The included file is 
assembled at the location of the GET directive. INCLUDE is a synonym for GET.

Syntax

GET filename

where:

filename is the name of the file to be included in the assembly. The assembler 
accepts pathnames in either UNIX or MS-DOS format.

Usage

GET is useful for including macro definitions, EQUs, and storage maps in an assembly. 
When assembly of the included file is complete, assembly continues at the line 
following the GET directive.

By default the assembler searches the current place for included files. The current place 
is the directory where the calling file is located. Use the -i assembler command-line 
option to add directories to the search path. File names and directory names containing 
spaces must be enclosed in double quotes ( " " ).

The included file may contain additional GET directives to include other files (see 
Nesting directives on page 5-36).

If the included file is in a different directory from the current place, this becomes the 
current place until the end of the included file. The previous current place is then 
restored.

GET cannot be used to include object files (see INCBIN directive on page 5-85).

Example

    AREA    Example, CODE, READONLY
    GET     file1.s               ; includes file1 if it exists
                                  ; in the current place.
    GET     c:\project\file2.s    ; includes file2
    GET     c:\Program files\file3.s  ; space is allowed



Assembler

ARM DUI 0067B Copyright © 1999,2000 ARM Limited. All rights reserved. 5-83
-

5.10.48  GLOBAL directive

See EXPORT or GLOBAL directive on page 5-65

5.10.49  IF or [ directive

The IF directive introduces a condition that is used to decide whether to assemble a 
sequence of instructions and/or directives. [ and IF are synonyms.

Syntax

IF logical-expression

    ...

{ELSE

    ...}

ENDIF

where:

logical-expression

is an expression that evaluates to either {TRUE} or {FALSE}.

See Relational operators on page 5-123.

Usage

Use IF with ENDIF, and optionally with ELSE, for sequences of instructions and/or 
directives that are only to be assembled or acted on under a specified condition (see also 
ELSE or | directive on page 5-61 and ENDIF or ] directive on page 5-62).

IF...ENDIF conditions can be nested (see Nesting directives on page 5-36).

Example

        IF Version = "1.0"
            ; code and/or
            ; directives
        ELSE
            ; code and/or
            ; directives
        ENDIF



Assembler

5-84 Copyright © 1999,2000 ARM Limited. All rights reserved. ARM DUI 0067B
-

5.10.50  IMPORT directive

The IMPORT directive provides the assembler with a name that is not defined in the 
current assembly.

IMPORT is very similar to EXTERN, except that the name is imported whether or not it is 
referred to in the current assembly (see EXTERN directive on page 5-66, and EXPORT 
or GLOBAL directive on page 5-65).

Syntax

IMPORT symbol{[WEAK]}

where:

symbol is a symbol name defined in a separately assembled source file, object 
file, or library. The symbol name is case-sensitive.

WEAK prevents the linker generating an error message if the symbol is not 
defined elsewhere. It also prevents the linker searching libraries that are 
not already included.

Usage

The name is resolved at link time to a symbol defined in a separate object file. The 
symbol is treated as a program address. If [WEAK] is not specified, the linker generates 
an error if no corresponding symbol is found at link time.

If [WEAK] is specified and no corresponding symbol is found at link time:

• If the reference is the destination of a B or BL instruction, the value of the symbol 
is taken as the address of the following instruction. This makes the B or BL 
instruction effectively a NOP.

• Otherwise, the value of the symbol is taken as zero.

To avoid trying to access symbols that are not found at link time, use code like the 
example in EXTERN directive on page 5-66.



Assembler

ARM DUI 0067B Copyright © 1999,2000 ARM Limited. All rights reserved. 5-85
-

5.10.51  INCBIN directive

The INCBIN directive includes a file within the file being assembled. The file is 
included as it is, without being assembled.

Syntax

INCBIN filename

where:

filename is the name of the file to be included in the assembly. The assembler 
accepts pathnames in either UNIX or MS-DOS format.

Usage

You can use INCBIN to include executable files, literals, or any arbitrary data. The 
contents of the file are added to the current ELF section, byte for byte, without being 
interpreted in any way. Assembly continues at the line following the INCBIN directive.

By default the assembler searches the current place for included files. See GET or 
INCLUDE directive on page 5-82 for information on the current place. Use the -i 
assembler command-line option to add directories to the search path.

File names and directory names must not contain spaces.

Example

        AREA    Example, CODE, READONLY
        INCBIN  file1.dat               ; includes file1 if it
                                        ; exists in the 
                                        ; current place.
        INCBIN  c:\project\file2.txt    ; includes file2

5.10.52  INCLUDE directive

See GET or INCLUDE directive on page 5-82



Assembler

5-86 Copyright © 1999,2000 ARM Limited. All rights reserved. ARM DUI 0067B
-

5.10.53  INFO or ! directive

The INFO directive supports diagnostic generation on either pass of the assembly.

! is a synonym for INFO.

Syntax

INFO numeric-expression, string-expression

where:

numeric-expression

is a numeric expression that is evaluated during assembly. If the 
expression evaluates to zero:

• no action is taken during pass one

• string-expression is printed during pass two.

If the expression does not evaluate to zero, string-expression is 
printed as an error message and the assembly fails.

string-expression

is an expression that evaluates to a string.

Usage

INFO provides a flexible means for creating custom error messages. See Numeric 
expressions on page 5-116 and String expressions on page 5-115 for additional 
information on numeric and string expressions.

See also ASSERT directive on page 5-41.

Examples

        INFO    0, "Version 1.0"

        IF endofdata <= label1
            INFO    4, "Data overrun at label1"
        ENDIF



Assembler

ARM DUI 0067B Copyright © 1999,2000 ARM Limited. All rights reserved. 5-87
-

5.10.54  KEEP directive

The KEEP directive instructs the assembler to retain local symbols in the symbol table 
in the object file.

Syntax

KEEP {symbol}

where:

symbol is the name of the local symbol to keep. If symbol is not specified, all 
local symbols are kept except register-relative symbols.

Usage

By default, the only symbols that the assembler describes in its output object file are:

• exported symbols

• symbols that are relocated against.

Use KEEP to preserve local symbols that can be used to help debugging. Kept symbols 
appear in the ARM debuggers and in linker map files.

KEEP cannot preserve register-relative symbols (see MAP or ^ directive on page 5-95).

Example

label   ADC     r2,r3,r4
        KEEP    label       ; makes label available to debuggers
        ADD     r2,r2,r5



Assembler

5-88 Copyright © 1999,2000 ARM Limited. All rights reserved. ARM DUI 0067B
-

5.10.55  LCLA directive

The LCLA directive declares and initializes a local arithmetic variable. Local variables 
can be declared only within a macro.

The range of values that arithmetic variables may take is the same as that of numeric 
expressions (see Numeric expressions on page 5-116).

Syntax

LCLA variable-name

where:

variable-name

is the name of the variable to set. The name must be unique within the 
macro that contains it. The initial value of the variable is 0.

Usage

The scope of the variable is limited to a particular instantiation of the macro that 
contains it (see MACRO directive on page 5-92).

Using LCLA for a variable that is already defined re-initializes the variable to 0.

Set the value of the variable with the SETA directive (see SETA directive on page 5-103).

See GBLA directive on page 5-79 for information on declaring global arithmetic 
variables.

Example

                                ; Calculate the next-power-of-2
                                ; number >= the value given.
        MACRO                   ; Declare a macro
$rslt   NPOW2   $value          ; Macro prototype line
        LCLA    newval          ; Declare local arithmetic
                                ; variable newval.
newval  SETA    1               ; Set value of newval to 1
        WHILE   (newval < $value)
                                ; Repeat a loop that
newval  SETA    (newval :SHL:1) ; multiplies newval by 2
        WEND                    ; until newval >= $value.
$rslt   EQU     (newval)        ; Return newval in $rslt
        MEND                    ; No runtime instructions here!



Assembler

ARM DUI 0067B Copyright © 1999,2000 ARM Limited. All rights reserved. 5-89
-

5.10.56  LCLL directive

The LCLL directive declares and initializes a local logical variable. Local variables can 
be declared only within a macro. Possible values of a logical variable are {TRUE} and 
{FALSE}.

Syntax

LCLL variable-name

where:

variable-name

is the name of the variable to set. The name must be unique within the 
macro that contains it. The initial value of the variable is {FALSE}.

Usage

The scope of the variable is limited to a particular instantiation of the macro that 
contains it (see MACRO directive on page 5-92).

Using LCLL for a variable that is already defined re-initializes the variable to {FALSE}.

Set the value of the variable with the SETL directive (see SETL directive on page 5-104).

See GBLL directive on page 5-80 for information on declaring global logical variables.

Example

        MACRO               ; Declare a macro
$label  cases   $x          ; Macro prototype line
        LCLL    xisodd      ; Declare local logical variable
                            ; xisodd.
xisodd  SETL    $x:MOD:2=1  ; Set value of xisodd according 
                            ; to $x
$label  ; code 
        IF      xisodd      ; Assemble following code only
                            ; if $x is odd.
        ; code
        ENDIF
        MEND                ; End of macro



Assembler

5-90 Copyright © 1999,2000 ARM Limited. All rights reserved. ARM DUI 0067B
-

5.10.57  LCLS directive

The LCLS directive declares and initializes a local string variable. Local variables can 
be declared only within a macro. The initial value of the variable is a null string, "".

Syntax

LCLS variable-name

where:

variable-name

is the name of the variable to set. The name must be unique within the 
macro that contains it.

Usage

The scope of the variable is limited to a particular instantiation of the macro that 
contains it (see MACRO directive on page 5-92).

Using LCLS for a variable that is already defined re-initializes the variable to a null 
string.

Set the value of the variable with the SETS directive (see SETS directive on page 5-105).

See GBLS directive on page 5-81 for information on declaring global logical variables.

Example

        MACRO                           ; Declare a macro
$label  message $a                      ; Macro prototype line
        LCLS    err                     ; Declare local string
                                        ; variable err.
err     SETS    "error no: "            ; Set value of err
$label  ; code
        INFO    0, "err":CC::STR:$a     ; Use string
        MEND



Assembler

ARM DUI 0067B Copyright © 1999,2000 ARM Limited. All rights reserved. 5-91
-

5.10.58  LTORG directive

The LTORG directive instructs the assembler to assemble the current literal pool 
immediately.

Syntax

LTORG

Usage

The assembler assembles the current literal pool at the end of every code section. The 
end of a code section is determined by the AREA directive at the beginning of the 
following section, or the end of the assembly.

These default literal pools may sometimes not be within range of some LDR, LDFD, and 
LDFS pseudo-instructions. See LDR ARM pseudo-instruction on page 5-21 and LDR 
Thumb pseudo-instruction on page 5-26 for more information. Use LTORG to ensure 
that a literal pool is assembled within range. Large programs may require several literal 
pools.

Place LTORG directives after unconditional branches or subroutine return instructions so 
that the processor does not attempt to execute the constants as instructions.

The assembler word-aligns data in literal pools.

Example

        AREA    Example, CODE, READONLY
start   BL      func1

func1                           ; function body
        ; code
        LDR     r1,=0x55555555  ; => LDR R1, [pc, #offset to
                                ; Literal Pool 1]
        ; code
        MOV     pc,lr           ; end function
        LTORG                   ; Literal Pool 1 contains 
                                ; literal &55555555.

data    SPACE   4200            ; Clears 4200 bytes of memory, 
                                ; starting at current location.
        END                     ; Default literal pool is empty.



Assembler

5-92 Copyright © 1999,2000 ARM Limited. All rights reserved. ARM DUI 0067B
-

5.10.59  MACRO directive

The MACRO directive marks the start of the definition of a macro. Macro expansion 
terminates at the MEND directive. See the assembly language chapter in ADS Developer 
Guide for further information.

Syntax

Two directives are used to define a macro. The syntax is:

          MACRO
{$label}  macroname {$parameter{,$parameter}...}
          ; code
          MEND

where:

$label is a parameter that is substituted with a symbol given when the 
macro is invoked. The symbol is usually a label.

macroname is the name of the macro. It must not begin with an instruction or 
directive name.

$parameter is a parameter that is substituted when the macro is invoked. A 
default value for a parameter may be set using this format:

$parameter="default value"

Double quotes must be used if there are any spaces within, or at 
either end of, the default value.

Usage

There must be no unclosed WHILE...WEND loops or unclosed IF...ENDIF conditions 
when the MEND directive is reached. See MEXIT directive on page 5-96 if you need to 
allow an early exit from a macro, for example from within a loop.

Within the macro body, parameters such as $label, $parameter can be used in the 
same way as other variables (see Assembly time substitution of variables on page 5-32). 
They are given new values each time the macro is invoked. Parameters must begin with 
$ to distinguish them from ordinary symbols. Any number of parameters can be used.

$label is optional. It is useful if the macro defines internal labels. It is treated as a 
parameter to the macro. It does not necessarily represent the first instruction in the 
macro expansion. The macro defines the locations of any labels.

Use | as the argument to use the default value of a parameter. An empty string is used 
if the argument is omitted.



Assembler

ARM DUI 0067B Copyright © 1999,2000 ARM Limited. All rights reserved. 5-93
-

In a macro that uses several internal labels, it is useful to define each internal label as 
the base label with a different suffix.

Use a dot between a parameter and following text, or a following parameter, if a space 
is not required in the expansion. Do not use a dot between preceding text and a 
parameter.

Macros define the scope of local variables (see LCLA directive on page 5-88, LCLL 
directive on page 5-89, and LCLS directive on page 5-90).

Macros can be nested (see Nesting directives on page 5-36).



Assembler

5-94 Copyright © 1999,2000 ARM Limited. All rights reserved. ARM DUI 0067B
-

Examples

Example 5-1 Macro definition and invocation

                MACRO                 ; start macro definition
$label          xmac    $p1,$p2
                ; code
$label.loop1    ; code
                ; code
                BGE     $label.loop1
$label.loop2    ; code
                BL      $p1
                BGT     $label.loop2
                ; code
                ADR     $p2
                ; code
                MEND                  ; end macro definition

 ; macro invocation

abc             xmac    subr1,de      ; invoke macro
                ; code                ; this is what is
abcloop1        ; code                ; is produced when
                ; code                ; the xmac macro is
                BGE     abcloop1      ; expanded
abcloop2        ; code
                BL      subr1
                BGT     abcloop2
                ; code
                ADR     de
                ; code

Example 5-2 Macro default parameters

        MACRO                        ; Macro definition
        diagnose  $param1="default"  ; This macro produces
        INFO      0,"$param1"        ; assembly-time diagnostics
        MEND                         ; (on second assembly pass)

 ; macro expansion

        diagnose            ; Prints blank line at assembly-time
        diagnose "hello"    ; Prints "hello" at assembly-time
        diagnose |          ; Prints "default" at assembly-time



Assembler

ARM DUI 0067B Copyright © 1999,2000 ARM Limited. All rights reserved. 5-95
-

5.10.60  MAP or ^ directive

The MAP directive sets the origin of a storage map to a specified address. The 
storage-map location counter, {VAR}, is set to the same address. ̂  is a synonym for MAP.

Syntax

MAP expression{,base-register}

where:

expression

is a numeric or program-relative expression:

• If base-register is not specified, expression evaluates to the 
address where the storage map starts. The storage map location 
counter is set to this address.

• If the expression is program-relative, you must have defined the 
label before you use it in the map. The map requires the definition 
of the label during the first pass of the assembler.

base-register

specifies a register. If base-register is specified, the address where 
the storage map starts is the sum of expression, and the value in 
base-register at runtime.

Usage

Use the MAP directive in combination with the FIELD directive to describe a storage 
map.

Specify base-register to define register-relative labels. The base register becomes 
implicit in all labels defined by following FIELD directives, until the next MAP directive. 
The register-relative labels can be used in load and store instructions. See FIELD or # 
directive on page 5-68 for an example.

The MAP directive can be used any number of times to define multiple storage maps.

The {VAR} counter is set to zero before the first MAP directive is used.

Examples

        MAP     0,r9
        MAP     0xff,r9



Assembler

5-96 Copyright © 1999,2000 ARM Limited. All rights reserved. ARM DUI 0067B
-

5.10.61  MEND directive

The MEND directive marks the end of a macro definition (see MACRO directive on 
page 5-92).

5.10.62  MEXIT directive

The MEXIT directive is used to exit a macro definition before the end.

Syntax

MEXIT

Usage

Use MEXIT when you need an exit from within the body of a macro. Any unclosed 
WHILE...WEND loops or IF...ENDIF conditions within the body of the macro are 
closed by the assembler before the macro is exited.

See also MACRO directive on page 5-92.

Example

        MACRO
$abc    macro   abc     $param1,$param2
        ; code
        WHILE condition1
            ; code
            IF condition2
                ; code
                MEXIT
            ELSE
                ; code
            ENDIF
        WEND
        ; code
        MEND



Assembler

ARM DUI 0067B Copyright © 1999,2000 ARM Limited. All rights reserved. 5-97
-

5.10.63  NOFP directive

The NOFP directive disallows floating-point instructions in an assembly language 
source file.

Syntax

NOFP

Usage

Use NOFP to ensure that no floating-point instructions are used in situations where there 
is no support for floating-point instructions either in software or in target hardware.

If a floating-point instruction occurs after the NOFP directive, an Unknown opcode 
error is generated and the assembly fails. 

If a NOFP directive occurs after a floating-point instruction, the assembler generates the 
error:

Too late to ban floating point instructions

and the assembly fails.



Assembler

5-98 Copyright © 1999,2000 ARM Limited. All rights reserved. ARM DUI 0067B
-

5.10.64  OPT directive

The OPT directive sets listing options from within the source code. 

Syntax

OPT n

where:

n is the OPT directive setting. Table 5-9 lists valid settings.

Usage

Specify the -list assembler option to turn on listing.

 Table 5-9 OPT directive settings

OPT n Effect

1 Turns on normal listing.

2 Turns off normal listing.

4 Page throw. Issues an immediate form feed and starts a new page.

8 Resets the line number counter to zero.

16 Turns on listing for SET, GBL and LCL directives.

32 Turns off listing for SET, GBL and LCL directives.

64 Turns on listing of macro expansions.

128 Turns off listing of macro expansions.

256 Turns on listing of macro invocations.

512 Turns off listing of macro invocations.

1024 Turns on the first pass listing.

2048 Turns off the first pass listing.

4096 Turns on listing of conditional directives.

8192 Turns off listing of conditional directives.

16384 Turns on listing of MEND directives.

32768 Turns off listing of MEND directives.



Assembler

ARM DUI 0067B Copyright © 1999,2000 ARM Limited. All rights reserved. 5-99
-

By default the -list option produces a normal listing that includes variable 
declarations, macro expansions, call-conditioned directives, and MEND directives. The 
listing is produced on the second pass only. Use the OPT directive to modify the default 
listing options from within your code. See Command syntax on page 5-4 for 
information on the -list option.

You can use OPT to format code listings. For example, you can specify a new page 
before functions and sections.

Example

        AREA    Example, CODE, READONLY
start   ; code 
        ; code
        BL      func1
        ; code
        OPT 4                ; places a page break before func1
func1   ; code

5.10.65  PROC directive

The PROC directive marks the start of an ATPCS-conforming function. PROC and 
FUNCTION are synonyms (see FUNCTION directive on page 5-78).

5.10.66  REQUIRE directive

The REQUIRE directive specifies a dependency between sections.

Syntax

REQUIRE label

where:

label is the name of the required label.

Usage

Use REQUIRE to ensure that a related section is included, even if it is not directly called. 
If the section containing the REQUIRE directive is included in a link, the linker also 
includes the section containing the definition of the specified label.



Assembler

5-100 Copyright © 1999,2000 ARM Limited. All rights reserved. ARM DUI 0067B
-

5.10.67  RLIST directive

The RLIST (register list) directive gives a name to a set of registers. 

Syntax

name RLIST {list-of-registers}

where:

name is the name to be given to the set of registers.

list-of-registers 

is a comma-delimited list of register names and/or register ranges. The 
register list must be enclosed in braces.

Usage

Use RLIST to give a name to a set of registers to be transferred by the LDM or STM 
instructions.

LDM and STM always put the lowest physical register numbers at the lowest address in 
memory, regardless of the order they are supplied to the LDM or STM instruction. If you 
have defined your own symbolic register names it can be less apparent that a register 
list is not in increasing register order.

Use the -checkreglist assembler option to ensure that the registers in a register list 
are supplied in increasing register order. If registers are not supplied in increasing 
register order, a warning is issued.

Example

Context RLIST   {r0-r6,r8,r10-r12,r15}



Assembler

ARM DUI 0067B Copyright © 1999,2000 ARM Limited. All rights reserved. 5-101
-

5.10.68  RN directive

The RN directive defines a register name for a specified register.

Syntax

name RN numeric-expression

where:

name is the name to be assigned to the register. name cannot be the same as any 
of the predefined names listed in Predefined register and coprocessor 
names on page 5-10.

numeric-expression

evaluates to a register number from 0 to 15.

Usage

Use RN to allocate convenient names to registers, to help you to remember what you use 
each register for. Be careful to avoid conflicting uses of the same register under different 
names.

Examples

regname     RN  11  ; defines regname for register 11

sqr4        RN  r6  ; defines sqr4 for register 6



Assembler

5-102 Copyright © 1999,2000 ARM Limited. All rights reserved. ARM DUI 0067B
-

5.10.69  ROUT directive

The ROUT directive marks the boundaries of the scope of local labels (see Local labels 
on page 5-34).

Syntax

{name} ROUT

where:

name is the name to be assigned to the scope.

Usage

Use the ROUT directive to limit the scope of local labels. This makes it easier for you to 
avoid referring to a wrong label by accident. The scope of local labels is the whole area 
if there are no ROUT directives in it (see AREA directive on page 5-39).

Use the name option to ensure that each reference is to the correct local label. If the 
name of a label or a reference to a label does not match the preceding ROUT directive, 
the assembler generates an error message and the assembly fails.

Example

            ; code
routineaA   ROUT            ; ROUT is not necessarily a routine
            ; code
3routineA   ; code          ; this label is checked
            ; code
            BEQ     %4routineA   ; this reference is checked
            ; code
            BGE     %3      ; refers to 3 above, but not checked
            ; code
4routineA   ; code          ; this label is checked
            ; code
otherstuff  ROUT            ; start of next scope



Assembler

ARM DUI 0067B Copyright © 1999,2000 ARM Limited. All rights reserved. 5-103
-

5.10.70  SETA directive

The SETA directive sets the value of a local or global arithmetic variable.

Syntax

variable-name SETA expression

where:

variable-name

is the name of a variable declared by a GBLA or LCLA directive.

expression

is a numeric expression (see Numeric expressions on page 5-116).

Usage

You must declare variable-name using a GBLA or LCLA directive before using SETA. 
See GBLA directive on page 5-79 and LCLA directive on page 5-88 for more 
information.

You can also predefine variable names on the command line. See Command syntax on 
page 5-4 for more information.

Example

                GBLA    VersionNumber
VersionNumber   SETA    21



Assembler

5-104 Copyright © 1999,2000 ARM Limited. All rights reserved. ARM DUI 0067B
-

5.10.71  SETL directive

The SETL directive sets the value of a local or global logical variable.

Syntax

variable-name SETL expression

where:

variable-name

is the name of a variable declared by a GBLL or LCLL directive.

expression

is an expression that evaluates to either {TRUE} or {FALSE}.

Usage

You must declare variable-name using a GBLL or LCLL directive before using SETL. 
See GBLL directive on page 5-80 and LCLL directive on page 5-89 for more 
information.

You can also predefine variable names on the command line. See Command syntax on 
page 5-4 for more information.

Example

        GBLL    Debug
Debug   SETL    {TRUE}



Assembler

ARM DUI 0067B Copyright © 1999,2000 ARM Limited. All rights reserved. 5-105
-

5.10.72  SETS directive

The SETS directive sets the value of a local or global string variable.

Syntax

variable-name SETS string-expression

where:

variable-name

is the name of the variable declared by a GBLS or LCLS directive.

string-expression

is a string expression (see String expressions on page 5-115).

Usage

You must declare variable-name using a GBLS or LCLS directive before using SETS. 
See GBLS directive on page 5-81 and LCLS directive on page 5-90 for more 
information.

You can also predefine variable names on the command line. See Command syntax on 
page 5-4 for more information.

Example

                GBLS    VersionString
VersionString   SETS    "Version 1.0"



Assembler

5-106 Copyright © 1999,2000 ARM Limited. All rights reserved. ARM DUI 0067B
-

5.10.73  SN directive

The SN directive defines a name for a specified single-precision VFP register. The 
names s0-s31 and S0-S31 are predefined.

Syntax

name SN numeric-expression

where:

name is the name to be assigned to the VFP register. name cannot be the same 
as any of the predefined names listed in Predefined register and 
coprocessor names on page 5-10.

numeric-expression

evaluates to a single-precision VFP register number from 0 to 31.

Usage

Use SN to allocate convenient names to single-precision VFP registers, to help you to 
remember what you use each one for. Be careful to avoid conflicting uses of the same 
register under different names.

You cannot specify a vector length in an SN directive (see VFP directives and notation 
on page 5-11).

See also DN directive on page 5-60.

Example

energy  SN  16  ; defines energy as a symbol for
                ; VFP single-precision register 16



Assembler

ARM DUI 0067B Copyright © 1999,2000 ARM Limited. All rights reserved. 5-107
-

5.10.74  SPACE or % directive

The SPACE directive reserves a zeroed block of memory. % is a synonym for SPACE.

Syntax

{label} SPACE numeric-expression

where:

numeric-expression

evaluates to the number of zeroed bytes to reserve (see Numeric 
expressions on page 5-116).

Usage

You must use a DATA directive if you use SPACE to define labeled data within Thumb 
code. See DATA directive on page 5-46 for more information.

Use the ALIGN directive to align any code following a SPACE directive. See ALIGN 
directive on page 5-37 for more information.

See also:

• DCB or = directive on page 5-47

• DCD or & directive on page 5-48

• DCDO directive on page 5-49

• DCDU directive on page 5-50

• DCW directive on page 5-58

• DCWU directive on page 5-59.

Example

        AREA    MyData, DATA, READWRITE
data1   SPACE   255     ; defines 255 bytes of zeroed store



Assembler

5-108 Copyright © 1999,2000 ARM Limited. All rights reserved. ARM DUI 0067B
-

5.10.75  SUBT directive

The SUBT directive places a subtitle on the pages of a listing file. The subtitle is printed 
on each page until a new SUBT directive is issued.

Syntax

SUBT subtitle

where:

subtitle is the subtitle.

Usage

Use SUBT to place a subtitle at the top of the pages of a listing file. Subtitles appear in 
the line below the titles (see TTL directive on page 5-109). If you want the subtitle to 
appear on the first page, the SUBT directive must be on the first line of the source file.

Use additional SUBT directives to change subtitles. Each new SUBT directive takes 
effect from the top of the next page.

Example

        TTL     First Title     ; places a title on the first
                                ; and subsequent pages of a
                                ; listing file.
        SUBT    First Subtitle  ; places a subtitle on the
                                ; second and subsequent pages
                                ; of a listing file.



Assembler

ARM DUI 0067B Copyright © 1999,2000 ARM Limited. All rights reserved. 5-109
-

5.10.76  TTL directive

The TTL directive inserts a title at the start of each page of a listing file. The title is 
printed on each page until a new TTL directive is issued.

Syntax

TTL title

where:

title is the title.

Usage

Use the TTL directive to place a title at the top of the pages of a listing file. If you want 
the title to appear on the first page, the TTL directive must be on the first line of the 
source file.

Use additional TTL directives to change the title. Each new TTL directive takes effect 
from the top of the next page.

Example

        TTL     First Title     ; places a title on the first
                                ; and subsequent pages of a
                                ; listing file.



Assembler

5-110 Copyright © 1999,2000 ARM Limited. All rights reserved. ARM DUI 0067B
-

5.10.77  VFPASSERT SCALAR

The VFPASSERT SCALAR directive informs the assembler that following VFP 
instructions are in scalar mode.

Syntax

VFPASSERT SCALAR

Usage

Use the VFPASSERT SCALAR directive to mark the end of any block of code where the 
VFP mode is VECTOR.

Place the VFPASSERT SCALAR directive immediately after the instruction that makes 
the change. This is usually an FMXR instruction, but could be a BL instruction.

If a function expects the VFP to be in vector mode on exit, place a VFPASSERT SCALAR 
directive immediately after the last instruction. Such a function would not be ATPCS 
conformant. See the ATPCS chapter in ADS Developer Guide for further information.

See:

• VFP directives and notation on page 5-11

• VFPASSERT VECTOR on page 5-111.

Note

This directive does not generate any code. It is only an assertion by the programmer. 
The assembler produces error messages if any such assertions are inconsistent with each 
other, or with any vector notation in VFP data processing instructions.

The assembler faults vector notation in VFP data processing instructions following a 
VFPASSERT SCALAR directive, even if the vector length is 1.

Example

    VFPASSERT   SCALAR            ; scalar mode
    faddd       d4, d4, d0        ; okay
    fadds       s4<3>, s0, s8<3>  ; ERROR, vector in scalar mode
    fabss       s24<1>, s28<1>    ; ERROR, vector in scalar mode
                                  ; (even though length==1)



Assembler

ARM DUI 0067B Copyright © 1999,2000 ARM Limited. All rights reserved. 5-111
-

5.10.78  VFPASSERT VECTOR

The VFPASSERT VECTOR directive informs the assembler that following VFP 
instructions are in vector mode. It can also specify the length and stride of the vectors.

Syntax

VFPASSERT VECTOR[<[n[:s]]>]

where:

n is the vector length, 1-8

s is the vector stride, 1-2.

Usage

Use the VFPASSERT VECTOR directive to mark the start of a block of instructions where 
the VFP mode is VECTOR, and to mark changes in the length or stride of vectors.

Place the VFPASSERT VECTOR directive immediately after the instruction that makes 
the change. This is usually an FMXR instruction, but could be a BL instruction.

If a function expects the VFP to be in vector mode on entry, place a 
VFPASSERT VECTOR directive immediately before the first instruction. Such a function 
would not be ATPCS conformant. See the ATPCS chapter in ADS Developer Guide for 
further information.

See:

• VFP directives and notation on page 5-11

• VFPASSERT SCALAR on page 5-110.

Note

This directive does not generate any code. It is only an assertion by the programmer. 
The assembler produces error messages if any such assertions are inconsistent with each 
other, or with any vector notation in VFP data processing instructions.

Examples

    VFPASSERT VECTOR           ; vector mode, unspecified length
                               ; and stride
    faddd  d4, d4, d0          ; ERROR, scalar in vector mode
    fadds  s16<3>, s0, s8<3>   ; okay
    fabss  s24<1>, s28<1>      ; okay (even though length==1)



Assembler

5-112 Copyright © 1999,2000 ARM Limited. All rights reserved. ARM DUI 0067B
-

    VFPASSERT VECTOR<>         ; vector mode, unspecified length
                               ; and stride

    VFPASSERT VECTOR<3>        ; vector mode, length 3, stride 1
    faddd  d4, d4, d0          ; ERROR, scalar in vector mode
    fadds  s24<3>, s0, s8<3>   ; okay
    fabss  s24<1>, s24<1>      ; ERROR, wrong length

    VFPASSERT VECTOR<4:2>      ; vector mode, length 4, stride 2
    fadds  s8<4>, s0, s16<4>   ; ERROR, wrong stride
    fabss  s16<4:2>, s28<4:2>  ; okay
    fadds  s8<>, s2, s16<>     ; okay (s8 and s16 both have
                               ; length 4 and stride 2.
                               ; s2 is scalar.)

5.10.79  WEND directive

See WHILE directive on page 5-113.



Assembler

ARM DUI 0067B Copyright © 1999,2000 ARM Limited. All rights reserved. 5-113
-

5.10.80  WHILE directive

The WHILE directive starts a sequence of instructions or directives that are to be 
assembled repeatedly. The sequence is terminated with a WEND directive.

Syntax

WHILE logical-expression

code

WEND

where:

logical-expression

is an expression that can evaluate to either {TRUE} or {FALSE} (see 
Logical expressions on page 5-119).

Usage

Use the WHILE directive, together with the WEND directive, to assemble a sequence of 
instructions a number of times. The number of repetitions may be zero.

You can use IF...ENDIF conditions within WHILE...WEND loops.

WHILE...WEND loops can be nested (see Nesting directives on page 5-36).

Example

count   SETA    1                   ; you are not restricted to
        WHILE   count <= 4          ; such simple conditions
count   SETA    count+1             ; In this case,
            ; code                  ; this code will be
            ; code                  ; repeated four times
        WEND



Assembler

5-114 Copyright © 1999,2000 ARM Limited. All rights reserved. ARM DUI 0067B
-

5.11  Expressions, literals and operators

Expressions are combinations of symbols, values, unary and binary operators, and 
parentheses. There is a strict order of precedence in their evaluation: 

1. Expressions in parentheses are evaluated first.

2. Operators are applied in precedence order. 

3. Adjacent unary operators are evaluated from right to left.

4. Binary operators of equal precedence are evaluated from left to right.

The assembler includes an extensive set of operators for use in expressions. Many of 
the operators resemble their counterparts in high-level languages such as C (see Unary 
operators on page 5-120 and Binary operators on page 5-121).

This section contains the following subsections:

• String expressions on page 5-115

• String literals on page 5-115

• Numeric expressions on page 5-116

• Numeric literals on page 5-117

• Floating-point literals on page 5-118

• Register-relative and program-relative expressions on page 5-119

• Logical expressions on page 5-119

• Logical literals on page 5-119

• Unary operators on page 5-120

• Binary operators on page 5-121.



Assembler

ARM DUI 0067B Copyright © 1999,2000 ARM Limited. All rights reserved. 5-115
-

5.11.1  String expressions

String expressions consist of combinations of string literals, string variables, string 
manipulation operators, and parentheses. See: 

• String literals

• Variables on page 5-31

• SETS directive on page 5-105

• Unary operators on page 5-120

• String manipulation operators on page 5-121.

Characters that cannot be placed in string literals can be placed in string expressions 
using the :CHR: unary operator. Any ASCII character from 0 to 255 is allowed.

The value of a string expression cannot exceed 512 characters in length. It may be of 
zero length.

Example

improb  SETS    "literal":CC:(strvar2:LEFT:4)
            ; sets the variable improb to the value "literal"
            ; with the left-most four characters of the
            ; contents of string variable strvar2 appended

5.11.2  String literals

String literals consist of a series of characters contained between double quote 
characters. The length of a string literal is restricted by the length of the input line (see 
Format of source lines on page 5-9).

To include a double quote character or a dollar character in a string, use two of the 
character.

C string escape sequences are also allowed, unless -noesc is specified (see Command 
syntax on page 5-4).

Examples

abc     SETS    "this string contains only one "" double quote"

def     SETS    "this string contains only one $$ dollar symbol"



Assembler

5-116 Copyright © 1999,2000 ARM Limited. All rights reserved. ARM DUI 0067B
-

5.11.3  Numeric expressions

Numeric expressions consist of combinations of numeric constants, numeric variables, 
ordinary numeric literals, binary operators, and parentheses. See:

• Numeric constants on page 5-31

• Variables on page 5-31

• Numeric literals on page 5-117

• Binary operators on page 5-121.

Numeric expressions can contain register-relative or program-relative expressions if the 
overall expression evaluates to a value that does not include a register or the program 
counter.

Numeric expressions evaluate to 32-bit integers. You may interpret them as unsigned 
numbers in the range 0 to 232 – 1, or signed numbers in the range –231 to 231 – 1. 
However, the assembler makes no distinction between –n and 232 – n. Relational 
operators such as >= use the unsigned interpretation. This means that 0 > –1 is 
{FALSE}.

Example

a   SETA    256*256           ; 256*256 is a numeric expression
    MOV     r1,#(a*22)        ; (a*22) is a numeric expression



Assembler

ARM DUI 0067B Copyright © 1999,2000 ARM Limited. All rights reserved. 5-117
-

5.11.4  Numeric literals

Numeric literals can take any of the following forms:

• decimal-digits

• 0xhexadecimal-digits

• &hexadecimal-digits

• n_base-n-digits

where

decimal-digits

is a sequence of characters using only the digits 0 to 9.

hexadecimal-digits

is a sequence of characters using only the digits 0 to 9 and the letters 
A to F or a to f.

n_ is a single digit between 2 and 9 inclusive, followed by an underscore 
character.

base-n-digits

is a sequence of characters using only the digits 0 to (n – 1).

You must not use any other characters. The sequence of characters must evaluate to an 
integer in the range 0 to 232 – 1 (except in DCQ and DCQU directives, where the range is 
0 to 264 – 1).

Examples

a       SETA    34906

addr    DCD     0xA10E

        LDR     r4,&1000000F

        DCD     2_11001010

c3      SETA    8_74007

        DCQ     0x0123456789abcdef



Assembler

5-118 Copyright © 1999,2000 ARM Limited. All rights reserved. ARM DUI 0067B
-

5.11.5  Floating-point literals

Floating-point literals can take any of the following forms:

• {-}digitsE{-}digits

• {-}{digits}.digits{E{-}digits}

• 0xhexdigits

• &hexdigits

digits are sequences of characters using only the digits 0 to 9. You can write E 
in uppercase or lowercase. These forms correspond to normal 
floating-point notation.

hexdigits are sequences of characters using only the digits 0 to 9 and the letters 
A to F or a to f. These forms correspond to the internal representation of 
the numbers in the computer. Use these forms to enter infinities and 
NaNs, or if you want to be sure of the exact bit patterns you are using.

The range for single-precision floating point values is:

• maximum 3.40282347e+38

• minimum 1.17549435e–38.

The range for double-precision floating point values is:

• maximum 1.79769313486231571e+308

• minimum 2.22507385850720138e–308.

Examples

    DCFD    1E308,-4E-100
    DCFS    1.0
    DCFD    3.725e15
    LDFS    0x7FC00000              ; Quiet NaN
    LDFD    &FFF0000000000000       ; Minus infinity



Assembler

ARM DUI 0067B Copyright © 1999,2000 ARM Limited. All rights reserved. 5-119
-

5.11.6  Register-relative and program-relative expressions

A register-relative expression evaluates to a named register plus or minus a numeric 
constant (see MAP or ^ directive on page 5-95).

A program-relative expression evaluates to the program counter (pc) plus or minus a 
numeric constant. It is normally a label combined with a numeric expression.

Example

        LDR     r4,=data+4*n    ; n is an assembly-time variable
        ; code
        MOV     pc,lr
data    DCD     value0
        ; n-1 DCD directives
        DCD     valuen          ; data+4*n points here
        ; more DCD directives

5.11.7  Logical expressions

Logical expressions consist of combinations of logical literals ({TRUE} or {FALSE}), 
logical variables, Boolean operators, relations, and parentheses (see Boolean operators 
on page 5-124).

Relations consist of combinations of variables, literals, constants, or expressions with 
appropriate relational operators (see Relational operators on page 5-123).

5.11.8  Logical literals

There are only two logical literals:

• {TRUE}

• {FALSE}.



Assembler

5-120 Copyright © 1999,2000 ARM Limited. All rights reserved. ARM DUI 0067B
-

5.11.9  Unary operators

Unary operators (Table 5-10) have the highest precedence (bind most tightly) and are 
evaluated first. A unary operator precedes its operand. Adjacent operators are evaluated 
from right to left.

 Table 5-10 Operator precedence

Operator Usage Description

? ?A Number of bytes of executable code generated by line 
defining symbol A.

BASE :BASE:A If A is a pc-relative or register-relative expression:
BASE returns the number of its register 

component
BASE is most useful in macros.

INDEX :INDEX:A If A is a register-relative expression:
INDEX returns the offset from that base register.
INDEX is most useful in macros.

+ and - +A
-A

Unary plus. Unary minus. + and – can act on numeric and 
program-relative expressions.

LEN :LEN:A Length of string A.

CHR :CHR:A One-character string, ASCII code A.

STR :STR:A Hexadecimal string of A.
STR returns an eight-digit hexadecimal string 
corresponding to a numeric expression, or the string "T" 
or "F" if used on a logical expression.

NOT :NOT:A Bitwise complement of A.

LNOT :LNOT:A Logical complement of A.

DEF :DEF:A {TRUE} if A is defined, otherwise {FALSE}.



Assembler

ARM DUI 0067B Copyright © 1999,2000 ARM Limited. All rights reserved. 5-121
-

5.11.10  Binary operators

Binary operators are written between the pair of subexpressions they operate on. 
Operators of equal precedence are evaluated in left to right order. The binary operators 
are presented below in groups of equal precedence, in decreasing precedence order.

Multiplicative operators

Multiplicative operators (Table 5-11) are the binary operators that bind most tightly and 
have the highest precedence:

These operators act only on numeric expressions.

String manipulation operators

String manipulation operators are shown in Table 5-12.

In the two slicing operators LEFT and RIGHT:

• A must be a string

• B must be a numeric expression.

In CC, A and B must both be strings.

 Table 5-11 Multiplicative operators

Operator Usage Explanation

* A*B Multiply

/ A/B Divide

MOD A:MOD:B A modulo B

 Table 5-12 String manipulation operators

Operator Usage Explanation

LEFT A:LEFT:B The left-most B characters of A

RIGHT A:RIGHT:B The right-most B characters of A

CC A:CC:B B concatenated on to the end of A



Assembler

5-122 Copyright © 1999,2000 ARM Limited. All rights reserved. ARM DUI 0067B
-

Shift operators

Shift operators (Table 5-13) act on numeric expressions, shifting or rotating the first 
operand by the amount specified by the second. 

Note

SHR is a logical shift and does not propagate the sign bit.

Addition, subtraction, and logical operators

Addition and subtraction operators act on numeric expressions.

Logical operators act on numeric expressions. The operation is performed bitwise, that 
is, independently on each bit of the operands to produce the result.

Table 5-14 shows addition, subtraction, and logical operators.

 Table 5-13 Shift operators

Operator Usage Explanation

ROL A:ROL:B Rotate A left by B bits

ROR A:ROR:B Rotate A right by B bits

SHL A:SHL:B Shift A left by B bits

SHR A:SHR:B Shift A right by B bits

 Table 5-14 Addition, subtraction, and logical operators

Operator Usage Explanation

+ A+B Add A to B

- A-B Subtract B from A

AND A:AND:B Bitwise AND of A and B

OR A:OR:B Bitwise OR of A and B

EOR A:EOR:B Bitwise Exclusive OR of A and B



Assembler

ARM DUI 0067B Copyright © 1999,2000 ARM Limited. All rights reserved. 5-123
-

Relational operators

Relational operators (Table 5-15) act on two operands of the same type to produce a 
logical value.

The operands may be:

• numeric

• program-relative

• register-relative

• strings.

Strings are sorted using ASCII ordering. String A is less than string B if it is a leading 
substring of string B, or if the left-most character in which the two strings differ is less 
in string A than in string B. 

Arithmetic values are unsigned, so the value of 0>-1 is {FALSE}.

 Table 5-15 Relational operators

Operator Usage Explanation

= A=B A equal to B

> A>B A greater than B

>= A>=B A greater than or equal to B

< A<B A less than B

<= A<=B A less than or equal to B

/= A/=B A not equal to B

<> A<>B A not equal to B



Assembler

5-124 Copyright © 1999,2000 ARM Limited. All rights reserved. ARM DUI 0067B
-

Boolean operators

These are the weakest binding operators with the lowest precedence.

In all three cases both A and B must be expressions that evaluate to either {TRUE} or 
{FALSE}.

The Boolean operators perform the standard logical operations on their operands.

 Table 5-16 Boolean operators

Operator Usage Explanation

LAND A:LAND:B Logical AND of A and B

LOR A:LOR:B Logical OR of A and B

LEOR A:LEOR:B Logical Exclusive OR of A and B



ARM DUI 0067B Copyright © 1999,2000 ARM Limited. All rights reserved. 6-1
-

Chapter 6 
The ARM Linker

This chapter describes the ARM linker, armlink. The full command syntax is given, in 
addition to reference information about armlink, memory maps, and scatter loading. 
This chapter contains the following sections:

• About armlink on page 6-2

• Armlink syntax on page 6-6

• Image structure on page 6-16

• Linker-defined symbols on page 6-23

• Library searching, selection and scanning on page 6-26

• Optimizations and modifications on page 6-29

• Creating simple images on page 6-34

• Creating complex images with scatter loading on page 6-39.



The ARM Linker

6-2 Copyright © 1999,2000 ARM Limited. All rights reserved. ARM DUI 0067B
-

6.1  About armlink

armlink, the ARM linker, enables you to:

• link a collection of objects and libraries into an executable image

• partially link a collection of objects into an object that can be used as input for a 
future link step

• specify where the code and data will be located in memory

• produce debug and reference information about the linked files.

Objects consist of input sections that contain code, initialized data, or the locations of 
memory that must be set to zero. Input sections can be read-only (RO), read-write 
(RW), or zero-initialized (ZI) These attributes are used by armlink to group input 
sections into bigger building blocks called output sections, regions and images. Output 
sections are approximately equivalent to ELF segments.

Image regions are placed in the system memory map at load time. Before you can 
execute the image, you might have to move some of its regions to their execution 
addresses. The memory map of an image therefore has two distinct views:

• the load view of the memory when the program and data are first loaded

• the execution view of the memory after code is moved to its final location.

See Building blocks for objects and images on page 6-16 for more information on the 
image hierarchy.

6.1.1  Input to armlink

Input to armlink consists of:

• One or more object files in ELF Object Format. This format is described in the 
the pdf documentation in the directory you use to install ADS (usually the root 
directory of the ADS CD).

• Optionally, one or more libraries created by armar as described in ARM librarian 
on page 7-9.

Note

For backward compatibility, armlink also accepts object files in AOF format and 
libraries in ALF format. These formats are obsolete and will not be supported in the 
future.



The ARM Linker

ARM DUI 0067B Copyright © 1999,2000 ARM Limited. All rights reserved. 6-3
-

6.1.2  Output from armlink

Output from a successful invocation of armlink is one of the following:

• an executable image in ELF executable format

• a partially linked object in ELF object format.

For simple images, ELF executable files contain segments that are approximately 
equivalent to RO and RW output sections in the image. An ELF executable file also has 
ELF sections that contain the image output sections.

An executable image in ELF executable format can be converted to other file formats 
by using the fromELF utility. See The fromELF utility on page 7-3 for more 
information.

Constructing an executable image

When you use armlink to construct an executable image, it:

• resolves symbolic references between the input object files

• extracts object modules from libraries to satisfy otherwise unsatisfied symbolic 
references

• sorts input sections according to their attributes and names, and merges similarly 
attributed and named sections into contiguous chunks

• eliminates duplicate copies of debug sections

• organizes object fragments into memory regions according to the grouping and 
placement information provided

• relocates relocatable values

• generates an executable image.

Constructing a partially linked object

When you use armlink to construct a partially linked object, it:

• eliminates duplicate copies of debug sections

• minimizes the size of the symbol table

• leaves unresolved references unresolved

• generates an object that can be used as an input to a subsequent link step.



The ARM Linker

6-4 Copyright © 1999,2000 ARM Limited. All rights reserved. ARM DUI 0067B
-

6.1.3  Summary of armlink options

This section gives a brief overview of each armlink command-line option. The options 
are arranged into functional groups.

Accessing help and information

To get information on the available command-line options use:

-help

To get the tool version number use:

-vsn

Specifying the output type and the output file name

Use the following option to create a partially linked object instead of an executable 
image:

-partial 

Name the output file using the following option:

-output 

Specify the output file format using the following option:

-elf 

Specifying memory map information for the image

Use the following options to specify simple memory maps:

-ro-base
-rw-base 
-ropi
-rwpi
-split

For more complex images, use the option:

-scatter

Scatter loading is described in Creating complex images with scatter loading on 
page 6-39. See the ADS Developer Guide  for examples of using -scatter, 
-ro-base, -rw-base, -ropi, -rwpi and -split.



The ARM Linker

ARM DUI 0067B Copyright © 1999,2000 ARM Limited. All rights reserved. 6-5
-

The -scatter option is mutually exclusive with the use of any of the simple memory 
map options -ro-base, -rw-base, -split, -ropi, or -rwpi.

The memory map options cannot be used for partial linking because they specify the 
memory map of an executable.

Controlling image contents

These options control various miscellaneous factors affecting the image contents:

-debug | -nodebug
-entry 
-first
-keep
-last
-libpath
-locals | -nolocals
-remove | -noremove
-scanlib | -noscanlib

Generating image-related information

These options control how you extract and present information about the image:

-info
-map
-symbols
-symdefs
-xref
-xreffrom
-xrefto

By default, armlink prints the information you requested on the standard output stream, 
stdout, but the information from all the commands can be redirected to a text file using 
the -list command-line option.

Controlling armlink diagnostics

These options control how armlink emits diagnostics:

-errors
-list
-verbose
-via
-strict
-unresolved



The ARM Linker

6-6 Copyright © 1999,2000 ARM Limited. All rights reserved. ARM DUI 0067B
-

6.2  Armlink syntax

Note

For command-line arguments that use parentheses, you might need to escape the 
parentheses characters with a backslash (\) character on UNIX systems.

The complete linker command syntax is:

armlink [-help] [-vsn] [-partial] [-output file] [-elf] 

[-ro-base address] [-ropi] [-rw-base address] [-rwpi] [-split] 

[-scatter file] [-debug|-nodebug] [-remove (RO/RW/ZI)|-noremove] 

[-entry location ] [-keep section-id] [-first section-id] 

[-last section-id] [-libpath pathlist] [-scanlib|-noscanlib] 

[-locals|-nolocals] [-info topics] [-map] [-symbols] 

[-symdefs file] [-xref] [-xreffrom object(section)] 

[-xrefto object(section)] [-errors file] [-list file] [-verbose] 

[-via file] [-strict] [-unresolved symbol] [input-file-list]

where:

-help This option prints a summary of some commonly used 
command-line options.

-vsn This option displays the armlink version information.

-partial This option creates a partially linked object instead of an 
executable image.

-output file This option specifies the name of the output file. The file can be 
either a partially linked object or executable image. If the output 
file name is not specified, armlink uses the following defaults:

__image.axf if the output is an executable image

__object.o if the output is a partially-linked object.

If file is specified without path information, it will created in the 
current working directory. If path information is specified, then 
that directory becomes the default output directory.

-elf This option generates the image in ELF format. This is the only 
output format supported by armlink. This is the default.



The ARM Linker

ARM DUI 0067B Copyright © 1999,2000 ARM Limited. All rights reserved. 6-7
-

-ro-base address

This option sets both the load and execution addresses of the 
region containing the RO output section at address. If this option 
is not specified, the default RO base address is 0x8000.

-ropi This option makes the load and execution region containing the 
RO output section position independent. If this option is not used 
the region is marked as absolute. Usually each read-only input 
section must be read-only position independent. If this option is 
selected, armlink:

• checks that relocations between sections are valid

• ensures that any code generated by armlink itself, such as 
interworking veneers, is read-only position independent.

Note

The ARM tools cannot determine if the final output image will be 
Read-Only Position Independent until armlink finishes processing 
input sections. This means that armlink might emit ROPI error 
messages, even though you have selected the ROPI option for the 
compiler and assembler.

-rw-base address

This option sets the execution addresses of the region containing 
the RW output section at address. 

If this option is used with -split, it sets both the load and the 
execution address of the region containing the RW output sections 
at address.

-rwpi This option makes the load and execution region containing the 
RW and ZI output section position independent. If this option is 
not used the region is marked as absolute. The -rwpi option is 
ignored if -rw-base is not also used. Usually each writable input 
section must be read-write position independent. If this option is 
selected, armlink:

• checks that the PI attribute is set on input sections to any 
read-write execution regions

• checks that relocations between sections are valid

• generates sb-relative entries in Region$$Table and 
ZISection$$Table.



The ARM Linker

6-8 Copyright © 1999,2000 ARM Limited. All rights reserved. ARM DUI 0067B
-

Note

The compiler does not force your writable data to be 
position-independent. This means that armlink might emit RWPI 
messages, even though you have selected the RWPI option for the 
compiler and assembler.

-split This option splits the default load region, that contains the RO and 
RW output sections, into two load regions: 

• one containing the RO output section. The default load 
address is 0x8000, but a different address can be specified 
with the -ro-base option.

• one containing the RW output section. The load address is 
specified with the -rw-base option. The -split option is 
ignored if -rw-base is not also used.

-scatter file This option creates the image memory map using the 
scatter-loading description contained in file. The description 
provides grouping and placement details of the various regions 
and sections in the image. See Creating complex images with 
scatter loading on page 6-39.

-debug This option includes debug information in the output file. The 
debug information includes debug input sections and the symbol 
and string table. This is the default.

-nodebug This option turns off the inclusion of debug information in the 
output file. The image is smaller, but you cannot debug it at the 
source level. armlink discards any debug input section it finds in 
the input objects and library members, and does not include the 
symbol and string table in the image as loaded into the debugger. 
This only affects the image size as loaded into the debugger and 
has no effect on the size of any resulting binary image that is 
downloaded to the target.

If you are creating a partially linked object rather than an image, 
armlink discards the debug input sections it finds in the input 
objects, but does produce the symbol and string table in the 
partially linked object.

Note

fromELF cannot translate images produced without debug 
information into other file formats. It can only display the object 
or image contents as text.



The ARM Linker

ARM DUI 0067B Copyright © 1999,2000 ARM Limited. All rights reserved. 6-9
-

Do not use -nodebug if you will be using fromELF to translate 
the ELF image into other formats.

-remove (RO/RW/ZI)

This option performs unused section elimination on the input 
sections to remove unused sections from the image. An input 
section is considered to be used if it contains the image entry 
point, or if it is referred to from a used section. See also Unused 
section elimination on page 6-29.

Caution
You must take care not to remove exception handlers when using 
-remove. Use the -keep option to identify exception handlers or 
label them as entry points.

You can use section attribute qualifiers for more precise control of 
the unused section elimination process. If a qualifier is used, it can 
be one or more of the following:

RO remove all unused sections of type RO.

RW remove all unused sections of type RW.

ZI remove all unused sections of type ZI.

The qualifiers can appear in any case and order, but must be 
enclosed in parentheses (), and must be separated by a slash /.

The default is -remove(RO/RW/ZI).

If no section attribute qualifiers are specified, all unused sections 
are eliminated. -remove is equivalent to -remove (RO/RW/ZI).

-noremove This option does not perform unused section elimination on the 
input sections. This retains all input sections in the final image 
even if they are unused. 

-entry location This option specifies the unique entry point of the image. The 
image can contain multiple entry points, but the entry point 
specified using this command is stored in the executable file 
header for use by the loader. There can be only one occurrence of 
this command on the command line. Replace location with one 
of the following:

entry_address

A numerical value, for example:

-entry 0x0



The ARM Linker

6-10 Copyright © 1999,2000 ARM Limited. All rights reserved. ARM DUI 0067B
-

symbol This option specifies an image entry point as the 
address of symbol. If multiple definitions of symbol 
exist, armlink will generate an error. For example:

-entry int_handler

offset+object(section)

This option specifies an image entry point as an 
offset inside a section within a particular object. 
For example:

-entry 8+startup(startupseg)

There must be no spaces within the argument to 
-entry. The input section and object names are 
matched without case-sensitivity. You can use the 
following simplified notation:

• object(section) if offset is zero

• object if there is only one input section. If this 
form is used and there is more than one 
non-debug input section in object, armlink will 
generate an error.

-keep section-id

Specifies input sections that will not be removed by unused 
section elimination. See Specifying an image memory map on 
page 6-19. Replace section-id with one of the following:

symbol This option specifies that the input section defining 
symbol should be retained during unused section 
elimination. If multiple definitions of symbol exist, 
then all input sections that define symbol are treated 
similarly. For example:

-keep int_handler

object(section)

This option specifies that section from object 
should be retained during unused section elimination. 
The input section and object names are matched 
without case-sensitivity. For example:

-keep vectors.o(vect)

There can be multiple occurrences of this command on 
the command line.



The ARM Linker

ARM DUI 0067B Copyright © 1999,2000 ARM Limited. All rights reserved. 6-11
-

object This option specifies that the single input section from 
object should be retained during unused section 
elimination. The object name is matched without 
case-sensitivity. If you use this short form and there is 
more than one input section in object, armlink will 
generate an error. For example:

-keep dspdata.o

There can be multiple occurrences of this command on 
the command line.

-first section-id

This option places the selected input section first its execution 
region. This can, for example, place the section containing the 
reset and interrupt vector addresses first in the image. Replace 
section-id with one of the following:

symbol Selects the section that defines symbol. You must not 
specify a symbol that has more than one definition, as 
more than one section cannot be placed first. For 
example:

-first reset

object(section)

Selects section from object. There must be no 
space between object and the following open 
parenthesis. For example:

-first init.o(init)

object Selects the single input section in object. If you use 
this short form and there is more than one input section, 
armlink will generate an error. For example:

-first init.o

When using scatter loading, use +FIRST in the scatter description 
file instead. 

Using -first cannot override the basic attribute sorting order for 
output sections in regions that places RO first, RW second, and ZI 
last. If the region has an RO section, an RW or a ZI section cannot 
be placed first. If the region has an RO or RW section, a ZI section 
cannot be placed first. 

Two different sections cannot both be placed first in the same 
execution region, so only one instance of this option is permitted.



The ARM Linker

6-12 Copyright © 1999,2000 ARM Limited. All rights reserved. ARM DUI 0067B
-

-last section-id

This option places the selected input section last in its execution 
region. For example, this can force an input section that contains 
a checksum to be placed last in the RW section. Replace 
section-id with one of the following:

symbol Selects the section that defines symbol. You must not 
specify a symbol that has more than one definition, as 
more than one section cannot be placed last. For 
example:

-last checksum

object(section)

Selects the section from object. There must be no 
space between object and the following open 
parenthesis. For example:

-last checksum.o(check)

object Selects the single input section from object. If there 
is more than one input section in object, armlink will 
generate an error.

When using scatter loading, use +LAST in the scatter description 
file instead.

Using -last cannot override the basic attribute sorting order for 
output sections in regions that places RO first, RW second, and ZI 
last. If the region has a ZI section, an RW section cannot be placed 
last. If the region has an RW or ZI section, an RO section cannot 
be placed last. 

Two different sections cannot both be placed last in the same 
execution region, so only one instance of this option is permitted.

-libpath pathlist

This option specifies a list of paths that are used to search for 
libraries. These paths override the path specified by the ARMLIB 
environment variable. pathlist is a comma-separated list of 
paths  path1, path2,... pathn that are used to search for required 
libraries. The default path for the directory containing the ARM 
libraries is specified by the ARMLIB environment variable. See 
Library searching, selection and scanning on page 6-26 for more 
information on including libraries.

-scanlib This option allows scanning of required libraries to resolve 
references. This is the default.



The ARM Linker

ARM DUI 0067B Copyright © 1999,2000 ARM Limited. All rights reserved. 6-13
-

-noscanlib This option prevents the scanning of default libraries in a link step.

-locals This option adds local symbols to the output symbol table when 
producing an executable image. This is the default.

-nolocals This option does not add local symbols to the output symbol table 
when producing an executable image. This is a useful 
optimization if you want to reduce the size of the output symbol 
table.

-info topics This option prints information about specified topics, where 
topics is a comma-separated list of topic keywords. A topic 
keyword can be one of the following:

sizes Gives a list of the Code and Data (RO Data, RW Data, 
ZI Data, and Debug Data) sizes for each input object 
and library member in the image. Using this option 
implies -info sizes,totals.

totals Gives totals of the Code and Data (RO Data, RW Data, 
ZI Data, and Debug Data) sizes for input objects and 
libraries.

veneers Gives details of armlink-generated veneers. For more 
information on veneers see Veneer generation on 
page 6-30.

unused Lists all unused sections that were eliminated from the 
image as a result of using -remove.

Note

Spaces are not allowed between keywords in a list. For example, 
you can enter:

-info sizes,totals 

but not:

-info sizes, totals

-map This option creates an image map. The image map contains 
addresses and sizes of each load region, execution region and 
input section in the image, including debugging and 
linker-generated input sections.



The ARM Linker

6-14 Copyright © 1999,2000 ARM Limited. All rights reserved. ARM DUI 0067B
-

-symdefs file This option creates a symbol definition file containing the global 
symbol definitions from the output image. This file can be used as 
input when linking another image. See Accessing symbols in 
another image on page 6-31 for more information.

If file is specified without path information, it will searched for or 
created in the output directory, that is the directory where the 
output image is being written to.

-symbols This option lists each local and global symbol used in the link 
step, and its value. This includes linker-generated symbols.

-xref This option lists all cross-references between input sections.

-xreffrom object(section)

This option lists cross-references from input section in object 
to other input sections. This is a useful subset of the listing 
produced by using -xref if you are interested in references from 
a specific input section. You can have multiple occurrences of this 
option in order to list references from more than one input section.

-xrefto object(section)

This option lists cross-references to input section in object 
from other input sections. This is a useful subset of the listing 
produced by using -xref if you are interested in references to a 
specific input section. You can have multiple occurrences of this 
option in order to list references to more than one input section.

-errors file Redirects the diagnostics from the standard error stream to file.

-list file This option redirects the diagnostics from output of the -info, 
-map, -symbols, -xref, -xreffrom, and -xrefto commands 
to file.

If file is specified without path information, it is created in the 
output directory, that is the directory the output image is being 
written to.

-verbose This option prints messages indicating progress of the link 
operation.

-via file This option reads a further list of input filenames and linker 
options from file. 

You can enter multiple -via options on the armlink command 
line. The -via options can also be included within a via file.



The ARM Linker

ARM DUI 0067B Copyright © 1999,2000 ARM Limited. All rights reserved. 6-15
-

-strict This option strictly enforces memory attributes. 

-unresolved symbol

This option matches each reference to an undefined symbol to the 
global definition of symbol. symbol must be both defined and 
global, otherwise it will appear in the list of undefined symbols, 
and the link step will fail. This option is particularly useful during 
top-down development, when it can be possible to test a 
partially-implemented system by matching each reference to a 
missing function to a dummy function. 

This option does not display warnings.

input-file-list This is a space-separated list of objects or libraries.

A special type of object file, the symdef file, may be included in 
the list to provide global symbol values for a previously generated 
image file. See Accessing symbols in another image on page 6-31 
for more information.

There are two ways you can use libraries in the input file list:

• Specify particular members to be extracted from a library 
and added to the image as individual objects. For example, 
specify mystring.lib(strcmp.o) in the input file list.

• Specify a library to be added to the list of libraries that is 
used to extract members if they resolve any non-weak 
unresolved references. For example, specify 
mystring.lib in the input file list. Other libraries are 
added to this list implicitly by armlink when it scans the 
default library directories and selects the closest matching 
library variants available. Members from the libraries in this 
list are added to the image only when they resolve an 
unresolved non-weak references. For more information see 
Library searching, selection and scanning on page 6-26.

armlink processes the file list in the following order:

1. Objects are added to the image unconditionally.

2. Members selected from libraries using patterns are added to 
the image unconditionally, as if they were objects.

3. Libraries are added to the list of libraries that is used to 
extract members if they resolve any non-weak unresolved 
references.



The ARM Linker

6-16 Copyright © 1999,2000 ARM Limited. All rights reserved. ARM DUI 0067B
-

6.3  Image structure

The structure of an image is defined by:

• the number of its constituent regions and output sections

• the positions in memory of these constituent regions and sections when

— the image is loaded

— the image executes.

6.3.1  Building blocks for objects and images

The components of a partially-linked or executable file are constructed from a hierarchy 
of images, regions, output sections, and input sections. 

• An image consists of one or more regions. Each region consists of one or more 
output sections.

• Each output section contains one or more input sections.

• Input sections are the code and data information in an object file. 

Figure 6-1 shows the relationship between regions, output sections, and input sections.

 Figure 6-1 Building blocks for an image

������

&����
��

&����
��
'��	���(�����
��)�

'��	���(�����
��)�

'��	���(�����
��)�

'��	���(�����
��)�

*
	���(�����
��)�)�

*
	���(�����
��)�)�

*
	���(�����
��)�)�

*
	���(�����
��)�)�

*
	���(�����
��)�)�

*
	���(�����
��)�)�

*
	���(�����
��)�)�

*
	���(�����
��)�)�



The ARM Linker

ARM DUI 0067B Copyright © 1999,2000 ARM Limited. All rights reserved. 6-17
-

Input Sections 

An input section contains code or initialized data, or describes a fragment 
of memory that is not initialized or that must be set to zero before the 
image can execute. Input sections can have the attributes RO, RW, or ZI. 
These three attributes are used by armlink to group input sections into 
bigger building blocks called output sections and regions.

Output Sections 
An output section is a contiguous sequence of input sections that have the 
same RO, RW, or ZI attribute. An output section has the same attributes 
as its constituent input sections. Within an output section, the input 
sections are sorted according to the rules described in Ordering input 
sections by attribute on page 6-21.

Regions A region is a contiguous sequence of one to three output sections. The 
output sections in a region are sorted according to their attributes. The 
RO output section is first, then the RW output section, and finally the ZI 
output section.

6.3.2  Load view and execution view of an image

Image regions are placed in the system memory map at load time. Before you can 
execute the image, you might have to move some of its regions to their execution 
addresses and create the ZI output sections. For example, initialized RW data might 
have to be copied from its load address in ROM to its execution address in RAM. 



The ARM Linker

6-18 Copyright © 1999,2000 ARM Limited. All rights reserved. ARM DUI 0067B
-

The memory map of an image has two distinct views as shown in Figure 6-2:

Load view This view describes each image region and section in terms of the 
address it is located at when the image is loaded into memory, that 
is the location before the image starts executing

Execution view This view describes each image region and section in terms of the 
address it is located at while the image is executing.

 Figure 6-2 Load and execution memory maps

Table 6-1 compares the load and execution views.

&+�������


&'�������

&'�������


������

������

&
,
-

������

���	
���
��������������

&+�������


&
'
-

������

������ .*�������


 Table 6-1 Comparing load and execution

Load Description Execution Description

Load address The address where a section, or 
region is loaded into memory before 
the image containing it starts 
executing. The load address of a 
section or a region can differ from its 
execution address.

Execution address The address where a section or region is 
located while the image containing it is 
being executed.

Load region A region in the load address space. Execution region A region in the execution address space.



The ARM Linker

ARM DUI 0067B Copyright © 1999,2000 ARM Limited. All rights reserved. 6-19
-

6.3.3  Specifying an image memory map

An image can consist of any number of regions and output sections. Any number of 
these regions can have different load and execution addresses. To construct the memory 
map of an image, armlink must have information about:

• grouping, how input sections are grouped into output sections and regions

• placement, where image regions should be located in the memory maps.

Depending on the complexity of the memory maps of the image, there are two ways to 
pass this information to armlink:

Using command-line options 
The following options can be used for simple cases where an  image has 
only one or two load region and up to three execution regions:

• -ro-base

• -rw-base

• -split

• -ropi

• -rwpi.

The options listed above provide a simplified notation that gives the same 
settings as a scatter loading description for a simple image. For more 
information, see Creating simple images on page 6-34. 

Using scatter loading description file 
A description file is used for more complex cases where you require 
complete control over the grouping and placement of image components. 
This is described in full in Creating complex images with scatter loading 
on page 6-39. To use scatter loading, specify -scatter filename at 
the command line.



The ARM Linker

6-20 Copyright © 1999,2000 ARM Limited. All rights reserved. ARM DUI 0067B
-

6.3.4  Image entry points

The entry point of an image is where the program execution can start spontaneously. 
The initial entry point for the image is a single value located in the header file.

For programs loaded into RAM by an operating system, the program loader starts the 
image execution by transferring control to the initial entry point in the image.

An embedded image can have multiple entry points, used by for example Reset, IRQ, 
FIQ, SVC, UNDEF, and ABORT, that can be used to transfer control when the image is 
running. If the embedded image is to be used by a loader however, it must have a single 
initial entry point specified in the header.

An image, that is the OS for a system for example, is loaded by the boot loader and 
entered at the initial entry point specified in the executable file header. After the image 
is loaded, the image overwrites the boot loader and becomes the OS. In this example 
there are many entry points, but only the initial execution point is specified in the 
executable file header.

You can specify any number of entry points in the image by marking the input section 
in the assembler sources with the ENTRY keyword.

armlink allows each object in an image to have one input section marked with the 
ENTRY keyword. Each of these input sections is treated as an entry point.

armlink accepts multiple occurrences of either of the following linker options: 

-entry offset +object(input_section)

-entry symbol

Each of the locations identified is treated as an entry point.

In addition to specifying entry points in general, you can specify the initial entry point, 
that entry point will be placed in the executable file header. Use the -entry 
entry_address variant to specify the initial entry. There can be only one instance of 
this variant of the -entry option on the command line.

If you have not specified the initial entry point using an -entry entry_address 
option and the input objects contain only one entry point, armlink uses that entry point 
as the initial entry point for the image. 

If you have not specified the initial entry point but more than one entry point has been 
specified, either by using the -entry offset +object(input_section) option or 
marking the input sections with ENTRY, none of the entry points are selected by armlink 
and the executable file header will not contain an initial entry point.



The ARM Linker

ARM DUI 0067B Copyright © 1999,2000 ARM Limited. All rights reserved. 6-21
-

6.3.5  Section placement and sorting rules

armlink sorts all the input sections within a region according to their attributes. Input 
sections with identical attributes form a contiguous block within the region. 

The base address of each section is determined by the sorting order defined by armlink.

While generating an image, armlink sorts the input sections in the following order:

• by attribute

• by input section name

• by their positions in the input list, except where overridden by a -first or 
-last option. This is described in Using FIRST and LAST to place sections on 
page 6-22.

By default, armlink creates an image consisting of an RO, an RW, and optionally a ZI, 
output section. The RO output section can be protected at runtime on systems that have 
memory management hardware. 

Page alignment of the RO and RW output sections of the image can be forced using the 
section alignment attribute of areas. You set this using the ALIGN attribute of the ARM 
assembler AREA directive (see Directives on page 5-36).

Ordering input sections by attribute

Portions of the image associated with a particular language runtime system are collected 
together into a minimum number of contiguous regions. armlink orders input sections 
by attribute as follows:

• read-only code

• read-only data

• read-write code

• other initialized data

• zero-initialized (uninitialized) data.

Input sections that have the same attributes are ordered by their names. Names are 
considered to be case-sensitive and are compared in alphabetical order using the ASCII 
collation sequence for characters. 

Identically attributed and named input sections are ordered according to their relative 
positions in the input list.

These rules mean that the positions of identically attributed and named input sections 
included from libraries are not predictable. If more precise positioning is required, you 
can extract modules manually, and include them in the input list. 



The ARM Linker

6-22 Copyright © 1999,2000 ARM Limited. All rights reserved. ARM DUI 0067B
-

Using FIRST and LAST to place sections

Within a region, all RO code input section sections are contiguous and form an RO 
output section that must precede the output section containing all the RW input sections.

If you are not using scatter loading, use the -first and -last linker options to place 
input sections.

If you are using scatter loading, use the pseudo-attributes FIRST and LAST in the scatter 
load description file to mark the first and last input sections in an execution region if the 
placement order is important.

However, FIRST and LAST must not violate the basic attribute sorting order. This means 
that an input section can be first (or last) in the execution region if the output section it 
is in is the first (or last) output section in the region. For example, in an execution region 
containing RO input sections, the FIRST input section must be an RO input section. 
Similarly, if the region contains any ZI input sections, the LAST input section must be a 
ZI input section.

Within each output section, input sections are sorted alphabetically according to their 
names, and then by their positions in the input order.

Aligning sections

When input sections have been ordered and the base address fixed, armlink can insert 
padding to force each input section to start at an address that is a multiple of: 

2(input section alignment)

Input sections are commonly aligned at word boundaries. Use the ALIGN directive in 
assembly language to control section alignment.



The ARM Linker

ARM DUI 0067B Copyright © 1999,2000 ARM Limited. All rights reserved. 6-23
-

6.4  Linker-defined symbols

armlink defines some symbols that contain the character sequence $$. These symbols 
and all other external names containing the sequence $$ are ARM-reserved names. 
These symbols are used to specify region base addresses, output section base addresses, 
and input section base addresses and their limits. 

These symbolic addresses can be imported and used as relocatable addresses by your 
assembly language programs, or referred to as extern symbols from your C or C++ 
source code. 

Note

Linker-defined symbols are defined by armlink only when your code references them.

6.4.1  Region-related symbols

Region-related symbols are generated when armlink is creating an image using a scatter 
loading description. The description names all the execution regions in the image, and 
provides their load and execution addresses (see The scatter load description file on 
page 6-40). 

Table 6-2 shows the symbols that armlink generates for every execution region present 
in the image.

 Table 6-2 Region-related linker symbols

Symbol Description

Load$$region_name$$Base Load address of the region.

Image$$region_name$$Base Execution address of the region.

Image$$region_name$$Length Execution region length in bytes (multiple of 4).



The ARM Linker

6-24 Copyright © 1999,2000 ARM Limited. All rights reserved. ARM DUI 0067B
-

For every execution region containing a ZI output section, armlink generates two 
additional symbols, as shown in Table 6-3.

Note

The ZI output sections of an image are not created statically, but are automatically 
created dynamically. Therefore there is no load address symbol for ZI output sections.

6.4.2  Output section related symbols

The symbols shown in Table 6-4 are generated if command-line options are used to 
create a simple image. A simple image has three output sections (RO, RW and ZI) that 
produce the three executions regions. 

 Table 6-3 Additional symbols for ZI sections

Symbol Description

Image$$region_name$$ZI$$Base Execution address of the ZI output section 
in this region.

Image$$region_name$$ZI$$Length Length of the ZI output section in bytes 
(multiple of 4).

 Table 6-4 Section-related linker symbols

Symbol Description

Image$$RO$$Base Address of the start of the RO output section.

Image$$RO$$Limit Address of the first byte beyond the end of the RO output section.

Image$$RW$$Base Address of the start of the RW output section. 

Image$$RW$$Limit Address of the byte beyond the end of the ZI output section.

Image$$ZI$$Base Address of the start of the ZI output section.

Image$$ZI$$Limit Address of the byte beyond the end of the ZI output section.



The ARM Linker

ARM DUI 0067B Copyright © 1999,2000 ARM Limited. All rights reserved. 6-25
-

Note

These symbols contain no useful information if a scatter load description is used to 
specify grouping and placement information. Code that uses these symbols while using 
a scatter-loaded image will not produce expected results. In such cases, only the 
region-related symbols described in Region-related symbols on page 6-23 should be 
used.

6.4.3  Input section related symbols

For every input section present in the image, armlink generates the symbols shown in 
Table 6-5.

Note

If your code refers to the input-section symbols, it is assumed that you expect all the 
input sections in the image with the same name to be placed contiguously in the image 
memory map. If your scatter loading description places these input sections 
non-contiguously, armlink will diagnose an error because the use of the base and limit 
symbols over non-contiguous memory will usually produce unpredictable and 
undesirable effects.

 Table 6-5 Area-related linker symbols

Symbol Description 

SectionName$$Base Address of the start of the consolidated section called 
SectionName.

SectionName$$Limit Address of the byte beyond the end of the consolidated section 
called SectionName.



The ARM Linker

6-26 Copyright © 1999,2000 ARM Limited. All rights reserved. ARM DUI 0067B
-

6.5  Library searching, selection and scanning

An object file can refer to external symbols that are, for example, functions or variables. 
armlink attempts to resolve these references by matching them to definitions found in 
other object files and libraries. armlink recognizes a collection of ELF files stored in an 
ar format file as a library. 

The difference between the way armlink adds object files to the image and the way it 
adds libraries to the image: 

• Each object file in the input list is added to the output image unconditionally, 
whether or not anything refers to it. 

• A member from a library is included in the output only if an object file or an 
already-included library member makes a non-weak reference to it, or if armlink 
is explicitly instructed to add it.

Unresolved references to weak symbols do not cause library members to be loaded. 

Note

If the -noscanlib option was specified, armlink does not search for libraries but uses 
only those libraries that are specified in the input file list to resolve references.

If a library member is explicitly requested in the input file list, it is loaded even if it does 
not resolve any current references. In this case, an explicitly requested member is 
treated as if it were an ordinary object.

armlink creates a list of libraries as follows:

1. armlink adds any libraries specified in the input file list to the list.

2. The user-specified search path is examined by armlink to identify directories 
containing the appropriate libraries. See Searching for libraries on page 6-27 for 
details on the search process.

3. The best-suited library variants are chosen from the searched directories and their 
subdirectories. ARM-supplied libraries have multiple variants that are named 
according to the attributes of their members. For details on the library variants see 
Library naming conventions on page 4-96 and Selecting library variants on 
page 6-27.

When armlink has constructed the list of libraries has been created, it repeatedly scans 
each library in the list to resolve references. See Scanning the libraries on page 6-28 for 
details. 



The ARM Linker

ARM DUI 0067B Copyright © 1999,2000 ARM Limited. All rights reserved. 6-27
-

6.5.1  Searching for libraries

For user libraries explicitly mentioned on the command line, a path is required if they 
are not in the current working directory. If a path is not given, the search paths 
-libpath /ARMLIB will not be used. You can specify the search paths by:

• Adding the -libpath argument to armlink command line with a 
comma-separated list of parent directories. 

This list must end with the parent directory of the ARM library directories 
armlib and cpplib. The ARMLIB variable holds the path to the ARM library 
parent directory.

Caution
-libpath overrides the paths specified by the ARMLIB variable.

• Using the CodeWarrior IDE linker configuration panel (see CodeWarrior IDE 
Guide).

• Using the environment variable ARMLIB. 

armlink combines each parent directory, given by -libpath, the configuration panel, 
or the ARMLIB variable, with each subdirectory request from the input objects and 
identifies the place to search for the ARM library. The names of ARM subdirectories 
within the parent directories are placed in each compiled object by using a symbol of 
the form Lib$$Request$$sub_dir_name. 

If a directory has been specified in a format ending with the directory separator, for 
example c:\myapp\mylib\, this path is used to search for user libraries.

If a directory has been specified in a format that does not end with the directory 
separator, for example c:\ARM\Lib, this path is used to search for the two 
subdirectories holding the ARM libraries: armlib and cpplib.

6.5.2  Selecting library variants

From each of the directories selected by armlink when searching for libraries, armlink 
must select the best-suited library. There are different variants of the ARM libraries 
based on the attributes of their member objects. The variant of the library is coded into 
the name of the library. See Library naming conventions on page 4-96.

armlink accumulates the attributes of each input object and uses them to select the 
library variant best suited to the accumulated attributes. If more than one of the selected 
libraries are equally suited, the library selected first is retained and the others are 
rejected. 



The ARM Linker

6-28 Copyright © 1999,2000 ARM Limited. All rights reserved. ARM DUI 0067B
-

The final list contains all the libraries that armlink will scan in order to resolve 
references.

6.5.3  Scanning the libraries

When all the directories have been searched, and the most compatible library variants 
have been selected and added to the list of libraries, each of the libraries is scanned to 
load the required members:

1. armlink searches for each currently unsatisfied non-weak reference sequentially 
through the list of libraries. 

The sequential nature of the search ensures that armlink chooses the library that 
appears earlier in the list if two or more libraries define the same symbol. this 
enables you to override function definitions from other libraries, for example the 
ARM C libraries, by adding your libraries in the input file list. 

2. If a library contains members that resolve any references, the members are 
loaded. As each such member is loaded it might satisfy some unresolved 
references, possibly including weak ones. 

3. Loading a library member might also create new unresolved weak or non-weak 
references.

4. The process continues until the non-weak references are either resolved or are 
incapable of being resolved by any library.

If any non-weak reference remains unsatisfied at the end of the scanning operation, 
armlink generates an error message. 



The ARM Linker

ARM DUI 0067B Copyright © 1999,2000 ARM Limited. All rights reserved. 6-29
-

6.6  Optimizations and modifications

armlink performs some optimizations and modifications in order to remove duplicate 
sections and allow interworking between ARM and Thumb code.

6.6.1  Common debug section elimination

The compilers and assemblers generate one set of debug sections per source file. 
armlink can detect multiple copies of the set of debug sections and discard all but one 
copy in the final image. This can result in a considerable reduction in image debug size.

6.6.2  Common section elimination

If there are inline functions or templates used in the source, the ARM C++ compilers 
generate complete objects for linking such that each object contains the out-of-line 
copies of inline functions and template functions that the object requires. When these 
functions are declared in a common header file, the functions might have be defined 
many times in separate objects that are subsequently linked together. In order to 
eliminate duplicates, the compilers compile these functions into separate instances of 
common code sections and armlink retains just one copy of each common code section.

It is possible that the separate instances of a common code section are not identical. 
Some of the copies, for example, may be found in a library which has been built with 
different (but compatible) build options, different optimization, or different debug 
options. 

If the copies are not identical, armlink retains the best available variant of each common 
code section based on the attributes of the input objects. 

6.6.3  Unused section elimination

Unused section elimination removes code that is never executed, or data that is not 
referred to by the code, from the final image. This optimization can be controlled by the 
-remove and -noremove options. 

An input section is retained in the final image in the following conditions:

• if it contains an entry point

• if it is referred to, directly or indirectly, by a non-weak reference from an input 
section containing an entry point

• if it was specified as the first or last input section by the -first or -last option

• if it has been marked as unremovable by the -keep option.



The ARM Linker

6-30 Copyright © 1999,2000 ARM Limited. All rights reserved. ARM DUI 0067B
-

6.6.4  Veneer generation

armlink must generate veneers when:

• a branch involves change of state between ARM state and Thumb state

• a branch involves a destination beyond the branching range of the current state.

A veneer can extend the range of branch and change state. armlink combines long 
branch capability into the state change capability. All interworking veneers are also long 
branch veneers. 

There are four types of veneers to handle different branching requirements:

ARM to ARM Long branch capability

ARM to Thumb Long branch capability and interworking capability

Thumb to ARM Long branch capability and interworking capability

Thumb to Thumb Long branch capability.

armlink creates one input section called Veneer$$Code for each veneer. A veneer is 
generated only if no other existing veneer is able to satisfy the requirements. If two 
input sections contain a long branch to the same destination, only one veneer will be 
generated if the veneer can be reached by both sections.

All veneers cannot be collected into one input section because the resulting veneer input 
section might not to be within range of other input sections. If the sections are not within 
addressing range, long branching is not possible.



The ARM Linker

ARM DUI 0067B Copyright © 1999,2000 ARM Limited. All rights reserved. 6-31
-

6.7  Accessing symbols in another image

If you want one image to know the global symbol values of another image, you can use 
a symdefs file. 

This can be used, for example, if you have one image that always resides in ROM and 
multiple images that are loaded into RAM. The images loaded into RAM can access 
global functions and data from the image located in ROM.

6.7.1  Reading a symdefs file

A symdefs file can be considered as an object file with symbol information but no code 
or data. To read a symdefs file, add it to your file list as you would any object file. 
armlink reads the file and adds the symbols and their values to the output symbol table. 
The added symbols have the ABSOLUTE GLOBAL attributes.

If a partial link is being performed, the symbols will be added to the output object 
symbol table. If a full link is being performed, the symbols will be added to the image 
symbol table. 

armlink generates errors for invalid rows in the file. A row is invalid if: 

• any of the columns are missing

• any of the columns have invalid values.

The symbols extracted out of a symdefs file are treated in exactly the same way as 
symbols extracted from an object symbol table. The same restriction regarding multiple 
symbol definitions and ARM/Thumb synonyms apply.

6.7.2  Creating a symdefs file

armlink produces a symdefs file during a successful final link stage. It is not produced 
for partial linking or for unsuccessful final linking. 

Use armlink option -symdefs filename to produce a symdefs file. If filename does 
not exist, the file will be created containing all global symbols. If filename exists, the 
existing contents of filename will be used.

Outputting a subset of the global symbols

By default, all global symbols are written to the symdefs file. 

When filename exists, armlink uses its contents to restrict the output to a subset of the 
global symbols. To restrict the output symbols:



The ARM Linker

6-32 Copyright © 1999,2000 ARM Limited. All rights reserved. ARM DUI 0067B
-

1. Specify -symdefs filename when you are doing a final link for image1. 
armlink creates a symdef file filename.

2. Open filename and remove any symbol entries you do not want in the final list.

3. Specify -symdefs filename when you are doing a final link for image2.

You can also edit filename and then link image1 again to, for example, update the 
symbol list after one or more objects used to create image1 have changed. 

4. armlink creates a temporary output file.

5. The comments and blank lines from filename are copied to the temporary file.

6. When a symbol is found in filename, the symbol is output to the temporary file 
using the address of the symbol in the current image.

7. If a symbol is in filename more than once, only one occurrence of the symbol is 
placed in the temporary file.

8. If a symbol is found in filename but does not exist in the current image, no output 
will be produced for that symbol.

9. If the final link is successful, filename will be deleted and the temporary file 
renamed as filename.

6.7.3  Symdefs file format

The symdefs file is a type of object file that contains symbols and their values. Unlike 
other object files, however, it does not contain any code or data. 

The file consists of an identification line, optional comments, and symbol information 
as shown in Example 6-1.

Example 6-1

#SYMDEFS# ARM Linker, ADS1.0 [Build 105] Last Updated Tues Aug 03 13:48:47 1999
;value type name, this is an added comment
0x00001000 A function1     
0x00002000 T function2    
   # This is also a comment, blank lines are ignored

0x00003300 A function3     
0x00003340 D table1     



The ARM Linker

ARM DUI 0067B Copyright © 1999,2000 ARM Limited. All rights reserved. 6-33
-

Identifying string

If the first 11 characters in the text file are #SYMDEFS#, armlink recognizes the file as a 
symdefs file.

The identifying string is followed by linker version information and date and time of 
last update of the symdefs file. The version and update information are not part of the 
identification string.

Comments

You can insert comments manually with a text editor. Comments have the following 
properties:

• Any line where the first non-whitespace character is ; or # is a comment. 

• The first line must start with the special identifying comment #SYMDEFS#. This 
comment is inserted by armlink when the file is produced and must not be 
manually deleted.

• A ; or # after the first non-whitespace character does not start a comment.

• Blank lines are ignored and can be inserted to improve readability.

Symbol information

The symbol information is provided by the address, type and name of the symbol on a 
single line.

Symbol value armlink writes the absolute address of the symbol in fixed hexadecimal 
format, for example 0x00004000. If you edit the file, you can use either 
hexadecimal or decimal formats for the address value.

Type flag The single letter for type is:

A ARM code

T Thumb code

D Data.

Symbol name 
The name of the symbol.



The ARM Linker

6-34 Copyright © 1999,2000 ARM Limited. All rights reserved. ARM DUI 0067B
-

6.8  Creating simple images 

A simple image consists of a number of input sections of type RO, RW, and ZI. These 
input sections are collated to form the RO, the RW, and the ZI output sections. 
Depending on how the output sections are arranged within load and execution regions, 
there are three basic types of simple images 

Type 1 One region in load view, three contiguous regions in execution view.

Type 2 One region in load view, three non-contiguous regions in execution view.

Type 3 Two regions in load view, three non-contiguous regions in execution 
view.

In all three simple image types, there are up to three execution regions. The first 
execution region contains the RO output section, the second execution region contains 
the RW output section (if present), and the third execution region contains the ZI output 
section (if present). These execution regions are referred to as the RO, the RW, and the 
ZI execution region.

6.8.1  Type 1: one load region and contiguous output regions

An image of this type consists of a single load region in the load view and the three 
execution regions are placed contiguously in the memory map. This approach is 
suitable for systems that load programs into RAM, Angel, for example OS bootloader, 
or desktop system (see Figure 6-3 on page 6-35).



The ARM Linker

ARM DUI 0067B Copyright © 1999,2000 ARM Limited. All rights reserved. 6-35
-

 Figure 6-3 Type 1

Load view

The single load region consists of the RO and RW output sections placed consecutively. 
The ZI output section does not exist at load time. It is created before execution using 
the output section description in the image file.

Execution view

The three execution regions containing the RO, RW, and ZI output sections arranged 
contiguously. The execution address of the RO and RW execution regions are the same 
as their load addresses, so nothing has to be moved from its load address to its execution 
address. However, the ZI execution region that contains the ZI output section is created 
before execution begins.

Use armlink option -ro-base address to specify the load and execution address of 
the region containing the RO output. 

&+�'��	��
(�����


&'�'��	��
(�����


&+�'��	��
(�����


&'�'��	��
(�����


&+�/�������

&����


&'�/�������

&����


(�
���
0�
�
&����


.*�/�������

&����


.*�'��	��
(�����


&'-

/�������
�1��20�
��1��2

����������

���������

&,-



The ARM Linker

6-36 Copyright © 1999,2000 ARM Limited. All rights reserved. ARM DUI 0067B
-

6.8.2  Type 2: one load region and non-contiguous output regions

An image of this type consists of a single load region, and three execution regions in 
execution view. The RW execution region is not contiguous with the RO execution 
region. This approach is used, for example, for simple ROM-based embedded systems 
(see Figure 6-4).

 Figure 6-4 Type 2

Load view

In the load view, the single load region consists of the RO and RW output sections 
placed consecutively, in ROM for example. The ZI output section does not exist at load 
time. It is created before execution using the description of the output section contained 
in the image file.

Execution view

In the execution view, the first execution region contains the RO output section and the 
second execution region contains the RW and ZI output sections. 

The execution address of the region containing the RO output section is the same as its 
load address, so the RO output section does not have to be moved. 

&+�'��	��
(�����


&'�'��	��
(�����


&+�'��	��
(�����


&'�'��	��
(�����


&+�/�������

&����


&'�/�������

&����


(�
���
0�
�
&����


.*�/�������

&����


.*�'��	��
(�����


/�������
�1��20�
��1��2

����������

���������

&,-

&'-



The ARM Linker

ARM DUI 0067B Copyright © 1999,2000 ARM Limited. All rights reserved. 6-37
-

The execution address of the region containing the RW output section is different from 
its load address, so the RW output section is moved from its load address (from the 
single load region) to its execution address (into the second execution region). The ZI 
execution region, and its output section, is placed contiguously with the RW execution 
region.

Use armlink options -ro-base address to specify the load and execution address for 
the RO output section and -rw-base exec_address to specify the execution address 
of the RW output section. If -ro-base option is not used to specify the address, the 
default value of 0x8000 is used by armlink.

6.8.3  Type 3: two load regions and non-contiguous output regions

This type of image is similar to images of type 2 except that the single load region in 
type 2 is now split into two load regions (see Figure 6-5).

 Figure 6-5 Type 3

&+�'��	��
(�����


&'�'��	��
(�����


����������

&+�'��	��
(�����


&'�'��	��
(�����


&+�/�������

&����


&'�/�������

&����


3����
0�
�
&����


.*�/�������

&����


���������

.*�'��	��
(�����


/�������
�1��20�
��1��2

(���
�
0�
�
&����


&'-

&,-



The ARM Linker

6-38 Copyright © 1999,2000 ARM Limited. All rights reserved. ARM DUI 0067B
-

Load view

In the load view, the first load region consists of the RO output section, and the second 
load region consists of the RW output section. The ZI output section does not exist at 
load time. It is created before execution using the description of the output section 
contained in the image file.

Execution view

In the execution view, the first execution region contains the RO output section and the 
second execution region contains the RW and ZI output sections. 

The execution address of the RO region is the same as its load address, so the contents 
of the RO output section are not moved from their load address to their execution 
address. 

The execution address of the RW region is also the same as its load address, so the 
contents of the RW output section are not moved from their load address to their 
execution address. However, the ZI output section is created before execution begins 
and placed after the RW region.

Specify the load and execution address using the following linker options:

-split This option splits the default single load region (that contains the RO and 
RW output sections) into two load regions, one containing the RO output 
section and one containing the RW output section.

-ro-base address

This option instructs armlink to set the load and execution address of the 
region containing the RO section at address (for example, the address 
of the first location in ROM). If -ro-base option is not used to specify 
the address, the default value of 0x8000 is used by armlink.

-rw-base address

This option instructs armlink to set the execution address of the region 
containing the RW output section at address. If this option is used with 
-split, both the load and execution addresses of the RW region are 
specified. 



The ARM Linker

ARM DUI 0067B Copyright © 1999,2000 ARM Limited. All rights reserved. 6-39
-

6.9  Creating complex images with scatter loading

An image is made up of regions and output sections. Every region in the image can have 
a different load and execution address (see Image structure on page 6-16).

The scatter loading mechanism enables you to specify the memory map of an image to 
armlink. Scatter loading gives you complete control over the grouping and placement 
of image components. It is capable of describing complex image maps consisting of 
multiple regions scattered in the memory map at load and execution time. Figure 6-6 
shows an example of a complex memory map.

To construct the memory map of an image, armlink must have:

• grouping information describing how input sections are grouped into regions

• placement information describing the addresses where image regions should be 
located in the memory maps.

You specify this information using a scatter load description in a text file that is passed 
to armlink.

 Figure 6-6 Scatter loaded memory map

������

������

&'�������
4�

&'�������
4�

.*�������
4�

&+�������
4�

&+�������
4�

&'�������
4�

&+�������
4�

�������

�������
.*�������
4�

&+�������
4�

&'�������
4�

���	
���
�������������� �������

5&,-

//6&'-

(&,-

&'-



The ARM Linker

6-40 Copyright © 1999,2000 ARM Limited. All rights reserved. ARM DUI 0067B
-

6.9.1  Symbols defined for scatter loading

When armlink is creating an image using a scatter load description, it creates some 
region-related symbols. These are described in Region-related symbols on page 6-23. 
These special symbols are created by armlink only if your code references them.

6.9.2  Command-line option

armlink command-line option for using scatter loading is:

-scatter description_file_name

This instructs armlink to construct the image memory map as described in 
description_file_name. The format of the description file is given in The scatter 
load description file on page 6-40.

6.9.3  The scatter load description file

The scatter load description is a text file that describes to armlink the memory map of 
the image. The description file enables you to specify:

• the load address and maximum size of each load region

• the attributes of each load region

• the execution regions derived from each load region

• the execution address and maximum size of each execution region

• the memory access attributes of each execution region

• the attributes of each execution region

• the input sections for each execution region.

The description file format reflects the hierarchy of load regions, execution regions, and 
input sections.

Note

The assignment of input sections to regions is completely independent of the order 
patterns are written in the scatter load description.



The ARM Linker

ARM DUI 0067B Copyright © 1999,2000 ARM Limited. All rights reserved. 6-41
-

The description itself is a sequence of tokens, whitespace, and comments, as shown in 
Table 6-7 on page 6-42. In the BNF punctuation in Table 6-6 has the usual significance.

A scatter-load description is a sequence of load-region descriptions as defined below (in 
BNF):

Scatter-description ::= load-region-description+

load-region-description ::= load-region-name 
base-designator [attribute-list] [ max-size ]
LBRACE execution-region-description+ RBRACE

execution-region-description ::= exec-region-name 
base-designator [attribute-list] [max-size]
LBRACE input-section-description* RBRACE

base-designator ::= base-address  | (PLUS offset)

input-section-description ::= 
module-selector-pattern [ LPAREN input-selectors RPAREN ]

 Table 6-6 BNF syntax

Symbol Description

A ::= B Defines A as B

[A] Optional element A

A+ Element A can have one or more occurrences

A* Element A can have zero or more occurrences

A | B Either element A or B can occur

(A B)  Element A and B are grouped together



The ARM Linker

6-42 Copyright © 1999,2000 ARM Limited. All rights reserved. ARM DUI 0067B
-

input-selectors ::=
(PLUS input-section-attrs|input-section-pat )
([COMMA] PLUS input-section-attrs|COMMAinput-section-pat)*

 Table 6-7 Scatter load description

Item Description

Special
character

Single characters with special significance are:

(
)
{ 
} 
"
,
+ 
;

LPAREN
RPAREN
LBRACE
RBRACE
QUOTE
COMMA
PLUS
SEMIC

Tokens Tokens are: LPAREN
RPAREN
LBRACE
RBRACE
QUOTE
COMMA
PLUS
SEMIC

Comments Comments begin with a SEMIC and extend to the end of the current line. This means that a WORD 
cannot begin with a SEMIC (unless the WORD and SEMIC are enclosed in QUOTEs).

Numbers A NUMBER encodes a 32-bit unsigned value, and has one of the forms:

Prefix:
O
&
ox
Ox

Number:
octal-digit+
hex-digit+
hex-digit+
hex-digit+
decimal-digit+

Word A WORD is an alternation of quoted and unquoted WORD-segments:

Unquoted WORD segment terminates on the first character in the set {Whitespace, LPAREN, 
RPAREN, LBRACE, RBRACE, COMMA, PLUS, QUOTE}.

Quoted WORD segment is enclosed by QUOTE characters and can contain any characters except 
newline. All other characters where isspace() is true are translated 
to space. Two consecutive QUOTEs stand for the literal QUOTE 
character and do not begin or end a quoted WORD-segment.



The ARM Linker

ARM DUI 0067B Copyright © 1999,2000 ARM Limited. All rights reserved. 6-43
-

Load region description

A load region has: 

• a name

• a base address

• attributes (optional)

• a maximum size (optional)

• a list of execution regions.

The syntax, in BNF, is:

load-region-description ::= load-region-name 
base-designator [attribute-list] [ max-size ]
        LBRACE execution-region-description+ RBRACE

base-designator ::= base-address  | (PLUS offset)

where:

load-region-name 
This names the load region. Only the first 31 characters are 
significant.The name is only used to identify each region. Unlike 
the exec-region-name, the load-region-name is not used to 
generate Load$$region-name symbols.

Note

An image created for use a debugger requires a unique base 
address for each region because the debugger must load regions at 
their load addresses. Overlapping (or zero) load region addresses 
result in part of the image being overwritten. 

A loader or operating system, however, can correctly load PI 
regions.



The ARM Linker

6-44 Copyright © 1999,2000 ARM Limited. All rights reserved. ARM DUI 0067B
-

base-designator This describes the base address:

base-address 
Is the address where objects in the region should be 
linked. base-address must be a word-aligned NUMBER.

+offset Describes a base address that is offset bytes beyond 
the end of the preceding load region. The length of a 
region is always a multiple of four bytes, so offset 
must also be a multiple of four bytes. If this is the first 
in the load region, then +offset means that the base 
address begins at a point offset bytes after zero.

attribute-list 
This specifies the properties of the load region contents:

PI Position independent

RELOC Relocatable

OVERLAY Overlaid

ABSOLUTE Absolute address

Only one of these attributes can be specified. The default load 
region attribute is ABSOLUTE.

load regions that have either of PI, RELOC or OVERLAY attributes 
are allowed to have overlapping address ranges. armlink faults 
overlapping address ranges for ABSOLUTE load regions.

The OVERLAY keyword allows you to have multiple exec regions 
at the same address. ARM does not support an overlay 
mechanism. In order to use multiple exec regions at the same 
address, you must have your own overlay manager. 

max-size This specifies the maximum size of the load region. (If the 
optional max-size value is specified, armlink generates an error 
if the region has more than max-size bytes allocated to it.) The 
default value of max-size is 0xffffffff.

execution-region-description 
This is a name and a base address, see Execution region 
description on page 6-45.



The ARM Linker

ARM DUI 0067B Copyright © 1999,2000 ARM Limited. All rights reserved. 6-45
-

Execution region description

An execution region is described by a name and a base address. 

The syntax, in BNF, is:

execution-region-description ::= exec-region-name 
base-designator [attribute-list] [max-size]
        LBRACE input-section-description* RBRACE

base-designator ::= base-address  | (PLUS offset)

where: 

exec-region-name 
This names the execution region. (Only the first 31 characters are 
significant.)

base-designator This describes the base address:

base-address 
Is the address where objects in the region should be 
linked. base-address must be a word-aligned NUMBER.

+offset Describes a base address that is offset bytes beyond 
the end of the preceding execution region. The length 
of a region is always a multiple of four bytes, so 
offset must also be a multiple of four bytes. If there 
is no preceding execution region (that is, if this is the 
first in the load region) then +offset means that the 
base address begins at a point offset bytes after the 
base of the containing load region.

attribute-list This specifies the properties of the execution region contents:

PI Position independent

RELOC Relocatable

OVERLAY Overlaid

ABSOLUTE Absolute address

UNINIT Uninitialized data

Only one of the attributes PI, RELOC, OVERLAY, and ABSOLUTE 
can be specified. Unless one of the attributes PI, RELOC, or 
OVERLAY is specified, ABSOLUTE is an attribute of the execution 
region.



The ARM Linker

6-46 Copyright © 1999,2000 ARM Limited. All rights reserved. ARM DUI 0067B
-

Execution regions that use the +offset form of base-designator 
either inherit the attributes of the preceding execution region, (or 
of the containing load region if this is the first execution region in 
the load region), or have the ABSOLUTE attribute. It is not possible 
for an execution region that uses the +offset form of 
base-designator to have its own attributes (except that the 
ABSOLUTE attribute prevents such inheritance). 

Execution regions that have one of PI, RELOC or OVERLAY 
attributes are allowed to have overlapping address ranges. armlink 
faults overlapping address ranges for ABSOLUTE execution 
regions.

UNINIT specifies that the ZI output section, if any, in the 
execution region will not be initialized to zero. Use this to create 
execution regions containing unitialized data or memory-mapped 
I/O.

max-size This is an optional number that instructs armlink to generate an 
error if the region has more than max-size bytes allocated to it.

input-section-description 
This is described in Input section description.

Input section description

An input-section description is a pattern that identifies input sections by:

• Module name (object file name, library member name, or library file name). The 
module name can use wildcard characters.

• Input section name, or input section attributes such as READ-ONLY, or CODE.

Note

• Only input sections that match both the module-selector-pattern and at 
least one section-selector are included in the execution region. 

If you omit LPAREN section-selectors RPAREN, the default is +RO.

• Do not rely on input section names generated by the compilers, or used by ARM 
library code. These can change between compilations if, for example, different 
compiler options are used. In addition, section naming conventions used by the 
compilers are not guaranteed to remain constant between releases.



The ARM Linker

ARM DUI 0067B Copyright © 1999,2000 ARM Limited. All rights reserved. 6-47
-

The syntax is:

input-section-description ::= 
module-selector-pattern [ LPAREN input-selectors RPAREN ]

where:

module-selector-pattern 
This is a pattern constructed from literal text. The wildcard character * 
matches zero or more characters and ? matches any single character. To 
match all objects for example, use:

*.o

An input section matches a module-selector-pattern when the 
module-selector-pattern matches one of the following: 

• the name of the object file containing the section

• the name of the library member, without leading pathname

• the full name of the library the section was extracted from.

Matching is case-insensitive, even on hosts with case-sensitive file 
naming.

input-selectors 
This is a comma-separated list of expressions. The syntax is described in 
Input selectors on page 6-47.

Input selectors

The input selector is a comma-separated list of patterns that input section names or 
attributes are matched against. 

If you are specifying the pattern that will match the input section name, the name must 
be preceded by a PLUS (+). You can omit any comma immediately followed by a PLUS.

The syntax is:

input-selectors ::=
(PLUS input-section-attrs|input-section-pat )
([COMMA] PLUS input-section-attrs|COMMAinput-section-pat)*



The ARM Linker

6-48 Copyright © 1999,2000 ARM Limited. All rights reserved. ARM DUI 0067B
-

where:

input-section-attrs 
This is an attribute selector matched against the input section attributes. 
Each input-section-attrs follows a PLUS. 

The selectors are not case-sensitive. The following selectors are 
recognized:

• RO-CODE

• RO-DATA

• RO, selects both RO-CODE and RO-DATA

• RW-DATA 

• RW, selects both RW-CODE and RW-DATA

• ZI 

• ENTRY, that is a section containing an ENTRY point.

The following synonyms are recognized:

• CODE for RO-CODE

• CONST for RO-DATA

• TEXT for RO

• DATA for RW

• BSS for ZI.

The following pseudo-attributes are recognized:

• FIRST

• LAST.

FIRST and LAST can be used to mark the first and last sections in an 
execution region if the placement order is important (for example, if a 
specific input section must be first in the region and an input section 
containing a checksum must be last). The first occurrence of FIRST or 
LAST as a section-attrs terminates the list.

The special module-selector pattern .ANY allows you to assign input 
sections to execution regions irrespective of their parent module, in order 
to fill up the execution regions with don’t care assignments.

The input-section-descriptions having the .ANY module-selector pattern 
are resolved after all other (non-.ANY) input-section descriptions have 
been resolved and input sections have been assigned to the closest 
matching execution region.



The ARM Linker

ARM DUI 0067B Copyright © 1999,2000 ARM Limited. All rights reserved. 6-49
-

Each remaining unassigned input section is assigned to the execution 
region with the following characteristics: 

• the biggest remaining space (determined by the max-size and the 
sizes of the input sections already assigned to it)

• a matching .ANY input-section-description

• memory access attributes (if they exist) matching the memory 
attributes of the input section.

input-section-pat 
This is a pattern that is matched, without case sensitivity, against the input 
section name. It is constructed from literal text, the wildcard characters * 
matches 0 or more characters, and ? matches any single character.

6.9.4  Selecting veneer input sections in scatter loading descriptions

You can provide placement information for the veneer input sections. At most, one 
execution region in the scatter loading description can have the *(Veneer$$Code)  
section selector.

armlink places any veneer input section that can be safely put into the specified region. 
It might not be possible for a veneer input section to be assigned to the region because 
of address range problems or execution region size limitations. If the veneer cannot be 
added to the specified region, it is added to the execution region containing the relocated 
input section that generated the veneer.

Instances of *(IWV$$Code) in old style scatter loading descriptions are automatically 
translated into *(Veneer$$Code). Use *(Veneer$$Code) in new descriptions.

6.9.5  Resolving multiple matches

If a section matches more than one execution region, the matches are resolved as 
described below. If a unique match cannot be found, armlink faults the scatter 
description. Each section is selected by a module-selector-pattern and an 
input-section-selector.

The following terminology is used to describe multiple matches:

• m1 and m2 represent module-selector-patterns

• s1 and s2 represent input-section-selectors.

In the case of multiple matches, armlink determines the region to assign the input 
section to on the basis of the module-selector-pattern and 
input-section-selector pair that is the most specific.



The ARM Linker

6-50 Copyright © 1999,2000 ARM Limited. All rights reserved. ARM DUI 0067B
-

For example, if input section A matches m1,s1 for execution region R1, and A matches 
m2,s2 for execution region R2, armlink: 

• assigns A to R1 if m1,s1 is more specific than m2,s2

• assigns A to R2 if m2,s2 is more specific than m1,s1

• diagnoses the scatter description as faulty if m1,s1 is not more specific than  m2,s2 
and m2,s2 is not more specific than m1,s1.

The sequence armlink uses to determine the most specific 
module-selector-pattern, input-section-selector pair is as follows:

1. For the module selector patterns:

m1 is more specific than m2 if the text string m1 matches pattern m2 and
the text string m2 does not match pattern m1.

2. For the input section selectors:

• If s1 and s2 are both patterns matching section names, the same definition 
as for module selector patterns is used.

• If one of s1, s2 matches the input section name and the other matches the 
input section attributes, s1 and s2 are unordered and the description is 
diagnosed as faulty.

• If both s1 and s2 match input section attributes, s1 is more specific than s2 
is defined by the relationships below: 

ENTRY is more specific than RO-CODE
ENTRY is more specific than RO-DATA
ENTRY is more specific than RW-CODE
ENTRY is more specific than RW-DATA
RO-CODE is more specific than RO
RO-DATA is more specific than RO
RW-CODE is more specific than RW
RW-DATA is more specific than RW

There are no other members of the (s1 more specific than s2) relationship 
between section attributes.

3. For the module-selector-pattern,input-section-selector pair, 
m1,s1 is more specific than m2,s2 only if any of the following are true:

• s1 is a literal input section name (that is, it contains no pattern characters) 
and s2 matches input section attributes other than +ENTRY

• m1 is more specific than m2 

• s1 is more specific than s2



The ARM Linker

ARM DUI 0067B Copyright © 1999,2000 ARM Limited. All rights reserved. 6-51
-

This matching strategy has the following consequences: 

• Descriptions do not depend on the order they are written in the file. 

• Generally, the more specific the description of an object, the more specific the 
description of the input sections it contains. 

• The input-section-selectors are not examined unless:

— Object selection is inconclusive.

— One selector fully names an input section and the other selects by attribute. 
In this case, the explicit input section name is more specific than any 
attribute, other than ENTRY, that selects exactly one input section from one 
object. This is true even if the object selector associated with the input 
section name is less specific than that of the attribute.

6.9.6  Scatter loading descriptions for simple images

The command-line options (-ro-base, -rw-base, -split, -ropi, and -rwpi) 
create the simple image types described in Specifying an image memory map on 
page 6-19. 

You can create the same image types by using the -scatter command-line option and 
a file containing one of four corresponding scatter load descriptions .

Type 1 

An image of this type consists of a single load region in the load view and three 
execution regions in the execution view. The execution regions are placed contiguous 
in the memory map.

-ro-base address is used to specify the load and execution address of the region 
containing the RO output section. 



The ARM Linker

6-52 Copyright © 1999,2000 ARM Limited. All rights reserved. ARM DUI 0067B
-

The scatter load description equivalent to using -ro-base 0x040000 is:

LR_1 0x040000 ; define the load region name as LR_1
               ; region starts at 0x040000
{              ; start of execution region descriptions
    ER_RO +0   ; first execution region is called ER_RO
               ; region starts at end of previous region
               ; since there was no previous region, 
               ; address is 0x040000
    {
        *(+RO) ; all RO sections go into this region
               ; they are placed consecutively
    }
    ER_RW +0 ; second execution region is called ER_RW 
             ; region starts at end of previous region
             ; address is 0x040000 + size of ER_RO region
    {
        *(+RW) ; all RW sections go into this region
               ; they are placed consecutively
    }
    ER_ZI +0 ; last execution region is called ER_ZI 
             ; region starts at end of previous region at
             ; 0x040000 + size of ER_RO + size of ER_RW regions
    {
        *(+ZI) ; All ZI region are created here
               ; they are placed consecutively
    }
}

This description creates an image with one load region called LR_1, whose load address 
is 0x040000. 

The image has three execution regions, named ER_RO, ER_RW and ER_ZI, that contain 
the RO, RW and ZI output sections respectively. The execution address of ER_RO is 
0x040000. All three execution regions are placed contiguously in the memory map by 
using the +offset form of the base-designator for the execution region description. 
This allows an execution region to be placed immediately following the end of the 
preceding execution region.

Type 2

An image of this type consists of a single load region in the load view and three 
execution regions in the execution view. It is similar to images of type one except that 
the RW execution region is not placed contiguous with the RO execution region.

-ro-base address1 is used to specify the load and execution address of the region 
containing the RO output section. 



The ARM Linker

ARM DUI 0067B Copyright © 1999,2000 ARM Limited. All rights reserved. 6-53
-

-rw-base address2 is used to specify the execution address for the RW execution 
region.

The scatter load description equivalent to using -ro-base 0x010000 -rw-base 
0x040000 is:

LR_1 0x010000 ; define the load region name as LR_1
{
    ER_RO +0  ; first execution region is called ER_RO
              ; region starts at end of previous region
              ; since there was no previous region, 
              ; address is 0x010000

    {
        *(+RO) ; all RO sections go into this region
               ; they are placed consecutively
    }
    ER_RW 0x040000 ; second execution region is called ER_RW
                   ; region starts at 0x040000
    {
        *(+RW) ; all RW sections go into this region
               ; they are placed consecutively
    }
    ER_ZI +0 ; last execution region is called ER_ZI
             ; address is 0x040000 + size of ER_RW region
    {
        *(+ZI) ; All ZI region are created here
    }
}

This description creates an image with one load region, named LR_1, with a load 
address of 0x010000. 

The image has three execution regions, named ER_RO, ER_RW and ER_ZI, that contain 
the RO,RW and ZI output sections respectively. The execution address of ER_RO is 
0x010000. 

The ER_RW execution region is not contiguous with ER_RO, as its execution address is 
given by 0x040000. 

The ER_ZI execution region is placed immediately following the end of the preceding 
execution region, ER_RW.



The ARM Linker

6-54 Copyright © 1999,2000 ARM Limited. All rights reserved. ARM DUI 0067B
-

Type 3

Type three images consists of two load regions in load view and three execution regions 
in execution view. It is similar to images of type two except that the single load region 
in type two is now split into two load regions

-ro-base address1 is used to specify the load and execution address of the region 
containing the RO output section. 

-rw-base address2 is used to specify the load and execution address for the region 
containing the RW output section.

-split is used to split the default single load region (that contains the RO and RW 
output sections) into two load regions. One load region contains the RO output section 
and one contains the RW output section.

The scatter load description equivalent to using -ro-base 0x010000 -rw-base 
0x040000 -split is:

LR_1 0x010000 ; first load region is at 0x010000
{    
    ER_RO +0 ; address is 0x010000 
    {
        *(+RO)
    }
}
LR_2 0x040000 ; second load region is at 0x040000
{
    ER_RW +0; address is 0x040000 
    {
        *(+RW) ; all RW sections go into this region
               ; they are placed consecutively
    }
    ER_ZI +0 ; address is 0x040000 + size of ER_RW region
    {
        *(+ZI) ; all ZI sections go into this region
               ; they are placed consecutively
    }
}

This description creates an image with two load regions, named LR_1 and LR_2, that 
have load addresses 0x010000 and 0x040000. 

The image has three execution regions, named ER_RO, ER_RW and ER_ZI, that contain 
the RO, RW, and ZI output sections respectively. The execution address of ER_RO is 
0x010000. 



The ARM Linker

ARM DUI 0067B Copyright © 1999,2000 ARM Limited. All rights reserved. 6-55
-

The ER_RW execution region is not contiguous with ER_RO and its execution address is 
given by 0x040000. 

The ER_ZI execution region is placed immediately following the end of the preceding 
execution region, ER_RW.

Type 1 (using -ropi)

-ro-base address is used to specify the load and execution address of the region 
containing the RO output section. 

-ropi marks the load and execution regions containing the RO output section as 
position-independent.

The scatter load description equivalent to using -ro-base 0x010000 -ropi is:

LR_1 0x010000 PI ; first load region is at 0x010000
{
    ER_RO +0   ; PI attribute is inherited from parent
               ; default execution address is 0x010000
               ; but the code can be moved
    {
        *(+RO) ; all the RO sections go here
    }
    ER_RW +0 ABSOLUTE ; PI attribute is overridden by ABSOLUTE
    {
        *(+RW) ; the RW sections are placed next
               ; they are not relocatable
    }
    ER_ZI +0    ; ER_ZI region placed after ER_RW region
    {
        *(+ZI)  ; all the ZI sections are placed here
    }
}

ER_RO, the RO execution region, inherits the PI attribute from the load region LR_1. 
The next execution region, ER_RW is marked as ABSOLUTE and uses the +offset form 
of base designator. This prevents ER_RW from inheriting the PI attribute from ER_RO.

Note

In the scatter load descriptions given in Type 1 on page 6-51, Type 2 on page 6-52, and 
Type 3 on page 6-54, the load and execution regions did not have any explicitly 
specified attributes and were ABSOLUTE by default.

Similar scatter load descriptions can also be written to correspond to the usage of -ropi 
and -rwpi with Type 2 and Type 3 images.



The ARM Linker

6-56 Copyright © 1999,2000 ARM Limited. All rights reserved. ARM DUI 0067B
-



ARM DUI 0067B Copyright © 1999,2000 ARM Limited. All rights reserved. 7-1
-

Chapter 7 
Toolkit Utilities

This chapter describes the software utilities provided with ADS. It contains the 
following sections:

• Functions of the toolkit utilities on page 7-2

• The fromELF utility on page 7-3

• ARM profiler on page 7-7

• ARM librarian on page 7-9

• The Flash downloader on page 7-13.



Toolkit Utilities

7-2 Copyright © 1999,2000 ARM Limited. All rights reserved. ARM DUI 0067B
-

7.1  Functions of the toolkit utilities

fromELF The fromELF utility takes an ELF image file generated by 
armlink and produces image files in formats suited to ROM tools 
and to loading directly into memory. You can also use it to display 
various information about an ELF file or to generate text files 
containing the information.

armprof The ARM profiler displays an execution profile of a program from 
a profile data file generated by an ARM debugger.

armar The ARM librarian enables sets of ELF object files to be collected 
together and maintained in libraries. You can pass such a library 
to armlink in place of several ELF object files. 

Flash downloader The Flash downloader enables you to download binary images to 
the Flash memory of supported ARM development and evaluation 
boards.



Toolkit Utilities

ARM DUI 0067B Copyright © 1999,2000 ARM Limited. All rights reserved. 7-3
-

7.2  The fromELF utility

fromELF is a utility that can translate executable linkable format (ELF) image files 
produced by armlink into other formats. 

fromELF outputs the following image formats:

• Plain binary format

• Extended Intellec Hex (IHF) format

• Motorola 32-bit S-record format

• Intel Hex-32 format

• ELF format (resaves as ELF to, for example, convert a -debug ELF to a 
-nodebug ELF)

• ARM Image Format (AIF) family. The AIF family includes executable AIF, and 
non-executable AIF. This format is obsolete.

fromELF can also display information about the input file, for example disassembly 
output or symbol listings. 

7.2.1  Image structure

fromELF can translate a file from ELF to other formats. It cannot alter the image 
structure or addresses. It is not possible to change a scatter-loaded ELF image into a 
non-scatter-loaded image in another format. Any structural or addressing information 
must be provided to armlink at link time.

7.2.2  fromELF command-line options

The fromELF command syntax is as follows:

fromelf  [-help] [-nodebug] [-vsn] [output_format] 

[-output output_file] input_file

where:

-help This option shows help and usage information. If this option is 
specified, other command-line options are ignored. Calling 
fromELF without any parameters produces the same help 
information.



Toolkit Utilities

7-4 Copyright © 1999,2000 ARM Limited. All rights reserved. ARM DUI 0067B
-

-nodebug This option does not put debug information in the output files. 
This is the default for binary images. If -nodebug is specified, it 
affects all output formats. It overrides the -text/g option.

-vsn This option displays fromELF version information.

output_format This option selects the output file options. output_format can be 
one of:

-bin Plain binary.

-ihf Extended Intellec Hex format.

-m32 Motorola 32-Bit format (32 bit S-records).

-i32 Intel Hex-32 format.

-elf ELF format (resaves as ELF). This can be used to 
convert a debug ELF image into a no-debug ELF 
image.

-aifbin Non-executable AIF. This format is obsolete.

-aif ARM Image Format (AIF) file. This format is obsolete.

[-text] text_categories

Image information in text format. You can decode an 
ELF image or ELF object file using this option. This is 
the default.

If output_file is not specified, the information is 
displayed on stdout.

If text_categories is not specified, the default is to 
output header information. If specified, categories 
consists of one or more of the following:

c disassembles code

d prints contents of the data sections

g prints debug information

r prints relocation information

s prints the symbol table

t prints the string table(s)



Toolkit Utilities

ARM DUI 0067B Copyright © 1999,2000 ARM Limited. All rights reserved. 7-5
-

v prints detailed information on each segment 
and section header of the image

z prints the code and data sizes.

The category selectors can be specified as either:

• individual options, -text -c -d

• a single concatenated string, -text -cd

• category selectors only, -c -d

• multiple characters following a slash character, 
-text/cd

If an output format is not specified, the default output 
format of -text is used and the individual category 
selectors are recognized. If another output format is 
specified, the selectors are ignored.

-output output_file

This option specifies the name of the output file. Specifying the 
output file is optional with the -text output option and 
mandatory with all other outputs.

ELF images will contain multiple load regions if, for example, 
they are built with a scatter load description file that defines more 
than one load region.

If you use fromELF to convert an ELF image containing multiple 
load regions to a binary format using any of the -bin, -ihf 
-m32, or -i32 options,  fromELF creates an output directory 
named output_file and generates one binary output file for 
each load region in the input image. fromELF places the ouput 
files in the output_file directory.

input_file This option specifies the ELF file to be translated. 

fromELF only accepts ARM-executable ELF files and ARM 
object ELF files (.o). 

fromELF does not accept relocatable ELF files.



Toolkit Utilities

7-6 Copyright © 1999,2000 ARM Limited. All rights reserved. ARM DUI 0067B
-

Examples

Example 7-1 Creating a plain binary file from an ELF file

fromelf -bin -o outfile.bin infile.axf

Example 7-2 Creating a plain binary file from an ELF file, text option ignored

fromelf -cs -bin -o outfile.bin infile.axf

Example 7-3 Converting a -debug ELF to -nodebug

fromelf -nodebug -elf -o outfile.ndb infile.axf

Example 7-4 Displaying a disassembly of an ELF file

fromelf -text -cs -o outfile.lst infile.axf

fromelf -text -c -s infile.axf

fromelf -cs -o outfile.txt infile.axf

fromelf -c -s infile.axf

fromelf -text/cs infile.axf



Toolkit Utilities

ARM DUI 0067B Copyright © 1999,2000 ARM Limited. All rights reserved. 7-7
-

7.3  ARM profiler

The ARM profiler, armprof, displays an execution profile of a program from a profile 
data file generated by an ARM debugger. The profiler displays one of two types of 
execution profile depending on the amount of information present in the profile data:

• If only pc-sampling information is present, the profiler can display only a flat 
profile giving the percentage time spent in each function itself, excluding the time 
spent in any of its children.

• If function call count information is present, the profiler can display a call graph 
profile that shows approximations of the time spent in each function, the time 
accounted for by calls to all children of each function, and the time allocated to 
calls from different parents.

7.3.1  Profiler command-line options

A number of options are available to control the format and amount of detail present in 
the profiler output. The command syntax is as follows:

armprof [-parent|-noparent] [-child|-nochild] [-sort options] 

prf_file

where:

-parent This option displays information about the parents of each 
function in the profile listing. This gives approximate information 
about how much time is spent in each function servicing calls 
from each of its parents.

-noparent This option turns off the parent listing.

-child This option displays information about the children of each 
function. The profiler displays the approximate amount of time 
spent by each child performing services on behalf of the parent.

-nochild This option turns off the child listing.



Toolkit Utilities

7-8 Copyright © 1999,2000 ARM Limited. All rights reserved. ARM DUI 0067B
-

-sort options This option sorts the profile information using one of the 
following options:

cumulative sorts the output by the total time spent in 
each function and all its children.

self sorts the output by the time spent in each 
function (excluding the time spent in its 
children).

descendants Sorts the output by the time spent in all the 
children of a function but excluding time 
spent in the function itself.

calls Sorts the output by the number of calls to 
each function in the listing.

prf_file This option specifies the file containing the profile information.

By default, child functions are listed, but not parent functions, and the output is sorted 
by cumulative time.

Example

armprof -parent sort.prf

7.3.2  Sample output

The profiler output is split into a number of sections, each section separated by a line. 
Each section gives information on a single function. In a flat profile, one with no parent 
or child function information, each section is a single line.

The following shows sample sections for functions called insert_sort and strcmp.

Name                cum%       self%   desc%      calls
-------------------------------------------------------
 main                         17.69%    60.06%        1
insert_sort         77.76%    17.69%    60.06%        1
 strcmp                       60.06%    0.00%    243432
-------------------------------------------------------
 qs_string_compare             3.21%    0.00%     13021
 shell_sort                    3.46%    0.00%     14059
 insert_sort                  60.06%    0.00%    243432
strcmp              66.75%    66.75%    0.00%    270512
-------------------------------------------------------



Toolkit Utilities

ARM DUI 0067B Copyright © 1999,2000 ARM Limited. All rights reserved. 7-9
-

7.4  ARM librarian

The ARM librarian, armar, enables sets of ELF object files to be collected together and 
maintained in libraries. Such a library can then be passed to armlink in place of several 
object files. However, linking with an object library file does not necessarily produce 
the same results as linking with all the object files collected into the object library file. 
This is because armlink processes the input list and libraries differently:

• each object file in the input list appears in the output unconditionally, although 
unused areas are eliminated if the armlink -remove option is specified

• a member of library file is only included in the output if it is referred to by an 
object file or a previously processed library file.

For more information on how armlink processes its input files, refer to Chapter 6.

7.4.1  Librarian command-line options

The syntax of the armar command when used to extract files or library information is:

armar [ -help] [-C] [-entries] [-p] [-t] [-s] [-sizes] [-T] [-vsn] 

[-v] [-via option_file] [-x] [-zs] [-zt] library [file_list]

The syntax when used to add or modify files in the library is:

armar [ -help] [-create] [-c] [-d] [-m] [-r] [-u] [-vsn] [-v] 

[-via option_file] [ {-a|-b|-i} pos_name] library [file_list]

where:

-a This option places new files in library after the file pos_name.

-b This option places new files in library before the file pos_name.

-create This option creates a new library even if library already exists.

-c This option suppresses the diagnostic message normally written to 
standard error when a library is created.

-C This option instructs the librarian not to replace existing files with 
like-named files when performing extractions. This option is useful when 
-T is also used to prevent truncated file names from replacing files with 
the same prefix.

-d This option deletes one or more files from library.

-entries This option lists all entry points defined in library. The format for the 
listing is:



Toolkit Utilities

7-10 Copyright © 1999,2000 ARM Limited. All rights reserved. ARM DUI 0067B
-

ENTRY at offset num in section name of member

-help This option gives online details of the armar command.

-i This option places new files in library before the file pos_name 
(equivalent to -b).

-m This option moves files. If -a, -b, or -i with pos_name is specified, 
move files to the new position. Otherwise, move files to the end of 
library.

-p This option prints the contents of files in library to standard output.

-r This option replaces, or adds, files in library. If library does not exist, a 
new library file will be created and a diagnostic message will be written 
to standard error. 

If file_list is not specified and the library exists, the results are undefined. 
Files that replace existing files will not change the order of the library. 

If the -u option is used, then only those files with dates of modification 
later than the library files are replaced. 

If the -a, -b, or -i option is used, then pos_name must be present and 
specifies that new files are to be placed after (-a) or before (-b or -i) 
pos_name. Otherwise the new files are placed at the end.

-t This option prints a table of contents of library. The files specified by 
file_list will be included in the written list. If file_list is not specified, all 
files in the library will be included in the order of the archive.

-T This option allows file name truncation of extracted files whose library 
names are longer than the file system can support. By default, extracting 
a file with a name that is too long is an error. A diagnostic message will 
be written and the file will not be extracted.

-u This option updates older files. When used with the -r option, files 
within library will be replaced only if the corresponding file has a 
modification time that is at least as new as the modification time of the 
file within library.

-via  option_file

This option instructs the librarian to take options from option_file.



Toolkit Utilities

ARM DUI 0067B Copyright © 1999,2000 ARM Limited. All rights reserved. 7-11
-

-v This option gives verbose output. 

The output depends on what other options are used:

-d, -r or -x

Write a detailed file-by-file description of the library creation, 
the constituent files, and maintenance activity.

-p Writes the name of the file to the standard output before 
writing the file itself to the standard output

-t Includes a long listing of information about the files within the 
library.

-x Prints the filename preceding each extraction.

-sizes This option lists the text, rodata, data and bss size of each member 
in library. An example of the output is shown below:

text+rodata    data+bss     Member
516 + 0         0 + 256      appl.o
308 + 0         0 + 400      app2.o
0 + 24          0 + 0        apphdr.o
824 + 24        0 + 656      TOTAL

-vsn This option prints the version number on standard error.

-x This option extracts the files in file_list from library. The contents of 
library will not be changed. If no file operands are given, all files in 
library will be extracted. If the file name of a file extracted from the 
library is longer than that supported in the destination directory, the 
results are undefined.

-zs This option shows the symbol table.

-zt Lists member sizes and entry points in library. See -sizes and 
-entries for output format.

library This is a path name of the library file.

file_list This is a list of files to process. Each file is fully specified by its path and 
name. The path can be absolute, relative to drive and root, or relative to 
the current directory. 

Only the filename at the end of the path is used when comparing against 
the names of files in the library. If two or more path operands end with 
the same filename, the results are unspecified. You can use the wildcards 
* and ? to specify files.



Toolkit Utilities

7-12 Copyright © 1999,2000 ARM Limited. All rights reserved. ARM DUI 0067B
-

pos_name This is the name of an existing library file to be used for relative 
positioning. This name must be supplied with options -a, -b, and -i.

Caution
The options -a, -b, -C, -i, -m, -T, -u, and -v are not required for normal operation.

7.4.2  Examples

Syntax examples are shown below:

Example 7-5 Create a new library and add all object files

armar -create mylib *.o

Example 7-6 List the table of contents

armar -t mylib

Example 7-7 List the symbol table

armar -zs mylib

Example 7-8 Add (or replace) files 

armar -r my_lib obj1.o obj2.o obj3.o ...
armar -ru mylib k*.o

Example 7-9 Extract a group of files

armar -x my_lib k*.o

Example 7-10 Delete a group of files

armar -d my_lib sys_*



Toolkit Utilities

ARM DUI 0067B Copyright © 1999,2000 ARM Limited. All rights reserved. 7-13
-

7.5  The Flash downloader

The Flash downloader is a utility provided with ADS, and accessible from the Windows 
debuggers AXD, ADU, ADW, and armsd. The Flash downloader is installed in:

• install_directory\Bin\flash.li a little-endian version

• install_directory\Bin\flash.bi a big-endian version

You can use the Flash downloader to program Flash memory on the board. This works 
only if Angel is running from RAM (the default) at the time, or if Multi-ICE or 
EmbeddedICE is being used rather than Angel. The correct version of Angel for the 
byte order of the board should be used.

The downloaded file must be in plain binary format. Refer to The fromELF utility on 
page 7-3 for information on converting an ELF format file to plain binary. The debugger 
downloads the Flash downloader into RAM on the target board. The Flash downloader 
then executes and fetches the code to be programmed into the Flash from the host using 
semihosting (see ADS Debug Target Guide).

The Flash downloader fails if it does not recognize the Flash memory being used. As 
supplied, the Flash downloader recognizes the two Flash devices supported by the 
ARM Development Board, the ATMEL AT29C040A (4 Mbit, 8-bit) and AT29C1024 
(1 Mbit, 16-bit) Flash devices.

You must produce your own download utility if you are producing a different target 
system. You can, however, use the source for the Flash downloader as a basis. The 
source is provided in install_directory\Examples\Flashload.

For armsd, the Flash downloader should be passed the name of the file to be 
downloaded into Flash.

If a file is being downloaded, you are prompted for the sector from where the 
programming should start. If you are downloading Angel, it should be programmed into 
the start of the Flash, from sector 0.

If you have the Angel Ethernet Kit, the Flash downloader program can be used to 
override the default IP address and net mask used by Angel for Ethernet 
communication. To do this from armsd, pass the Flash download program the argument 
-e. The program prompts for the IP address and net mask. If you are using AXD, ADU 
or ADW, select the appropriate option from the menu.



Toolkit Utilities

7-14 Copyright © 1999,2000 ARM Limited. All rights reserved. ARM DUI 0067B
-

7.5.1  Using the Flash downloader from AXD or ADW

Follow these steps to use the Flash downloader from AXD or ADW:

1. Select Flash Download… from the File menu. The Flash Download dialog is 
displayed (see Figure 7-1).

 Figure 7-1 Flash Download dialog

2. Enter a pathname or click Browse to select a binary file to download.

Note

The pathname to the binary file must not contain spaces. If spaces are used, you 
must enclose the pathname in quotes.

3. Click OK. The Flash downloader reads the binary file and requests a start sector 
in the console window of the debugger (see Figure 7-2).

 Figure 7-2 Console window

4. Enter a sector. In most cases the start sector will be zero and you can just press 
return. The console window displays the progress as the Flash is written.



Toolkit Utilities

ARM DUI 0067B Copyright © 1999,2000 ARM Limited. All rights reserved. 7-15
-

7.5.2  Using the Flash downloader from armsd

To use the Flash downloader from the command line (assuming that you have a 
serial/parallel connection) write a batch file containing this command:

armsd -adp -port s,p -line 38400 -exec flash ROMname

where:

flash Is the name of the Flash downloader, one of:

• install_directory\Bin\flash.li for a little-endian system

• install_directory\Bin\flash.bi for a big-endian system.

ROMname Is the name of the binary file that you want to be programmed into Flash 
memory.

Note

The pathname to the binary file must not contain spaces. If spaces are 
used, you must enclose the pathname in quotes.

Execute the batch file to download to Flash. Enter the address to start writing from when 
prompted to do so.



Toolkit Utilities

7-16 Copyright © 1999,2000 ARM Limited. All rights reserved. ARM DUI 0067B
-



ARM DUI 0067B Copyright © 1999,2000 ARM Limited. All rights reserved. 8-1
-

Chapter 8 
Floating-point Support

This chapter describes the ARM support for floating-point computations. It contains the 
following sections:

• About floating-point support on page 8-2

• The software floating-point library, fplib on page 8-3

• Controlling the floating-point environment on page 8-10

• The math library, mathlib on page 8-26.

• IEEE 754 arithmetic on page 8-32



Floating-point Support

8-2 Copyright © 1999,2000 ARM Limited. All rights reserved. ARM DUI 0067B
-

8.1  About floating-point support

ARM’s floating-point environment is an implementation of the IEEE 754 standard for 
binary floating-point arithmetic. See IEEE 754 arithmetic on page 8-32 for details of 
the ARM implementation of the standard.

An ARM system may have:

• a Vector Floating-Point (VFP) coprocessor

• a Floating-Point Accelerator (FPA) coprocessor

• no floating-point hardware.

If you compile for a system with a hardware coprocessor (VFP or FPA), the compilers 
make use of it. If you compile for a system without a coprocessor, the compilers 
implement the calculations in software.



Floating-point Support

ARM DUI 0067B Copyright © 1999,2000 ARM Limited. All rights reserved. 8-3
-

8.2  The software floating-point library, fplib

When programs are compiled to use a floating-point coprocessor, they perform basic 
floating-point arithmetic (for example addition and multiplication) by means of 
floating-point machine instructions for the target coprocessor. When programs are 
compiled to use software floating-point, there is no floating-point instruction set 
available, and so the ARM libraries have to provide a set of procedure calls to do 
floating-point arithmetic. These are the software floating-point library, fplib.

These routines have names like _dadd (add two doubles) and _fdiv (divide two 
floats). The complete list is given in Table 8-1 on page 8-4, Table 8-2 on page 8-6, 
Table 8-3 on page 8-7 and Table 8-4 on page 8-8. User programs can call these routines 
directly. Even in environments with a coprocessor, the routines are provided, though 
they are typically only a few instructions long (as all they do is to execute the 
appropriate machine instruction).

All the fplib routines are called using a software floating-point variant of the calling 
standard. This means that floating-point arguments are passed and returned in integer 
registers. In the rest of the program, if the program is compiled for a coprocessor, 
floating-point data is passed in its floating-point registers.

So, for example, _dadd takes a double in registers a1 and a2, and another double in 
registers a3 and a4, and returns the sum in a1 and a2. 

Note

For a double in registers a1 and a2, the register that holds the high 32 bits of the 
double depends on whether your program is little-endian or big-endian.

C programs are not required to handle the register allocation.

All the fplib routines are declared in the header file rt_fp.h. You can include this file 
if you want to call an fplib routine directly.

A complete list of the fplib routines is provided on the following pages.



Floating-point Support

8-4 Copyright © 1999,2000 ARM Limited. All rights reserved. ARM DUI 0067B
-

8.2.1  Arithmetic on numbers in a particular format

The routines in Table 8-1 perform arithmetic on numbers in a particular format. 
Arguments and results are always in the same format.

 Table 8-1 Arithmetic routines

Function Argument types Result type Operation Notes

_fadd 2 × float float Return x plus y

_fsub 2 × float float Return x minus y

_frsb 2 × float float Return y minus x

_fmul 2 × float float Return x times y

_fdiv 2 × float float Return x divided by y

_frdiv 2 × float float Return y divided by x

_frem 2 × float float Return remainder of x by y a

_frnd float float Return x rounded to an integer b

_fsqrt float float Return square root of x

_dadd 2 × double double Return x plus y

_dsub 2 × double double Return x minus y

_drsb 2 × double double Return y minus x

_dmul 2 × double double Return x times y

_ddiv 2 × double double Return x divided by y

_drdiv 2 × double double Return y divided by x

_drem 2 × double double Return remainder of x by y a

_drnd double double Return x rounded to an integer b

_dsqrt double double Return square root of x



Floating-point Support

ARM DUI 0067B Copyright © 1999,2000 ARM Limited. All rights reserved. 8-5
-

Notes on Table 8-1:

a Describes functions that perform the IEEE 754 remainder operation. This 
is defined to take two numbers, x and y, and return a number z such that 
z = x – n * y, where n is an integer. In order to return an exactly correct 
result, n is chosen so that z is no bigger than half of x (so that z might be 
negative even if both x and y are positive). The IEEE 754 remainder 
function is therefore not the same as the operation performed by the C 
library function fmod (where z always has the same sign as x).

In the case where the above specification gives two acceptable choices of 
n, the even one is chosen. This behavior occurs independently of the 
current rounding mode.

b Describes functions that perform the IEEE 754 round-to-integer 
operation. This takes a number and rounds it to an integer (in accordance 
with the current rounding mode), but returns that integer in the 
floating-point number format rather than as a C int variable. To convert 
a number to an int variable, you should use the _ffix routines 
described in Table 8-2 on page 8-6.



Floating-point Support

8-6 Copyright © 1999,2000 ARM Limited. All rights reserved. ARM DUI 0067B
-

8.2.2  Conversions between floats, doubles, and ints

The routines in Table 8-2 perform conversions between number formats, excluding long 
longs.

Note on Table 8-2:

a Always rounds toward zero, independently of the current rounding mode. 
This is because the C standard requires implicit conversions to integers 
to round this way, so it is convenient not to have to change the rounding 
mode in order to do so. Each function has a corresponding function with 
_r on the end of its name, that performs the same operation but rounds 
according to the current mode.

 Table 8-2 Number format conversion routines

Function Argument type Result type Notes

_f2d float double

_d2f double float

_fflt int float

_ffltu unsigned int float

_dflt int double

_dfltu unsigned int double

_ffix float int a

_ffix_r float int

_ffixu float unsigned int a

_ffixu_r float unsigned int

_dfix double int a

_dfix_r double int

_dfixu double unsigned int a

_dfixu_r double unsigned int



Floating-point Support

ARM DUI 0067B Copyright © 1999,2000 ARM Limited. All rights reserved. 8-7
-

8.2.3  Conversions between long longs and other number formats

The routines in Table 8-3 perform conversions between long longs and other 
number formats.

Note on Table 8-3:

a Always rounds toward zero, independently of the current rounding mode. 
This is because the C standard requires implicit conversions to integers 
to round this way, so it is convenient not to have to change the rounding 
mode in order to do so. Each function has a corresponding function with 
_r on the end of its name, that performs the same operation but rounds 
according to the current mode.

 Table 8-3 Conversion routines involving long long format

Function Argument type Result type Notes

_ll_sto_f long long float

_ll_uto_f unsigned long long float

_ll_sto_d long long double

_ll_uto_d unsigned long long double

_ll_sfrom_f float long long a

_ll_sfrom_f_r float long long

_ll_ufrom_f float unsigned long long a

_ll_ufrom_f_r float unsigned long long

_ll_sfrom_d double long long a

_ll_sfrom_d_r double long long

_ll_ufrom_d double unsigned long long a

_ll_ufrom_d_r double unsigned long long



Floating-point Support

8-8 Copyright © 1999,2000 ARM Limited. All rights reserved. ARM DUI 0067B
-

8.2.4  Floating-point comparisons

The routines in Table 8-4 perform comparisons between floating-point numbers.

 Table 8-4 Floating-point comparison routines

Function Argument types Result type Condition tested Notes

_fcmpeq 2 × float Flags, EQ/NE x equal to y a

_fcmpge 2 × float Flags, HS/LO x greater than or equal to y a, b

_fcmple 2 × float Flags, HI/LS x less than or equal to y a, b

_feq 2 × float Boolean x equal to y

_fneq 2 × float Boolean x not equal to y

_fgeq 2 × float Boolean x greater than or equal to y b

_fgr 2 × float Boolean x greater than y b

_fleq 2 × float Boolean x less than or equal to y b

_fls 2 × float Boolean x less than y b

_dcmpeq 2 × double Flags, EQ/NE x equal to y a

_dcmpge 2 × double Flags, HS/LO x greater than or equal to y a, b

_dcmple 2 × double Flags, HI/LS x less than or equal to y a, b

_deq 2 × double Boolean x equal to y

_dneq 2 × double Boolean x not equal to y

_dgeq 2 × double Boolean x greater than or equal to y b

_dgr 2 × double Boolean x greater than y b

_dleq 2 × double Boolean x less than or equal to y b

_dls 2 × double Boolean x less than y b



Floating-point Support

ARM DUI 0067B Copyright © 1999,2000 ARM Limited. All rights reserved. 8-9
-

Notes on Table 8-4:

a returns results in the ARM condition flags. This is efficient in assembly 
language, since you can directly follow a call to the function with a 
conditional instruction, but it means there is no way to use these functions 
from C. These functions are not declared in rt_fp.h.

b causes an Invalid Operation exception if either argument is a NaN, even 
a quiet NaN. Other functions only cause Invalid Operation if an argument 
is an SNaN. QNaNs return not equal when compared to anything, 
including other QNaNs (so comparing a QNaN to the same QNaN still 
returns not equal).



Floating-point Support

8-10 Copyright © 1999,2000 ARM Limited. All rights reserved. ARM DUI 0067B
-

8.3  Controlling the floating-point environment

This section describes the functions you can use to control the ARM floating-point 
environment. With these functions, you can change the rounding mode, enable and 
disable trapping of exceptions, and install your own custom exception trap handlers.

ARM supplies several different interfaces to the floating-point environment, for 
compatibility and porting ease.

8.3.1  The __fp_status function

Previous versions of the ARM libraries implemented a function called __fp_status, 
that manipulated a status word in the floating-point environment. ARM still supports 
this function, for backwards compatibility. It is defined in stdlib.h.

__fp_status has the following prototype:

unsigned int __fp_status(unsigned int mask, unsigned int flags);

The function modifies the writable parts of the status word according to the parameters, 
and returns the previous value of the whole word.

The writable bits are modified by setting them to

new = (old & ~mask) ^ flags;

Four different operations can be performed on each bit of the status word, depending on 
the corresponding bits in mask and flags (see Table 8-5).

The layout of the status word as seen by __fp_status is shown in Figure 8-1.

 Table 8-5 Status word bit modification

Bit of 
mask

Bit of 
flags

Effect

0 0 Leave alone

0 1 Toggle

1 0 Set to 0

1 1 Set to 1



Floating-point Support

ARM DUI 0067B Copyright © 1999,2000 ARM Limited. All rights reserved. 8-11
-

 Figure 8-1 Floating-point status word layout

The fields in Figure 8-1 are as follows:

• Bits 0 to 4 (values 0x1 to 0x10, respectively) are the sticky flags, or cumulative 
flags, for each exception. The sticky flag for an exception is set to 1 whenever that 
exception happens and is not trapped. Sticky flags are never cleared by the 
system, only by the user. The mapping of exceptions to bits is:

— bit 0 (0x01) is for the Invalid Operation exception

— bit 1 (0x02) is for the Divide by Zero exception

— bit 2 (0x04) is for the Overflow exception

— bit 3 (0x08) is for the Underflow exception

— bit 4 (0x10) is for the Inexact Result exception.

• Bits 8 to 12 (values 0x100 to 0x1000) control various aspects of the FPA 
floating-point coprocessor. These bits are only writable when the FPA is being 
used.

• Bits 16 to 20 (values 0x10000 to 0x100000) control whether each exception is 
trapped or not. If a bit is set to 1, the corresponding exception is trapped. If a bit 
is set to 0, the corresponding exception sets its sticky flag and return a plausible 
result, as described in Exceptions on page 8-37.

• Bits 24 to 31 contain the system ID that cannot be changed. It is set to 0x40 for 
software floating-point, to 0x80 or above for hardware floating-point, and to 0 or 
1 if a hardware floating-point environment is being faked by an emulator.

• Bits marked R are reserved. They cannot be written to by the __fp_status call, 
and you should ignore anything you find in them.

The rounding mode cannot be changed with the __fp_status call.

As well as defining the __fp_status call itself, stdlib.h also defines some 
constants to be used for the arguments:

#define __fpsr_IXE  0x100000
#define __fpsr_UFE  0x80000
#define __fpsr_OFE  0x40000
#define __fpsr_DZE  0x20000
#define __fpsr_IOE  0x10000

��� �� �� �� �� �� �� �� �� � � � �

(����"�*5 -
�7� (���7�36,��
��& & &



Floating-point Support

8-12 Copyright © 1999,2000 ARM Limited. All rights reserved. ARM DUI 0067B
-

#define __fpsr_IXC  0x10
#define __fpsr_UFC  0x8
#define __fpsr_OFC  0x4
#define __fpsr_DZC  0x2
#define __fpsr_IOC  0x1

For example, to trap the Invalid Operation exception and untrap all other exceptions, 
you would do:

__fp_status(_fpsr_IXE | _fpsr_UFE | _fpsr_OFE |
            _fpsr_DZE | _fpsr_IOE, _fpsr_IOE);

To untrap the Inexact Result exception:

__fp_status(_fpsr_IXE, 0);

To clear the Underflow sticky flag:

__fp_status(_fpsr_UFC, 0);

8.3.2  The __ieee_status function

ARM supports a second interface to the status word, similar to the __fp_status 
function, but the second interface sees the same status word in a different layout. This 
call is called __ieee_status, and it is generally the most efficient function to use for 
modifying the status word for VFP. (__fp_status is more efficient on FPA systems.) 
__ieee_status is defined in fenv.h.

Like __fp_status, __ieee_status has the prototype:

unsigned int __ieee_status(unsigned int mask,
                           unsigned int flags);

However, the layout of the status word as seen by __ieee_status is different from 
that seen by __fp_status (see Figure 8-2).

 Figure 8-2 IEEE status word layout

The fields in Figure 8-2 are as follows:

• Bits 0 to 4 are the sticky flags, exactly as described in The __fp_status function 
on page 8-10.

��� �� �� �� �� �� �� �� �� � � � �

(���7�

�� �� �� ��

3. &- -
�7�& &&& 136136



Floating-point Support

ARM DUI 0067B Copyright © 1999,2000 ARM Limited. All rights reserved. 8-13
-

• Bits 8 to 12 are the exception mask bits, exactly as described in The __fp_status 
function on page 8-10, but in a different place.

• Bits 16 to 18, and bits 20 and 21, are used by VFP hardware to control the VFP 
vector capability. The __ieee_status call does not let you modify these bits.

• Bits 22 and 23 control the rounding mode. See Table 8-6.

• Bit 24 enables FZ (Flush to Zero) mode if it is set. In FZ mode, denormals are 
forced to zero in order to speed up processing (since denormals can be difficult to 
work with and slow down floating-point systems). Setting this bit reduces 
accuracy but might increase speed.

• Bits marked R are reserved.

As well as defining the __ieee_status call itself, fenv.h also defines some 
constants to be used for the arguments:

#define FE_IEEE_FLUSHZERO          (0x01000000)
#define FE_IEEE_ROUND_TONEAREST    (0x00000000)
#define FE_IEEE_ROUND_UPWARD       (0x00400000)
#define FE_IEEE_ROUND_DOWNWARD     (0x00800000)
#define FE_IEEE_ROUND_TOWARDZERO   (0x00C00000)
#define FE_IEEE_ROUND_MASK         (0x00C00000)
#define FE_IEEE_MASK_INVALID       (0x00000100)
#define FE_IEEE_MASK_DIVBYZERO     (0x00000200)
#define FE_IEEE_MASK_OVERFLOW      (0x00000400)
#define FE_IEEE_MASK_UNDERFLOW     (0x00000800)
#define FE_IEEE_MASK_INEXACT       (0x00001000)
#define FE_IEEE_MASK_ALL_EXCEPT    (0x00001F00)
#define FE_IEEE_INVALID            (0x00000001)
#define FE_IEEE_DIVBYZERO          (0x00000002)
#define FE_IEEE_OVERFLOW           (0x00000004)
#define FE_IEEE_UNDERFLOW          (0x00000008)
#define FE_IEEE_INEXACT            (0x00000010)
#define FE_IEEE_ALL_EXCEPT         (0x0000001F)

 Table 8-6 Rounding mode control

Bits Rounding mode

00 Round to nearest

01 Round up

10 Round down

11 Round toward zero



Floating-point Support

8-14 Copyright © 1999,2000 ARM Limited. All rights reserved. ARM DUI 0067B
-

For example, to set the rounding mode to round down, you would do:

__ieee_status(FE_IEEE_ROUND_MASK, FE_IEEE_ROUND_DOWNWARD);

To trap the Invalid Operation exception and untrap all other exceptions:

__ieee_status(FE_IEEE_MASK_ALL_EXCEPT, FE_IEEE_MASK_INVALID);

To untrap the Inexact Result exception:

__ieee_status(FE_IEEE_MASK_INEXACT, 0);

To clear the Underflow sticky flag:

__ieee_status(FE_IEEE_UNDERFLOW, 0);

8.3.3  Microsoft compatibility functions

The following three functions are implemented for compatibility with Microsoft 
products, to ease porting of floating-point code to the ARM architecture. They are 
defined in float.h.

The _controlfp function

The function _controlfp allows you to control exception traps and rounding modes:

unsigned int _controlfp(unsigned int new, unsigned int mask);

This function also modifies a control word using a mask to isolate the bits to modify. 
For every bit of mask that is zero, the corresponding control word bit is unchanged. For 
every bit of mask that is nonzero, the corresponding control word bit is set to the value 
of the corresponding bit of new. The return value is the previous state of the control 
word.

Note

This is not quite the same as the behavior of __fp_status and __ieee_status, 
where you can toggle a bit by setting a zero in the mask word and a one in the flags 
word.



Floating-point Support

ARM DUI 0067B Copyright © 1999,2000 ARM Limited. All rights reserved. 8-15
-

The macros you can use to form the arguments to _controlfp are given in Table 8-7.

Note

It is not guaranteed that the values of these macros will remain the same in future 
versions of ARM’s products. To ensure that your code continues to work if the value 
changes in future releases, use the macro rather than its value.

For example, to set the rounding mode to round down, you would do:

_controlfp(_RC_DOWN, _MCW_RC);

To trap the Invalid Operation exception and untrap all other exceptions:

_controlfp(_EM_INVALID, _MCW_EM);

To untrap the Inexact Result exception:

_controlfp(0, _EM_INEXACT);

 Table 8-7 _controlfp argument macros

Macro Description

_MCW_EM Mask containing all exception bits

_EM_INVALID Bit describing the Invalid Operation exception

_EM_ZERODIVIDE Bit describing the Divide by Zero exception

_EM_OVERFLOW Bit describing the Overflow exception

_EM_UNDERFLOW Bit describing the Underflow exception

_EM_INEXACT Bit describing the Inexact Result exception

_MCW_RC Mask for the rounding mode field

_RC_CHOP Rounding mode value describing Round Toward Zero

_RC_UP Rounding mode value describing Round Up

_RC_DOWN Rounding mode value describing Round Down

_RC_NEAR Rounding mode value describing Round To Nearest



Floating-point Support

8-16 Copyright © 1999,2000 ARM Limited. All rights reserved. ARM DUI 0067B
-

The _clearfp function

The function _clearfp clears all five exception sticky flags, and returns their previous 
value. The macros given in Table 8-7, for example _EM_INVALID, _EM_ZERODIVIDE, 
can be used to test bits of the returned result.

_clearfp has the following prototype:

unsigned _clearfp(void);

The _statusfp function

The function _statusfp returns the current value of the exception sticky flags. The 
macros given in Table 8-7 on page 8-15, for example _EM_INVALID, 
_EM_ZERODIVIDE, can be used to test bits of the returned result.

_statusfp has the following prototype:

unsigned _statusfp(void);

8.3.4  C9X-compatible functions

In addition to the above functions, ARM also supports a set of functions defined in the 
C9X draft standard. These functions are the only interface that allows you to install 
custom exception trap handlers with the ability to invent a return value. All the 
functions, types and macros in this section are defined in fenv.h.

C9X defines two data types, fenv_t and fexcept_t. The C9X draft standard does not 
define any details about these types, so for portable code you should treat them as 
opaque. ARM defines them to be structure types, for details see ARM extensions to the 
C9X interface on page 8-19.

The type fenv_t is defined to hold all the information about the current floating-point 
environment:

• the rounding mode

• the exception sticky flags

• whether each exception is masked

• what handlers are installed, if any.

The type fexcept_t is defined to hold all the information relevant to a given set of 
exceptions.

C9X also defines a macro for each rounding mode and each exception. The macros are 
as follows:



Floating-point Support

ARM DUI 0067B Copyright © 1999,2000 ARM Limited. All rights reserved. 8-17
-

FE_DIVBYZERO
FE_INEXACT
FE_INVALID
FE_OVERFLOW
FE_UNDERFLOW
FE_ALL_EXCEPT
FE_DOWNWARD
FE_TONEAREST
FE_TOWARDZERO
FE_UPWARD

The exception macros are bit fields. The macro FE_ALL_EXCEPT is the bitwise OR of 
all of them.

Handling exception flags

C9X provides three functions to clear, test and raise exceptions:

void feclearexcept(int excepts);
int fetestexcept(int excepts);
void feraiseexcept(int excepts);

The feclearexcept function clears the sticky flags for the given exceptions. The 
fetestexcept function returns the bitwise OR of the sticky flags for the given 
exceptions (so that if the Overflow flag was set but the Underflow flag was not, then 
calling fetestexcept(FE_OVERFLOW|FE_UNDERFLOW) would return 
FE_OVERFLOW).

The feraiseexcept function raises the given exceptions, in unspecified order. If an 
exception trap is enabled for an exception raised this way, it is called.

C9X also provides functions to save and restore everything about a given exception. 
This includes the sticky flag, whether the exception is trapped, and the address of the 
trap handler, if any. These functions are:

void fegetexceptflag(fexcept_t *flagp, int excepts);
void fesetexceptflag(const fexcept_t *flagp, int excepts);

The fegetexceptflag function copies all the information relating to the given 
exceptions into the fexcept_t variable provided. The fesetexceptflag function 
copies all the information relating to the given exceptions from the fexcept_t variable 
into the current floating-point environment.



Floating-point Support

8-18 Copyright © 1999,2000 ARM Limited. All rights reserved. ARM DUI 0067B
-

Note

fesetexceptflag can be used to set the sticky flag of a trapped exception to 1 
without calling the trap handler, whereas feraiseexcept calls the trap handler for any 
trapped exception.

Handling rounding modes

C9X provides two functions for controlling rounding modes:

int fegetround(void);
int fesetround(int round);

The fegetround function returns the current rounding mode, as one of the macros 
defined above. The fesetround function sets the current rounding mode to the value 
provided. fesetround returns zero for success, or nonzero if its argument is not a valid 
rounding mode.

Saving the whole environment

C9X provides functions to save and restore the entire floating-point environment at 
once:

void fegetenv(fenv_t *envp);
void fesetenv(const fenv_t *envp);

The fegetenv function stores the current state of the floating-point environment into 
the fenv_t variable provided. The fesetenv function restores the environment from 
the variable provided.

Like fesetexceptflag, fesetenv does not call trap handlers when it sets the sticky 
flags for trapped exceptions.

Temporarily disabling exceptions

C9X provides two functions that allow you to avoid risking exception traps when 
executing code that might cause exceptions. This is useful when, for example, trapped 
exceptions are using ARM’s default behavior. The default is to cause SIGFPE and 
terminate the application.

int feholdexcept(fenv_t *envp);
void feupdateenv(const fenv_t *envp);



Floating-point Support

ARM DUI 0067B Copyright © 1999,2000 ARM Limited. All rights reserved. 8-19
-

The feholdexcept function saves the current floating-point environment in the 
fenv_t variable provided, sets all exceptions to be untrapped, and clears all the 
exception sticky flags. You can then execute code that might cause unwanted 
exceptions, and make sure the sticky flags for those exceptions are cleared. Then you 
can call feupdateenv. This restores any exception traps and calls them if necessary.

For example, suppose you have a function frob() that might cause the Underflow or 
Invalid Operation exceptions (assuming both exceptions are trapped). You are not 
interested in Underflow, but you want to know if an invalid operation is attempted. So 
you could do this:

fenv_t env;
feholdexcept(&env);
frob();
feclearexcept(FE_UNDERFLOW);
feupdateenv(&env);

Then, if the frob() function raises Underflow, it is cleared again by feclearexcept, 
and so no trap occurs when feupdateenv is called. However, if frob() raises Invalid 
Operation, the sticky flag is set when feupdateenv is called, and so the trap handler 
is invoked.

This mechanism is provided by C9X because C9X specifies no way to change exception 
trapping for individual exceptions. A better method is to use __ieee_status to 
disable the Underflow trap while leaving the Invalid Operation trap enabled. This has 
the advantage that the Invalid Operation trap handler is provided with all the 
information about the invalid operation (which operation was being performed on what 
data), and can invent a result for the operation. Using the C9X method, the Invalid 
Operation trap handler is called after the fact, receives no information about the cause 
of the exception, and is called too late to provide a substitute result.

8.3.5  ARM extensions to the C9X interface

ARM provides some extensions to the C9X interface, to allow it to do everything that 
the ARM floating-point environment is capable of. This includes trapping and 
untrapping individual exception types, and also installing custom trap handlers.

The types fenv_t and fexcept_t are not defined by C9X to be anything in particular. 
ARM defines them both to be the same structure type:



Floating-point Support

8-20 Copyright © 1999,2000 ARM Limited. All rights reserved. ARM DUI 0067B
-

typedef struct {
    unsigned statusword;
    __ieee_handler_t invalid_handler;
    __ieee_handler_t divbyzero_handler;
    __ieee_handler_t overflow_handler;
    __ieee_handler_t underflow_handler;
    __ieee_handler_t inexact_handler;
} fenv_t, fexcept_t;

The members of the above structure are:

• statusword is the same status variable that the function __ieee_status sees, 
laid out in the same format (see The __ieee_status function on page 8-12).

• five function pointers giving the address of the trap handler for each exception. 
By default each is NULL. This means that if the exception is trapped then the 
default exception trap action happens. The default is to cause a SIGFPE signal.

Writing custom exception trap handlers

If you want to install a custom exception trap handler, you should declare it as a function 
like this:

__softfp__ieee_value_t myhandler(__ieee_value_t op1,
                                 __ieee_value_t op2,
                                 __ieee_edata_t edata);

The parameters to this function are:

• op1 and op2 are used to give the operands, or the intermediate result, for the 
operation that caused the exception:

— For the Invalid Operation and Divide by Zero exceptions, the original 
operands are supplied.

— For the Inexact Result exception, all that is supplied is the ordinary result 
that would have been returned anyway. This is provided in op1.

— For the Overflow exception, an intermediate result is provided. This result 
is calculated by working out what the operation would have returned if the 
exponent range had been big enough, and then adjusting the exponent so 
that it fits in the format. The exponent is adjusted by 192 (0xC0) in single 
precision, and by 1536 (0x600) in double precision.

If Overflow happens when converting a double to a float, the result is 
supplied in double format, rounded to single precision, with the exponent 
biased by 192.



Floating-point Support

ARM DUI 0067B Copyright © 1999,2000 ARM Limited. All rights reserved. 8-21
-

— For the Underflow exception, a similar intermediate result is produced, but 
the bias value is added to the exponent instead of being subtracted. The 
edata parameter also contains a flag to show whether the intermediate 
result has had to be rounded up, down, or not at all.

The type __ieee_value_t is defined as a union of all the possible types that an 
operand can be passed as:

typedef union {
    float f;
    float s;
    double d;
    int i;
    unsigned int ui;
    long long l;
    unsigned long long ul;
    struct { int word1, word2; } str;
} __ieee_value_t;

• edata contains flags that give details about the exception that occurred, and what 
operation was being performed. (The type __ieee_edata_t is a synonym for 
unsigned int.)

• The return value from the function is used as the result of the operation that 
caused the exception.

The flags contained in edata are:

• edata & FE_EX_RDIR is nonzero if the intermediate result in Underflow was 
rounded down, and 0 if it was rounded up or not rounded. (The difference 
between the last two is given in the Inexact Result bit.) This bit is meaningless for 
any other type of exception.

• edata & FE_EX_exception is nonzero if the given exception (INVALID, 
DIVBYZERO, OVERFLOW, UNDERFLOW or INEXACT) occurred. This allows you to:

— use the same handler function for more than one exception type (the 
function can test these bits to tell what exception it is supposed to handle)

— determine whether Overflow and Underflow intermediate results have been 
rounded or are exact.

Since the FE_EX_INEXACT bit can be set in combination with either 
FE_EX_OVERFLOW or FE_EX_UNDERFLOW, you should determine the type of 
exception that actually occurred by testing Overflow and Underflow before 
testing Inexact.

• edata & FE_EX_FLUSHZERO is nonzero if the FZ bit was set when the operation 
was performed (see The __ieee_status function on page 8-12).



Floating-point Support

8-22 Copyright © 1999,2000 ARM Limited. All rights reserved. ARM DUI 0067B
-

• edata & FE_EX_ROUND_MASK gives the rounding mode that applies to the 
operation. This is normally the same as the current rounding mode, unless the 
operation that caused the exception was a routine such as _ffix, that always 
rounds toward zero. The available rounding mode values are 
FE_EX_ROUND_NEAREST, FE_EX_ROUND_PLUSINF, FE_EX_ROUND_MINUSINF 
and FE_EX_ROUND_ZERO.

• edata & FE_EX_INTYPE_MASK gives the type of the operands to the function, 
as one of the type values shown in Table 8-8.

• edata & FE_EX_OUTTYPE_MASK gives the type of the operands to the function, 
as one of the type values shown in Table 8-9.

 Table 8-8 FE_EX_INTYPE_MASK operand type flags

Flag Operand type

FE_EX_INTYPE_FLOAT float

FE_EX_INTYPE_DOUBLE double

FE_EX_INTYPE_INT int

FE_EX_INTYPE_UINT unsigned int

FE_EX_INTYPE_LONGLONG long long

FE_EX_INTYPE_ULONGLONG unsigned long long

 Table 8-9 FE_EX_OUTTYPE_MASK operand type flags

Flag Operand type

FE_EX_OUTTYPE_FLOAT float

FE_EX_OUTTYPE_DOUBLE double

FE_EX_OUTTYPE_INT int

FE_EX_OUTTYPE_UINT unsigned int

FE_EX_OUTTYPE_LONGLONG long long

FE_EX_OUTTYPE_ULONGLONG unsigned long long



Floating-point Support

ARM DUI 0067B Copyright © 1999,2000 ARM Limited. All rights reserved. 8-23
-

• edata & FE_EX_FN_MASK gives the nature of the operation that caused the 
exception, as one of the operation codes shown in Table 8-10.

When the operation is a comparison, the result should be returned as if it were an 
int, and should be one of the four values shown in Table 8-11.

Input and output types are the same for all operations except Compare and 
Convert.

 Table 8-10 FE_EX_FN_MASK operation type flags

Flag Operation type

FE_EX_FN_ADD Addition

FE_EX_FN_SUB Subtraction

FE_EX_FN_MUL Multiplication

FE_EX_FN_DIV Division

FE_EX_FN_REM Remainder

FE_EX_FN_RND Round to integer

FE_EX_FN_SQRT Square root

FE_EX_FN_CMP Compare.

FE_EX_FN_CVT Convert between formats.

FE_EX_FN_RAISE The exception was raised explicitly, by feraiseexcept or 
feupdateenv. In this case almost nothing in the edata 
word is valid.

 Table 8-11 FE_EX_CMPRET_MASK comparison type flags

Flag Comparison

FE_EX_CMPRET_LESS op1 is less than op2

FE_EX_CMPRET_EQUAL op1 is equal to op2

FE_EX_CMPRET_GREATER op1 is greater than op2

FE_EX_CMPRET_UNORDERED op1 and op2 are not comparable



Floating-point Support

8-24 Copyright © 1999,2000 ARM Limited. All rights reserved. ARM DUI 0067B
-

Example 8-1 shows a custom exception handler. Suppose you are converting some 
Fortran code into C. The Fortran numerical standard requires 0 divided by 0 to be 1, 
whereas IEEE 754 defines 0 divided by 0 to be an Invalid Operation and so by default 
it returns a quiet NaN. The Fortran code is likely to rely on this behavior, and rather than 
modifying the code, it is probably easier to make 0 divided by 0 return 1.

A handler function that does this is shown in Example 8-1.

Example 8-1

__softfp__ ieee_value_t myhandler(__ieee_value_t op1, __ieee_value_t op2,
                                 __ieee_edata_t edata)
{
    __ieee_value_t ret;
    if ((edata & FE_EX_FN_MASK) == FE_EX_FN_DIV) {
        if ((edata & FE_EX_INTYPE_MASK) == FE_EX_INTYPE_FLOAT) {
            if (op1.f == 0.0 && op2.f == 0.0) {
                ret.f = 1.0;
                return ret;
            }
        } 
        if ((edata & FE_EX_INTYPE_MASK) == FE_EX_INTYPE_DOUBLE) {
            if (op1.d == 0.0 && op2.d == 0.0) {
                ret.d = 1.0;
                return ret;
            }
        }
    }
    /* For all other invalid operations, raise SIGFPE as usual */
    raise(SIGFPE);
}

Instal the handler function as follows:

fenv_t env;
fegetenv(&env);
env.statusword |= FE_IEEE_MASK_INVALID;
env.invalid_handler = myhandler;
fesetenv(&env);

Once the handler is installed, dividing 0.0 by 0.0 returns 1.0.



Floating-point Support

ARM DUI 0067B Copyright © 1999,2000 ARM Limited. All rights reserved. 8-25
-

Exception trap handling by signals

If an exception is trapped but the trap handler address is set to NULL, a default trap 
handler is used.

The default trap handler raises a SIGFPE signal. The default handler for SIGFPE prints 
an error message and terminates the program.

If you trap SIGFPE, you can declare your signal handler function to have a second 
parameter that tells you the type of floating-point exception that occurred. This feature 
is provided for compatibility with Microsoft products. The values are _FPE_INVALID, 
_FPE_ZERODIVIDE, _FPE_OVERFLOW, _FPE_UNDERFLOW and _FPE_INEXACT. They 
are defined in float.h. For example:

void sigfpe(int sig, int etype) {
    printf("SIGFPE (%s)\n",
           etype == _FPE_INVALID ? "Invalid Operation" :
           etype == _FPE_ZERODIVIDE ? "Divide by Zero" :
           etype == _FPE_OVERFLOW ? "Overflow" :
           etype == _FPE_UNDERFLOW ? "Underflow" :
           etype == _FPE_INEXACT ? "Inexact Result" :
           "Unknown");
}
signal(SIGFPE, (void(*)(int))sigfpe);

To generate your own SIGFPE signals with this extra information, you can call the 
function __rt_raise instead of the ANSI function raise. In Example 8-1 on 
page 8-24, instead of:

    raise(SIGFPE);

it is better to code:

    __rt_raise(SIGFPE, _FPE_INVALID);

__rt_raise is declared in rt_misc.h.



Floating-point Support

8-26 Copyright © 1999,2000 ARM Limited. All rights reserved. ARM DUI 0067B
-

8.4  The math library, mathlib

Trigonometric functions in mathlib use range reduction to bring large arguments within 
the range 0 to 2π. ARM provides two different range reduction functions. One is 
accurate to one unit in the last place for any input values, but is larger and slower than 
the other. The other is reliable enough for almost all purposes and is faster and smaller.

The fast and small range reducer is used by default. To select the more accurate one, 
either:

• call the symbol __use_accurate_range_reduction from C

• IMPORT the symbol __use_accurate_range_reduction from assembly 
language

In addition to the functions defined by the ANSI C standard, mathlib provides the 
following functions:

• Inverse hyperbolic functions (acosh, asinh, atanh) on page 8-27

• Cube root (cbrt) on page 8-27

• Copy sign (copysign) on page 8-27

• Error functions (erf, erfc) on page 8-27

• One less than exp(x) (expm1) on page 8-28

• Determine if a number is finite (finite) on page 8-28

• Gamma function (gamma, gamma_r) on page 8-28

• Hypotenuse function (hypot) on page 8-28

• Return the exponent of a number (ilogb) on page 8-29

• Determine if a number is a NaN (isnan) on page 8-29

• Bessel functions of the first kind (j0, j1, jn) on page 8-29

• The logarithm of the gamma function (lgamma, lgamma_r) on page 8-29

• Logarithm of one more than x (log1p) on page 8-30

• Return the exponent of a number (logb) on page 8-30

• Return the next representable number (nextafter) on page 8-30

• IEEE 754 remainder function (remainder) on page 8-30

• IEEE round-to-integer operation (rint) on page 8-30

• Scale a number by a power of two (scalb, scalbn) on page 8-31

• Return the fraction part of a number (significand) on page 8-31

• Bessel functions of the second kind (y0, y1, yn) on page 8-31



Floating-point Support

ARM DUI 0067B Copyright © 1999,2000 ARM Limited. All rights reserved. 8-27
-

8.4.1  Inverse hyperbolic functions (acosh, asinh, atanh)

double acosh(double x);
double asinh(double x);
double atanh(double x);

These functions are the inverses of the ANSI-required cosh, sinh and tanh:

• Since cosh is a symmetric function (that is, it returns the same value when 
applied to x or –x), acosh always has a choice of two return values, one positive 
and one negative. It chooses the positive result.

• acosh returns an EDOM error if called with an argument less than 1.0.

• atanh returns an EDOM error if called with an argument whose absolute value 
exceeds 1.0.

8.4.2  Cube root (cbrt)

double cbrt(double x);

This function returns the cube root of its argument.

8.4.3  Copy sign (copysign)

double copysign(double x, double y);

This function replaces the sign bit of x with the sign bit of y, and returns the result. It 
causes no errors or exceptions, even when applied to NaNs and infinities.

8.4.4  Error functions (erf, erfc)

double erf(double x);
double erfc(double x);

These functions compute the standard statistical error function, related to the Normal 
distribution:

• erf computes the ordinary error function of x.

• erfc computes one minus erf(x). It is better to use erfc(x) than 1-erf(x) 
when x is large, since the answer is more accurate.



Floating-point Support

8-28 Copyright © 1999,2000 ARM Limited. All rights reserved. ARM DUI 0067B
-

8.4.5  One less than exp(x) (expm1)

double expm1(double x);

This function computes e to the power x, minus one. It is better to use expm1(x) than 
exp(x)-1 if x is very near to zero, since expm1 returns a more accurate value.

8.4.6  Determine if a number is finite (finite)

int finite(double x);

This function returns 1 if x is finite, and 0 if x is infinite or NaN. It does not cause any 
errors or exceptions.

8.4.7  Gamma function (gamma, gamma_r)

double gamma(double x);
double gamma_r(double x, int *);

These functions both compute the logarithm of the gamma function. They are 
synonyms for lgamma and lgamma_r (see The logarithm of the gamma function 
(lgamma, lgamma_r) on page 8-29).

Note

Despite their names, these functions compute the logarithm of the gamma function, not 
the gamma function itself.

8.4.8  Hypotenuse function (hypot)

double hypot(double x, double y);

This function computes the length of the hypotenuse of a right-angled triangle whose 
other two sides have length x and y. Equivalently, it computes the length of the vector 
(x,y) in Cartesian coordinates. Using hypot(x,y) is better than sqrt(x*x+y*y) 
because some values of x and y could cause x * x + y * y to overflow even though its 
square root would not.

hypot returns an ERANGE error when the result does not fit in a double.



Floating-point Support

ARM DUI 0067B Copyright © 1999,2000 ARM Limited. All rights reserved. 8-29
-

8.4.9  Return the exponent of a number (ilogb)

int ilogb(double x);

This function returns the exponent of x, without any bias, so ilogb(1.0) would return 
0, and ilogb(2.0) would return 1, and so on.

When applied to 0, ilogb returns -0x7FFFFFFF. When applied to a NaN or an infinity, 
ilogb returns +0x7FFFFFFF. ilogb causes no exceptions or errors.

8.4.10  Determine if a number is a NaN (isnan)

int isnan(double x);

This function returns 1 if x is a NaN, and 0 otherwise. It causes no exceptions or errors.

8.4.11  Bessel functions of the first kind (j0, j1, jn)

double j0(double x);
double j1(double x);
double jn(int n, double x);

These functions compute Bessel functions of the first kind. j0 and j1 compute the 
functions of order 0 and 1 respectively. jn computes the function of order n.

If the absolute value of x exceeds π times 252, these functions return an ERANGE error, 
denoting total loss of significance in the result.

8.4.12  The logarithm of the gamma function (lgamma, lgamma_r)

double lgamma(double x);
double lgamma_r(double x, int *sign);

These functions compute the logarithm of the absolute value of the gamma function of 
x. The sign of the function is returned separately, so that the two can be used to compute 
the actual gamma function of x.

lgamma returns the sign of the gamma function of x in the global variable signgam. 
lgamma_r returns it in a user variable, whose address is passed in the sign parameter. 
The value, in either case, is either +1 or –1.

Both functions return an ERANGE error if the answer is too big to fit in a double.

Both functions return an EDOM error if x is zero or a negative integer.



Floating-point Support

8-30 Copyright © 1999,2000 ARM Limited. All rights reserved. ARM DUI 0067B
-

8.4.13  Logarithm of one more than x (log1p)

double log1p(double x);

This function computes the natural logarithm of x + 1. Like expm1, it is better to use 
this function than log(x+1) because this function is more accurate when x is near zero.

8.4.14  Return the exponent of a number (logb)

double logb(double x);

This function is similar to ilogb, but returns its result as a double. It can therefore 
return special results in special cases.

• logb(NaN) is a quiet NaN.

• logb(infinity) is +infinity.

• logb(0) is –infinity, and causes a Divide by Zero exception.

logb is the same function as the Logb function described in the IEEE 754 Appendix.

8.4.15  Return the next representable number (nextafter)

double nextafter(double x, double y);

This function returns the next representable number after x, in the direction toward y. If 
x and y are equal, x is returned.

8.4.16  IEEE 754 remainder function (remainder)

double remainder(double x, double y);

This function is the IEEE 754 remainder operation. It is a synonym for _drem (see 
Arithmetic on numbers in a particular format on page 8-4).

8.4.17  IEEE round-to-integer operation (rint)

double rint(double x);

This function is the IEEE 754 round-to-integer operation. It is a synonym for _drnd 
(see Arithmetic on numbers in a particular format on page 8-4).



Floating-point Support

ARM DUI 0067B Copyright © 1999,2000 ARM Limited. All rights reserved. 8-31
-

8.4.18  Scale a number by a power of two (scalb, scalbn)

double scalb(double x, double n);
double scalbn(double x, int n);

These functions return x times two to the power n. The difference between the functions 
is whether n is passed in as an int or as a double.

scalb is the same function as the Scalb function described in the IEEE 754 Appendix. 
Its behavior when n is not an integer is undefined.

8.4.19  Return the fraction part of a number (significand)

double significand(double x);

This function returns the fraction part of x, as a number between 1.0 and 2.0 (not 
including 2.0).

8.4.20  Bessel functions of the second kind (y0, y1, yn)

double y0(double x);
double y1(double x);
double yn(int, double);

These functions compute Bessel functions of the second kind. y0 and y1 compute the 
functions of order 0 and 1 respectively. yn computes the function of order n.

If x is positive and exceeds π times 252, these functions return an ERANGE error, denoting 
total loss of significance in the result.



Floating-point Support

8-32 Copyright © 1999,2000 ARM Limited. All rights reserved. ARM DUI 0067B
-

8.5  IEEE 754 arithmetic

ARM’s floating-point environment is an implementation of the IEEE 754 standard for 
binary floating-point arithmetic. This section contains a summary of the standard as it 
is implemented by ARM.

8.5.1  Basic data types

ARM floating-point values are stored in one of two data types, single precision and 
double precision. In this document these are called float and double. These are the 
corresponding C types.

Single precision

A float value is 32 bits wide. The structure is shown in Figure 8-3.

 Figure 8-3 IEEE 754 single-precision floating-point format

The S field gives the sign of the number. It is 0 for positive, or 1 for negative.

The Exp field gives the exponent of the number, as a power of two. It is biased by 0x7F 
(127), so that very small numbers have exponents near zero and very large numbers 
have exponents near 0xFF (255). So, for example:

• if Exp = 0x7D (125), the number is between 0.25 and 0.5 (not including 0.5)

• if Exp = 0x7E (126), the number is between 0.5 and 1.0 (not including 1.0)

• if Exp = 0x7F (127), the number is between 1.0 and 2.0 (not including 2.0)

• if Exp = 0x80 (128), the number is between 2.0 and 4.0 (not including 4.0)

• if Exp = 0x81 (129), the number is between 4.0 and 8.0 (not including 8.0).

The Frac field gives the fractional part of the number. It usually has an implicit 1 bit on 
the front, that is not stored in order to save space. So if Exp is 0x7F, for example:

• if Frac = 00000000000000000000000 (binary), the number is 1.0

• if Frac = 10000000000000000000000 (binary), the number is 1.5

• if Frac = 01000000000000000000000 (binary), the number is 1.25

• if Frac = 11000000000000000000000 (binary), the number is 1.75.

So in general, the numeric value of a bit pattern in this format is given by the formula:

(–1)S * 2Exp(–0x7F) * (1 + Frac * 2–23)

�� �� ���� �

( /�	 3�
�



Floating-point Support

ARM DUI 0067B Copyright © 1999,2000 ARM Limited. All rights reserved. 8-33
-

Numbers stored in the above form are called normalized numbers.

The maximum and minimum exponent values, 0 and 255, are special cases. Exponent 
255 is used to represent infinity, and store Not a Number (NaN) values. Infinity can 
occur as a result of dividing by zero, or as a result of computing a value that is too large 
to store in this format. NaN values are used for special purposes. Infinity is stored by 
setting Exp to 255 and Frac to all zeros. If Exp is 255 and Frac is nonzero, the bit pattern 
represents a NaN.

Exponent 0 is used to represent very small numbers in a special way. If Exp is zero, then 
the Frac field has no implicit 1 on the front. This means that the format can store 0.0, 
by setting both Exp and Frac to all 0 bits. It also means that numbers that are too small 
to store using Exp >= 1 are stored with less precision than the ordinary 23 bits. These 
are called denormals.

Double precision

A double value is 64 bits wide. Figure 8-4 shows its structure.

 Figure 8-4 IEEE 754 double-precision floating-point format

As before, S is the sign, Exp the exponent, and Frac the fraction. Most of the discussion 
of float values remains true, except that:

• The Exp field is biased by 0x3FF (1023) instead of 0x7F, so numbers between 
1.0 and 2.0 have an Exp field of 0x3FF.

• The Exp value used to represent infinity and NaNs is 0x7FF (2047) instead of 
0xFF.

�� �� ���� �

( /�	 3�
�



Floating-point Support

8-34 Copyright © 1999,2000 ARM Limited. All rights reserved. ARM DUI 0067B
-

Sample values

Some sample float and double bit patterns, together with their mathematical values, 
are given in Table 8-12 and Table 8-13.

The following notes apply to both Table 8-12, and Table 8-13 on page 8-35:

a The smallest representable number that can be seen to be greater than 1.0. 
The amount that it differs from 1.0 is known as the machine epsilon. This 
is 0.000 000 119 in float, and 0.000 000 000 000 000 222 in double. 
The machine epsilon gives a rough idea of the number of decimal places 
the format can keep track of. float can do six or seven places. double 
can do fifteen or sixteen.

b The smallest value that can be represented as a normalized number in 
each format. Numbers smaller than this can be stored as denormals, but 
are not held with as much precision.

c The smallest positive number that can be distinguished from zero. This is 
the absolute lower limit of the format.

 Table 8-12 Sample single-precision floating-point values

Float value S Exp Frac Mathematical value Notes

0x3F800000 0 0x7F 000...000 1.0

0xBF800000 1 0x7F 000...000 -1.0

0x3F800001 0 0x7F 000...001 1.000 000 119 a

0x3F400000 0 0x7E 100...000 0.75

0x00800000 0 0x01 000...000 1.18*10-38 b

0x00000001 0 0x00 000...001 1.40*10-45 c

0x7F7FFFFF 0 0xFE 111...111 3.40*1038 d

0x7F800000 0 0xFF 000...000 Plus infinity

0xFF800000 1 0xFF 000...000 Minus infinity

0x00000000 0 0x00 000...000 0.0 e

0x7F800001 0 0xFF 000...001 Signalling NaN f

0x7FC00000 0 0xFF 100...000 Quiet NaN f



Floating-point Support

ARM DUI 0067B Copyright © 1999,2000 ARM Limited. All rights reserved. 8-35
-

d The largest finite number that can be stored. Attempting to increase this 
number by addition or multiplication causes overflow and generates 
infinity (in general).

e Zero. Strictly speaking, they show plus zero. Zero with a sign bit of 1, 
minus zero, is treated differently by some operations, although the 
comparison operations (for example == and !=) report that the two types 
of zero are equal.

f There are two types of NaNs, signalling NaNs and quiet NaNs. Quiet 
NaNs have a 1 in the first bit of Frac, and signalling NaNs have a zero 
there. The difference is that signalling NaNs cause an exception (see 
Exceptions on page 8-37) when used, whereas quiet NaNs do not.

 Table 8-13 Sample double-precision floating-point values

Double value S Exp Frac Mathematical value Notes

0x3FF00000 00000000 0 0x3FF 000...000 1.0

0xBFF00000 00000000 1 0x3FF 000...000 -1.0

0x3FF00000 00000001 0 0x3FF 000...001 1.000 000 000 000 000 222 a

0x3FE80000 00000000 0 0x3FE 100...000 0.75

0x00100000 00000000 0 0x001 000...000 2.23*10-308 b

0x00000000 00000001 0 0x000 000...001 4.94*10-324 c

0x7FEFFFFF FFFFFFFF 0 0x7FE 111...111 1.80*10308 d

0x7FF00000 00000000 0 0x7FF 000...000 Plus infinity

0xFFF00000 00000000 1 0x7FF 000...000 Minus infinity

0x00000000 00000000 0 0x000 000...000 0.0 e

0x7FF00000 00000001 0 0x7FF 000...001 Signalling NaN f

0x7FF80000 00000000 0 0x7FF 100...000 Quiet NaN f



Floating-point Support

8-36 Copyright © 1999,2000 ARM Limited. All rights reserved. ARM DUI 0067B
-

8.5.2  Arithmetic and rounding

Arithmetic is generally performed by computing the result of an operation as if it were 
stored exactly (to infinite precision), and then rounding it to fit in the format. Apart from 
operations whose result already fits exactly into the format (such as adding 1.0 to 1.0), 
the correct answer is generally somewhere between two representable numbers in the 
format. The system then chooses one of these two numbers as the rounded result. It uses 
one of the following methods:

Round to nearest 
The system chooses the nearer of the two possible outputs. If the correct 
answer is exactly half-way between the two, the system chooses the one 
where the least significant bit of Frac is zero. This behavior 
(round-to-even) prevents various undesirable effects.

This is the default mode when an application starts up. It is the only mode 
supported by the ordinary floating-point libraries. (Hardware 
floating-point environments and the enhanced floating-point libraries 
support all four modes.)

Round up, or round toward plus infinity 
The system chooses the larger of the two possible outputs (that is, the one 
further from zero if they are positive, and the one closer to zero if they are 
negative).

Round down, or round toward minus infinity 
The system chooses the smaller of the two possible outputs (that is, the 
one closer to zero if they are positive, and the one further from zero if 
they are negative).

Round toward zero, or chop, or truncate 
The system chooses the output that is closer to zero, in all cases.



Floating-point Support

ARM DUI 0067B Copyright © 1999,2000 ARM Limited. All rights reserved. 8-37
-

8.5.3  Exceptions

Floating-point arithmetic operations can run into various problems. For example, the 
result computed may be either too big or too small to fit into the format, or there may 
be no way to calculate the result (as in trying to take the square root of a negative 
number, or trying to divide zero by zero). These are known as exceptions, since they 
indicate unusual or exceptional situations.

ARM’s floating-point environment can handle exceptions in more than one way.

Ignoring exceptions

The system invents a plausible result for the operation and returns that. For example, 
the square root of a negative number can produce a NaN, and trying to compute a value 
too big to fit in the format can produce infinity. If an exception occurs and is ignored, a 
flag is set in the floating-point status word to tell you that something went wrong at 
some point in the past.

Trapping exceptions

This means that when an exception occurs, a piece of code called a trap handler is run. 
The system provides a default trap handler, that prints an error message and terminates 
the application. However, you can supply your own trap handlers, that can clean up the 
exceptional condition in whatever way you choose. Trap handlers can even supply a 
result to be returned from the operation.

For example, if you had an algorithm where it was convenient to assume that 0 divided 
by 0 was 1, you could supply a custom trap handler for the Invalid Operation exception, 
that spotted that particular case and substituted the answer you wanted.



Floating-point Support

8-38 Copyright © 1999,2000 ARM Limited. All rights reserved. ARM DUI 0067B
-

Types of exception

ARM’s floating-point environment recognizes five different types of exception:

• The Invalid Operation exception happens when there is no sensible result for an 
operation. This can happen for any of the following reasons:

— performing any operation on a signalling NaN, except the simplest 
operations (copying and changing the sign)

— adding plus infinity to minus infinity, or subtracting an infinity from itself

— multiplying infinity by zero

— dividing 0 by 0, or dividing infinity by infinity

— taking the remainder from dividing anything by 0, or infinity by anything

— taking the square root of a negative number (not including minus zero)

— converting a floating-point number to an integer if the result does not fit

— comparing two numbers if one of them is a NaN.

• If the Invalid Operation exception is not trapped, all the above operations return 
a quiet NaN, except for conversion to an integer, which returns zero (as there are 
no quiet NaNs in integers).

• The Divide by Zero exception happens if you divide a finite nonzero number by 
zero. (Dividing zero by zero gives an Invalid Operation exception. Dividing 
infinity by zero is valid and returns infinity.) If Divide by Zero is not trapped, the 
operation returns infinity.

• The Overflow exception happens when the result of an operation is too big to fit 
into the format. This happens, for example, if you add the largest representable 
number (marked d in Table 8-12 on page 8-34) to itself. If Overflow is not 
trapped, the operation returns infinity, or the largest finite number, depending on 
the rounding mode.

• The Underflow exception can happen when the result of an operation is too small 
to be represented as a normalized number (with Exp at least 1). The situations that 
cause Underflow depends on whether it is trapped or not:

— If Underflow is trapped, it occurs whenever a result is too small to be 
represented as a normalized number.

— If Underflow is not trapped, it only occurs if the result actually loses 
accuracy due to being so small. So, for example, dividing the float 
number 0x00800000 by 2 does not signal Underflow, because the result 
(0x00400000) is still just as accurate as it would be if Exp had a greater 
range. However, trying to multiply the float number 0x00000001 by 1.5 
does signal Underflow.



Floating-point Support

ARM DUI 0067B Copyright © 1999,2000 ARM Limited. All rights reserved. 8-39
-

(For readers familiar with the IEEE 754 specification, ARM’s choice of 
implementation options are to detect tininess after rounding, and to detect 
loss of accuracy as a denormalization loss.)

If Underflow is not trapped, the result is rounded to one of the two nearest 
representable denormal numbers, according to the current rounding mode. 
The loss of precision is ignored and the system returns the best result it can.

— The Inexact Result exception happens whenever the result of an operation 
requires rounding. This would cause significant loss of speed if it had to be 
detected on every operation in software, so the ordinary floating-point 
libraries do not support the Inexact Result exception. The enhanced 
floating-point libraries, and hardware floating-point systems, all support 
Inexact Result.

If Inexact Result is not trapped, the system rounds the result in the usual 
way.

The flag for Inexact Result is also set by Overflow and Underflow if either 
one of those is not trapped.

All exceptions are untrapped by default.



Floating-point Support

8-40 Copyright © 1999,2000 ARM Limited. All rights reserved. ARM DUI 0067B
-



ARM DUI 0067B Copyright © 1999,2000 ARM Limited. All rights reserved. Glossary-1
-

Glossary

ADS See ARM Developer Suite.

ADU See ARM Debugger for UNIX.

ADW See ARM Debugger for Windows.

ANSI American National Standards Institute. An organization that specifies standards for, 
among other things, computer software.

Angel Angel is a program that enables you to develop and debug applications running on 
ARM-based hardware. Angel can debug applications running in either ARM state or 
Thumb state.

AOF ARM Object Format



Glossary-2 Copyright © 1999,2000 ARM Limited. All rights reserved. ARM DUI 0067B
-

API Application Program Interface.

Architecture The term used to identify a group of processors that have similar characteristics.

ARM Debugger for 
UNIX 

ARM Debugger for UNIX (ADU) and ARM Debugger for Windows (ADW) are two 
versions of the same ARM debugger software, running under UNIX or Windows 
respectively. This debugger was issued originally as part of the ARM Software 
Development Toolkit. It is still fully supported and is now supplied as part of the ARM 
Developer Suite.

ARM Debugger for 
Windows 

ARM Debugger for Windows (ADW) and ARM Debugger for UNIX (ADU) are two 
versions of the same ARM debugger software, running under Windows or UNIX 
respectively. This debugger was issued originally as part of the ARM Software 
Development Toolkit. It is still fully supported and is now supplied as part of the ARM 
Developer Suite.

ARM Developer Suite A suite of applications, together with supporting documentation and examples, that 
enable you to write and debug applications for the ARM family of RISC processors.

ARM eXtended 
Debugger 

The ARM eXtended Debugger (AXD) is the latest debugger software from ARM that 
enables you to make use of a debug agent in order to examine and control the execution 
of software running on a debug target. AXD is supplied in both Windows and UNIX 
versions.

ARMulator ARMulator is an instruction set simulator. It is a collection of modules that simulate the 
instruction sets and architecture of various ARM processors.

armsd The ARM Symbolic Debugger (armsd) is an interactive source-level debugger providing 
high-level debugging support for languages such as C, and low-level support for 
assembly language. It is a command-line debugger that runs on all supported platforms.

ATPCS ARM and Thumb Procedure Call Standard defines how registers and the stack will be 
used for subroutine calls.

AXD See ARM eXtended Debugger.

Big-endian Memory organization where the least significant byte of a word is at a higher address 
than the most significant byte.

BNF Backus Naur Format. Mathematical notation for defining logical structures.

Byte A unit of memory storage consisting of eight bits.

Canonical Frame 
Address 

In DWARF 2, this is an address on the stack specifying where the call frame of an 
interrupted function is located.

CFA See Canonical Frame Address.



ARM DUI 0067B Copyright © 1999,2000 ARM Limited. All rights reserved. Glossary-3
-

Char A unit of storage for a single character. ARM designs use a byte to store a single 
character and an integer to store two to four characters.

Class A C++ class involved in the image.

Coprocessor An additional processor which is used for certain operations. Usually used for 
floating-point math calculations, signal processing, or memory management.

Current place In compiler terminology, the directory which contains files to be included in the 
compilation process.

Debugger An application that monitors and controls the execution of a second application. 
Usually used to find errors in the application program flow. 

Double word A 64-bit unit of information. Contents are taken as being an unsigned integer unless 
otherwise stated.

DWARF Debug With Arbitrary Record Format

EC++ A variant of C++ designed to be used for embedded applications.

ELF Executable Linkable Format

Environment The actual hardware and operating system that an application will run on.

Execution view The address of regions and sections after the image has been loaded into memory and 
started execution.

Flash memory Non-volatile memory that is often used to hold application code.

Globals Variables or functions with the image with global scope.

Global variables Variables that are accessible to all code in the application.

See also Local variables

Halfword A 16-bit unit of information. Contents are taken as being an unsigned integer unless 
otherwise stated.

Heap The portion of computer memory that can be used for creating new variables.

Host A computer which provides data and other services to another computer. 

ICE In Circuit Emulator.

IDE Integrated Development Environment (CodeWarrior).

Image An executable file which has been loaded onto a processor for execution.



Glossary-4 Copyright © 1999,2000 ARM Limited. All rights reserved. ARM DUI 0067B
-

A binary execution file loaded onto a processor and given a thread of execution. An 
image may have multiple threads. An image is related to the processor on which its 
default thread runs.

Inline Functions that are repeated in code each time they are used rather than having a 
common subroutine. Assembler code placed within a C or C++ program.

See also Output sections

Input section Contains code or initialized data or describes a fragment of memory that must be set to 
zero before the application starts.

See also Output sections

Interrupt A change in the normal processing sequence of an application caused by, for example, 
an external signal.

Interworking Producing an application that uses both ARM and Thumb code.

Library A collection of assembler or compiler output objects grouped together into a single 
repository.

Linker Software which produces a single image from one or more source assembler or 
compiler output objects.

Little-endian Memory organization where the least significant byte of a word is at a lower address 
than the most significant byte.

Local variable A variable that is only accessible to the subroutine that created it.

See also Global variables

Load view The address of regions and sections when the image has been loaded into memory but 
has not yet started execution.

Memory management 
unit 

Hardware that controls caches and access permissions to blocks of memory, and 
translates virtual to physical addresses.

MMU See Memory Management Unit.

Monitor A control showing the data associated with a particular debugger/target object. These 
may consist of a single, simple GUI control such as an edit field or a more complex 
multi-control dialog implemented as an ActiveX.

Multi-ICE Multi-processor in-circuit emulator. ARM registered trademark.

Output section A contiguous sequence of input sections that have the same RO, RW, or ZI attributes. 
The sections are grouped together in larger fragments called regions. The regions will 
be grouped together into the final executable image.



ARM DUI 0067B Copyright © 1999,2000 ARM Limited. All rights reserved. Glossary-5
-

See also Region

PIC Position Independent Code.

See also ROPI

PID Position Independent Data or the ARM Platform-Independent Development card. 

See also RWPI

PIE Platform-Independent Evaluator card. (ARM product.)

Profiling Accumulation of statistics during execution of a program being debugged, to measure 
performance or to determine critical areas of code. 

Call-graph profiling provides great detail but slows execution significantly. Flat 
profiling provides simpler statistics with less impact on exectution speed.

For both types of profiling you can specify the time interval between 
statistics-collecting operations.

Program image See Image.

Redirection The process of sending default output to a different destination or receiving default 
input from a different source. This is commonly used to output text, that would 
otherwise be displayed on the computer screen, to a file.

Reentrancy The ability of a subroutine to have more that one instance of the code active. Each 
instance of the subroutine call has its own copy of any required static data.

Remapping Changing the address of physical memory or devices after the application has started 
executing. This is typically done to allow RAM to replace ROM once the initialization 
has been done.

Regions In an Image, a region is a contiguous sequence of one to three output sections (RO, RW, 
and ZI).

Retargeting The process of moving code designed for one execution environment to a new 
execution environment.

ROPI Read Only Position Independent. Code and read-only data addresses can be changed at 
run-time.

RTOS Real Time Operating System.

RWPI Read Write Position Independent. Read/write data addresses can be changed at 
run-time.

Scatter loading Assigning the address and grouping of code and data sections individually rather than 
using single large blocks.



Glossary-6 Copyright © 1999,2000 ARM Limited. All rights reserved. ARM DUI 0067B
-

Scope The accessibility of a function or variable at a particular point in the application code. 
Symbols which have global scope are always accessible. Symbols with local or private 
scope are only accessible to code in the same subroutine or object.

Sections A block of software code or data for an Image.

See also Input sections

Semihosting A mechanism whereby the target communicates I/O requests made in the application 
code to the host system, rather attempting to support the I/O itself.

Signal An indication of abnormal processor operation.

Stack The portion of computer memory that is used to record the address of code that calls a 
subroutine. The stack can also be used for parameters and temporary variables.

SWI Software Interrupt. An instruction that causes the processor to call a 
programer-specified subroutine. Used by ARM to handle semihosting.

Target The actual target processor, (real or simulated), on which the target application is 
running.

The fundamental object in any debugging session. The basis of the debugging system. 
The environment in which the target software will run. It is essentially a collection of 
real or simulated processors.

Thread A thread of execution on a processor.

A context of execution on a processor. A thread is always related to a processor and may 
or may not be associated with an image. 

Volatile Memory addresses where the contents can change independently of the executing 
application are described as volatile.

See also Memory mapped

Veneer A small block of code used with subroutine calls when there is a requirement to change 
processor state or branch to an address that cannot be reached in the current processor 
state.

VFP Vector Floating Point. A standard for floating-point coprocessors where several data 
values can be processed by a single instruction.

Watchpoint A location within the image which will be monitored and which will cause execution to 
break when it changes.

Word A 32-bit unit of information. Contents are taken as being an unsigned integer unless 
otherwise stated.



ARM DUI 0067B Copyright © 1999,2000 ARM Limited. All rights reserved. Glossary-7
-

ZI Zero Initialized. R/W memory used to hold variables that do not have an initial value. 
The memory is normally set to zero on reset.



Glossary-8 Copyright © 1999,2000 ARM Limited. All rights reserved. ARM DUI 0067B
-



ARM DUI 0067B Copyright © 1999, 2000 ARM Limited. All rights reserved. Index-1

Index

The items in this index are listed in alphabetical order, with symbols and numerics appearing at the end. The 
references given are to page numbers.

A
Absolute addresses   5-33
Access control error   2-31
acosh function   8-27
ADR

ARM pseudo-instruction   5-14
Thumb pseudo-instruction   5-25

ADRL pseudo-instruction   5-15
ALIGN directive   5-37
Alignment

bitfields, C and C++   3-25
data types, C and C++   3-10
field alignment, C and C++   3-21
structures, C and C++   3-21

ANSI C library
Angel definitions   4-7
API definitions   4-12
avoiding semihosting   4-10
build options   4-3
building   3-29
directory structure   4-4
error handling   4-47

error handling functions   4-47
execution environment   4-20
FILEHANDLE   4-70
implementation definition   4-81
ISO C standard   4-2
I/O   4-67
locale   4-24
locale utilitiy functions   4-27
memory model   4-60
miscellaneous functions   4-23
naming conventions   4-96
non-hosted environment   4-8
operating system functions   4-23
program exit   4-47
programing with   4-6
programing without   4-13
re-implementing functions   4-7
semihosting   4-6
semihosting dependencies   4-8
signals   4-47
static data   4-5
static data access   4-23
storage management   4-52

used by C++ library   4-88
variants   3-29, 4-81

AREA directive   5-39
Arithmetic conversions, C and C++   

3-28
armar   7-9
armcpp   2-17, 3-38
ARMINC environment variable   2-5, 

2-6
ARMLIB variable   6-27
armlink, options

see Linker options
armprof   7-7
armsd

command syntax   5-4
Arrays

new, delete, C++   3-31
asinh function   8-27
Assembly language

absolute addresses   5-33
binary operators   5-121
built-in variables   5-12
coprocessor names   5-10



Index

Index-2 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI 0067B

defining macros   5-92
directives, See Directives, assembly
entry point   5-63
expressions   5-114
floating-point literals   5-118
format of source lines   5-9
from C   3-35
global variables   5-79, 5-80, 5-81, 

5-103, 5-104, 5-105
inline   3-35
labels   5-33
literals   5-114
local labels   5-34
logical

expressions   5-119
variables   5-31

logical literals   5-119
multiplicative operators   5-121
numeric constants   5-31
numeric expressions   5-116
numeric literals   5-117
numeric variables   5-31
operator precedence   5-114, 5-121
operators   5-114
pc   5-12, 5-33, 5-119
program counter   5-12, 5-33, 5-119
program-relative

expressions   5-119
program-relative labels   5-33
pseudo-instructions, See 

Pseudo-instructions, assembly
register names   5-10
register-relative

expressions   5-119
labels   5-33

relational operators   5-123
shift operators   5-122
string

expressions   5-115
manipulation   5-121
variables   5-31

string literals   5-115
symbol naming rules   5-30
symbols   5-30
unary operators   5-120
variable substitution   5-32
variables   5-31

built-in   5-12
global   5-79, 5-80, 5-81, 5-103, 

5-104, 5-105
local   5-88, 5-89, 5-90, 5-103, 
5-104, 5-105

VFP directives and notation   5-11
|$$$$$$$|   5-40

ASSERT directive   5-41
Assignment operator warning   2-25
atanh function   8-27
ATPCS

compiler options   2-10
specifying variants   2-10
/nointerwork   2-11
/noropi   2-11
/noswstackcheck   2-12
/rwpi   2-11
/swstackcheck   2-12

B
Base classes   3-21
:BASE: operator   5-120
Bessel functions   8-29, 8-31
Binary operators, assembly   5-121
Bitfields   3-25

overlapping, C and C++   3-24
bool, C++   3-31
byte order   2-22

C
C and C++

ANSI C
compiler mode   2-3
header files   2-5, 2-7, 2-27
language extensions   3-33
long long   3-34
mode, compilers   2-3
suppressing warnings   2-25

arrays, new, delete   3-31
bitfields, overlapping   3-24
bool   3-31
Casts, new style   3-31
compilers, using   2-1
compilers,variants   2-2
C++ implementation definition   

3-30
C++ language feature support   3-30

C++ library implementation   3-32
C++ templates   3-32
data types, see Data types, C and 

C++
delete array   3-31
exceptions   3-32
expression evaluation   3-28
field alignment   3-21
floating-point operations   3-18
global variables, alignment   3-10
keywords, see Keywords, C and C++
language extensions   3-33
libraries, see ANSI C library
libraries, see C++ library
limits, floating-point   3-45
linkage specification   3-31
member functions, pointers to   3-19
mode in compilers   2-3
namespaces   3-31
natural alignment   3-10
new array   3-31
new style casts   3-31
Non-ANSI include warning   2-27
nothrow, new   3-31
overlapping of bitfields   3-24
pointers, casting to integers   3-19
pointers, subtraction   3-19
runtime type identification   3-31
Standard C++

and error messages   2-30
inline assembler   3-35
limits   3-41

static member constants   3-31
structures, see Structures, C and C++
virtual functions   3-21
wchar_t   3-31
wide characters   3-31

C libraries
see ANSI C library

Call graph, profiling   7-7
Casts, new style, C++   3-31
Characters after preprocessor directive 

error   2-31
char, changing sign of   2-24
Checking arguments for 

printf/scanf-like functions   3-3
Chop   8-36
:CHR: operator   5-120
CN directive   5-42



Index

ARM DUI 0067B Copyright © 1999, 2000 ARM Limited. All rights reserved. Index-3

Code
controlling generation with pragmas   

3-4
sections, compiler controls   2-22

CODE16 directive   5-4, 5-43
CODE32 directive   5-44
Command syntax

armsd   5-4
compilers   2-8
fromelf   7-3
librarian   7-9
linker   6-1
profiler   7-7

Comments
character set, C and C++   3-15
in inline assembler   3-35
retaining in preprocessor output   

2-14
Common sub-expression elimination   

3-5
Compiler options

-ansi   2-12
-ansic   2-12
-apcs   2-10

see also ATPCS variants
see also ATPCS variants

-bigend   2-22
-C   2-14
-c   2-15
-cpp   2-12
-cpu   2-17
C++   2-13
-D   2-14
-depend   2-16
-dwarf1   2-20
-dwarf2   2-20
-E   2-10, 2-14
-Ea   2-31
-Ec   2-31
-Ef   2-31
-Ei   2-31
-embeddedcplusplus   2-12
-Ep   2-31
-errors   2-10
-fa   2-29
-fd   2-5
-fh   2-29, 2-30, 2-31
-fi   2-15
-fk   2-5, 2-6, 2-13, 2-14

-fp   2-29
-fpu   2-18
-fs   2-17
-fu   2-16
-fv   2-30
-fy   2-23, 3-21
-g   2-19
-g-   2-19
-gt   2-20
-g+   2-19
-help   2-10
-I   2-5, 2-6, 2-13
-j   2-5, 2-6, 2-14
-list   2-15
-littleend   2-22
-M   2-14
-O   2-21
-o   2-16
-Oinline   2-20
-Ospace   2-20, 2-21
-Otime   2-21
reading from a file   2-9
-S   2-16
-strict   2-13
syntax   2-8
-U   2-15
-Wa   2-25
-Wb   2-25
-Wd   2-25
-We   2-25
-Wf   2-25
-Wg   2-26
-Wi   2-26
-Wl   2-26
-Wm   2-26
-Wn   2-26
-Wo   2-27
-Wp   2-27
-Wq   2-27
-Wr   2-27
-Ws   2-27
-Wt   2-27
-Wu   2-27
-Wv   2-27
-Wx   2-27
-Wy   2-28
-zas   2-22, 2-24
-zc   2-24
-zo   2-22

Compilers
ANSI standard C   2-12
ANSI standard C++   2-12
architecture, specifying   2-17
big-endian code   2-22
C and C++   2-1
code generation   2-20
debug tables   2-19
defining symbols   2-14, 2-15
EC++   2-12
errors, redirecting   2-10
header files   2-5
invoking   2-8
keyboard input   2-10
language, setting source   2-12
library support   2-3
listing files   2-5
little-endian code   2-22
modes, see Source language modes
object files   2-5
output files   2-5, 2-14
output format, specifying   2-15
pragmas, see Pragmas
Source language modes   2-3
specifying output format   2-15
standards   2-2, 2-3
supported filenames   2-4
suppressing error messages   2-30
target processor   2-17
Thumb code   2-17
see also Warning messages, 

compilers
Containers, for bitfields, C and C++   

3-25
Contents   iii
_controlfp   8-14
Coprocessor names, assembly   5-10
Copy sign function   8-27
CP directive   5-45
__cplusplus, C and C++ macro   3-38
-cpu   2-17
Cube root function   8-27
Current place, the   2-6

excluding   2-13
C9X draft standard   8-16, 8-19
C++

keywords, see Keywords, C++
C++ library   4-2

differences   4-89



Index

Index-4 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI 0067B

HTML documentation   4-87
implementation   3-32
requirements on ANSI C   4-88
Rogue Wave   4-4
Rogue Wave implementation   4-87
source   4-4

D
Data areas

compiler controls   2-22
DATA directive   5-46
Data types, C and C++

alignment   3-10
long double   3-33
long long   3-33
size   3-10
structured   3-20

DCB directive   5-47
DCD directive   5-48
DCDU directive   5-49, 5-50
DCFD directive   5-51
DCFDU directive   5-52
DCFS directive   5-53
DCFSU directive   5-54
DCI directive   5-55
DCQ directive   5-56
DCQU directive   5-57
DCW directive   5-58
DCWU directive   5-59
Debug tables   2-19

generating   2-19
limiting size   2-20
optimization   2-22

Debugging
optimization options   2-21

Declaration lacks type/storage-class 
error   2-31

Default template arguments, C++   3-31
Defining symbols

C and C++   2-14, 2-15
Delete array, C++   3-31
Denormal   8-34
Directives, assembly language

table of   5-2
ALIGN   5-37
AREA   5-39, 6-21
ASSERT   5-41

CN   5-42
CODE16   5-4, 5-43
CODE32   5-44
CP   5-45
DATA   5-46
DCB   5-47
DCD   5-48
DCDU   5-49, 5-50
DCFD   5-51
DCFDU   5-52
DCFS   5-53
DCFSU   5-54
DCI   5-55
DCQ   5-56
DCQU   5-57
DCW   5-58
DCWU   5-59
DN   5-60
ELSE   5-61
END   5-61
ENDFUNC   5-62
ENDIF   5-62
ENDP   5-62
ENTRY   5-63
EQU   5-31, 5-64
EXPORT   5-65
EXTERN   5-66
FIELD   5-68
FN   5-69
FRAME ADDRESS   5-70
FRAME POP   5-71
FRAME PUSH   5-72
FRAME REGISTER   5-73
FRAME RESTORE   5-74
FRAME SAVE   5-75
FRAME STATE REMEMBER   

5-76
FRAME STATE RESTORE   5-77
FUNCTION   5-78
GBLA   5-8, 5-31, 5-79, 5-98
GBLL   5-8, 5-31, 5-80, 5-98
GBLS   5-8, 5-31, 5-81, 5-98
GET   5-6, 5-82
GLOBAL   5-65
IF   5-83, 5-96, 5-113
IMPORT   5-84
INCBIN   5-85
INCLUDE   5-6, 5-82
INFO   5-86

KEEP   5-87
LCLA   5-31, 5-88, 5-98
LCLL   5-31, 5-89, 5-98
LCLS   5-31, 5-90, 5-98
LTORG   5-91
MACRO   5-92
MAP   5-95
MEND   5-92, 5-98
MEXIT   5-96
nesting   5-36
NOFP   5-97
OPT   5-12, 5-98
PROC   5-99
REQUIRE   5-99
RLIST   5-5, 5-100
RN   5-101
ROUT   5-34, 5-35, 5-102
SETA   5-8, 5-12, 5-31, 5-98, 5-103
SETL   5-8, 5-12, 5-31, 5-98, 5-104
SETS   5-8, 5-12, 5-31, 5-98, 5-105
SN   5-106
SPACE   5-107
SUBT   5-108
TTL   5-109
VFPASSERT SCALAR   5-110
VFPASSERT VECTOR   5-111
WEND   5-113
WHILE   5-96, 5-113
!   5-86
#   5-68
%   5-107
&   5-48
*   5-64
=   5-47
[   5-83
]   5-62
^   5-95
|   5-61

Disassembly   7-4
DN directive   5-60
Double precision   8-33
Downloader, flash   7-13, 7-15
DWARF   2-19, 2-22

E
e to the x minus 1 function   8-28
EC++



Index

ARM DUI 0067B Copyright © 1999, 2000 ARM Limited. All rights reserved. Index-5

mode, compilers   2-3
ELF   6-2
ELF file format   6-6
ELSE directive   5-61
END directive   5-61
ENDFUNC directive   5-62
Endianness

Flash downloader   7-13
ENDIF directive   5-62
ENDP directive   5-62
ENTRY directive   5-63
Entry point

assembly   5-63
specifying to the linker   6-9, 6-10

Enumerations
as signed integers   2-23

enum, C and C++ keyword   3-20
Environment variables

ARMINC   2-5, 2-6
Epsilon   8-34
EQU directive   5-31, 5-64
Error messages

compiler perror()   4-86
compilers

access control   2-31
characters after preprocessor 
directive   2-31
controlling   2-30
declaration lacks 
type/storage-class   2-31
implicit cast   2-31
redirecting   2-10
severity   3-12
unclean casts   2-31

library   4-47
Error messaging

tailoring handling   4-47
Ethernet, override IP address and net 

mask   7-13
Evaluating expressions, C and C++   

3-28
Exceptions

floating-point   8-37
Exceptions, C++   3-32
Execution

environment   4-20
profile   7-7
regions and veneers   6-30
speed   2-20

explicit, C++ keyword   3-31
Exponent function   8-29, 8-30
EXPORT directive   5-65
Expression evaluation in C and C++   

3-28
Expressions, assembly   5-114
extern

C and C++ keyword   3-22
inline C++ keyword   3-31

EXTERN directive   5-66

F
Field alignment, C and C++   3-21
FIELD directive   5-68
File formats

ELF   6-6
Files

in-memory file system   2-5
naming conventions   2-4
via   6-14

Flash memory   7-13, 7-15
float type   8-32
Floating-point

bit patterns   8-34
chop   8-36
comparison   8-8
constants   3-36
custom trap handlers   8-20
C9X draft standard   8-16, 8-19
denormal   8-34
double precision   8-33
environment control   8-10
exceptions   8-37
float type   8-32
flush to zero mode   8-13
IEEE 754 arithmetic   8-32
inventing results   8-37
limits in C and C++   3-45
machine epsilon   8-34
mathlib   8-26
minus zero   8-35
NaN   8-35
normalized   8-34
number format conversion   8-6, 8-7
operations in C and C++   3-18
range reduction   8-26
rounding   8-36

rounding mode control   8-13, 8-15, 
8-18

single-precision   8-32
sticky flags   8-11, 8-12, 8-16
trapping exceptions   8-37
truncate   8-36

Floating-point arithmetic
C routines   8-4

Floating-point functions
acosh   8-27
asinh   8-27
atanh   8-27
Bessel   8-29, 8-31
_controlfp   8-14
copy sign   8-27
cube root   8-27
e to the x minus 1   8-28
exponent   8-29, 8-30
__fp_status   8-10
fractional part   8-31
gamma   8-28
hypotenuse   8-28
__ieee_status   8-12
is number a NaN?   8-29
is number finite?   8-28
ln gamma   8-29
ln(x+1)   8-30
logb   8-30
Microsoft compatibility   8-14
nextafter   8-30
remainder   8-30
round to integer   8-30
scale by a power of 2   8-31
significand   8-31
standard error function   8-27

Floating-point library   8-3
floating-point literals, assembly   5-118
Floating-point status   8-10
Floating-point support   8-1
Flush to zero mode   8-13
FN directive   5-69
for loop, C++

variable scope change   3-31
fplib   8-3
__fp_status   8-10
Fractional part function   8-31
FRAME ADDRESS directive   5-70
FRAME POP directive   5-71
FRAME PUSH directive   5-72



Index

Index-6 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI 0067B

FRAME REGISTER directive   5-73
FRAME RESTORE directive   5-74
FRAME SAVE directive   5-75
FRAME STATE REMEMBER 

directive   5-76
FRAME STATE RESTORE directive   

5-77
fromelf   7-3
Function call count, profiling   7-7
Function declaration keywords   3-4
FUNCTION directive   5-78
Functions, C library

abort()   4-86
clock()   4-76
_clock_init()   4-76
__default_signal_handler()   4-47
exit()   4-86
getenv()   4-70, 4-76
gmtime()   4-85
__Heap_Alloc()   4-54, 4-57
__Heap_Broken()   4-55, 4-59
__Heap_DescSize()   4-56
__Heap_Free()   4-54, 4-57
__Heap_Full()   4-55, 4-59
__Heap_Initialize()   4-55
__Heap_ProvideMemory()   4-54, 

4-56
__Heap_Realloc   4-57
__Heap_Stats()   4-58
__Heap_Valid()   4-58
malloc()   4-52, 4-86
__raise()   4-47
remove()   4-76
rename()   4-76
__rt_errno_addr()   4-47
__rt_fp_status_addr()   4-47
__rt_heap_extend   4-62
__rt_stackheap_init   4-62
__rt_stack_overflow   4-62
__rt_stack_postlongjmp   4-62
strerror()   4-86
system()   4-76
_sys_close()   4-70
_sys_ensure()   4-70
_sys_exit()   4-47
_sys_flen()   4-70
_sys_istty()   4-70
_sys_open()   4-70
_sys_read()   4-70

_sys_seek()   4-70
_sys_tempnam()   4-70
_sys_write()   4-70
tailoring   4-76
time()   4-76
_ttywrch()   4-47
__user_heap_extend()   4-61
__user_initial_stackheap()   4-61
__user_stack_slop()   4-61
__use_realtime_heap()   4-52
__use_two_region_memory()   4-60

Future compatibility warning   2-27

G
Gamma function   8-28
ln gamma function   8-29
GBLA directive   5-8, 5-31, 5-79, 5-98
GBLL directive   5-8, 5-31, 5-80, 5-98
GBLS directive   5-8, 5-31, 5-81, 5-98
GET directive   5-6, 5-82
GLOBAL directive   5-65
Global register variables   3-8

recommendations   3-8
Global variables, C and C++

alignment   3-10
gmtime()   4-85

H
Header files   2-5

including   2-5
search path   2-7
unguarded   2-26

Help compiler option   2-10
Hypotenuse function   8-28

I
IEEE format   3-18
IEEE 754 arithmetic   8-32
__ieee_status   8-12
IF directive   5-83, 5-96, 5-113
Image size   2-20
Images

complex   6-40

examples, scatter loaded   6-40
page alignment   6-21
regions, overview   6-17
sections   6-21, 6-40

overview   6-17
simple   6-34
specifying a memory map   6-19
structure of   6-16

Image$$ symbols   6-40
Implementation

C library   4-81
standards, C and C++   3-41

Implicit
constructor warning   2-26
narrowing warning   2-26
return warning   2-27

IMPORT directive   5-84
INCBIN directive   5-85
INCLUDE directive   5-6, 5-82
:INDEX: operator   5-120
INFO directive   5-86
inline, C and C++ keyword   3-4
In-memory filing system   2-13

mem directory   2-5, 2-13
Instructions, assembly language

LDM   5-5, 5-100
STM   5-5, 5-100

Integer
casting to pointers   3-19

Internal limits, compilers   3-43
Invoke   5-4
Invoking the compiler   2-8
Invoking the inline assembler   3-35
IP address, override   7-13

K
KEEP directive   5-87
Kernighan and Ritchie search paths   

2-13
Keywords, C and C++

extern   3-22
function declaration   3-4
inline   3-4
__inline   3-4
__int64   3-8
__packed   3-22, 3-26
__pure   3-5



Index

ARM DUI 0067B Copyright © 1999, 2000 ARM Limited. All rights reserved. Index-7

register   3-19
__softftp   3-5
static   3-22
struct   3-20
union   3-20
__value_in_regs   3-6
variable declaration   3-7
volatile   3-28

Keywords, C++
explicit   3-31
extern inline   3-31
typename   3-31

Keywords,C and C++
typeid   3-31

L
Labels, assembly   5-33
Labels, local, assembly   5-34
Language

C++ feature support   3-30
default compiler mode   2-3
see Source language modes

Language extensions
assembly language   3-35
C and C++   3-33
function keywords   3-4
hex   3-36
identifiers   3-34
inline   3-35
__int64   3-8
long long   3-34
macros   3-38
__packed   3-26
pragmas   3-2
__pure   3-5
__softftp   3-5
__value_in_regs   3-6
void return   3-34

LCLA directive   5-31, 5-88, 5-98
LCLL directive   5-31, 5-89, 5-98
LCLS directive   5-31, 5-90, 5-98
LDFD pseudo-instruction   5-17, 5-19, 

5-91
LDFS pseudo-instruction   5-18, 5-20, 

5-91
LDM instruction   5-5, 5-100
LDR

pseudo-instruction   5-21
Thumb pseudo-instruction   5-26

LDR pseudo-instruction   5-91
:LEFT: operator   5-121
Librarian   7-9
Libraries

and linker, see Linker, libraries
ANSI, see ANSI C library
C++ Standard   3-32
C++. see C++ library
functions, see Functions, C library

Limits
compilers internal   3-43
floating-point, in C and C++   3-45
implementation, C and C++   3-41

Linkage specification, C++   3-31
Linker

areas. see Sections
code and data sizes   6-13
debug information

turning on and off   6-8
default addresses   6-7
diagnostics   6-14
entering commands via a file   6-14
execution information   6-18
help on   6-4, 6-13
image

construction   6-5
entry point   6-9
keeping sections   6-10
load and execution views   6-18
overview   6-16
structure   6-16

image-related information   6-5
information   6-13, 6-14
libraries

defaults   6-12
including during link step   6-26
linker search path   6-12
scanning   6-12

load information   6-18
local symbols   6-13
memory attributes   6-15
memory map information   6-2, 6-8, 

6-17
messages   6-13, 6-14
output file   6-4, 6-6
output formats   6-4
output sections   6-17

overview of   6-2
partial linking   6-6
regions   6-17
RO section base address   6-7, 6-38
RW section base address   6-7
scatter loading

command-line option   6-4, 6-8
see also Scatter loading
See also Scatter loading and 
Scatter load description file

software version   6-6
sorting input sections   6-21
standard output stream   6-14
symbols   6-23, 6-40

used in link step   6-14
undefined symbols   6-15
unused sections   6-9, 6-13
veneers   6-13
via files   6-14
$$ symbols   6-23

Linker options
-elf   6-6
-entry   6-9
-errors   6-14
-first   6-11
-help   6-6
-info   6-13
-keep   6-10
-last   6-12
-libpath   6-12, 6-27
-list   6-14
-locals   6-13
-nodebug   6-8
-nolocals   6-13
-noremove   6-9
-noscanlib   6-13
-output   6-6
-partial   6-6
-remove   6-9
-ro-base   6-7
-ropi   6-7
-rw-base   6-7
-rwpi   6-7
-scanlib   6-12
-scatter   6-8, 6-40
-split   6-8
-strict   6-15
-symbols   6-14
-symdefs   6-14



Index

Index-8 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI 0067B

syntax   6-6
-unresolved   6-15
-verbose   6-14
-via   6-14
-vsn   6-6
-xreffrom   6-14

ln gamma function   8-29
ln(x+1) function   8-30
Local

labels, assembly   5-34
variables, assembly   5-88, 5-89, 

5-90, 5-103, 5-104, 5-105
variables, C and C++ alignment   

3-10
locale

C libraries   4-24
selecting at link time   4-24
selecting at run time   4-25

logb function   8-30
Logical

expressions, assembly   5-119
variable, assembly   5-31

Logical literals, assembly   5-119
long long   3-34
Lower precision warning   2-26
LTORG directive   5-91

M
Machine epsilon   8-34
MACRO directive   5-92
Macros

predefined C   3-38
preprocessor   2-14, 2-15

Makefiles
generating   2-14

MAP directive   5-95
mathlib   8-26
mem directory   2-5, 2-13
memcmp()   3-22
Memory map

describing to linker   6-40
specifying   6-8
tailoring runtime   4-60
tailoring storage   4-52

MEND directive   5-92, 5-98
MEXIT directive   5-96
Microsoft compatibility

floating-point functions   8-14
Minus zero   8-35
Modes, compiler, see Source language 

modes
MOV Thumb pseudo-instruction   5-28
Multiplicative operators, assembly   

5-121

N
Namespaces, C++   3-31
Naming conventions   2-4
NaN   8-35
Natural alignment, C and C++   3-10
Nesting directives   5-36
Net mask, Ethernet, override   7-13
New array, C++   3-31
New style casts, C++   3-31
nextafter function   8-30
NOFP directive   5-97
NOP pseudo-instruction   5-23
NOP Thumb pseudo-instruction   5-29
Normalized   8-34
Nothrow new, C++   3-31
Numeric constants, assembly   5-31
Numeric expressions, assembly   5-116
numeric literals, assembly   5-117
Numeric variable, assembly   5-31

O
Operator precedence, assembly   5-114, 

5-121
OPT directive   5-12, 5-98
Optimization

common sub-expression elimination   
3-5

compiler options   2-21
controlling   2-20
packed keyword   3-27
and pure functions   3-5
structure packing   3-26
volatile keyword   3-28

Overlapping, of bitfields, C and C++   
3-24

Overloaded functions, C and C++
argument limits   3-41

P
Packed structures, C and C++   3-22, 

3-26
packed, C and C++ keyword   3-22
Padding

C and C++ structures   3-22
in structure warning   2-27

Page alignment
images   6-21

pc, assembly   5-12, 5-33, 5-119
pic   2-11
pid   2-11
Platforms, supported   1-5
Pointers, in C and C++

casting to integers   3-19
subtraction   3-19

Portability
filenames   2-4

Position independence   2-11, 6-7
Pragmas   3-2

check_printf_formats   3-3
check_scanf_formats   3-3
check_stack   3-4
Onum   3-3
Ospace   3-3

Predefined macros, C and C++   3-38
Preprocessor macros   2-14
Preprocessor options   2-14

-C   2-14
-D   2-14
-depend   2-16
-E   2-14
-fu   2-16
-M   2-14
-S   2-16
-U   2-15

printf argument checking   3-3
PROC directive   5-99
Profiler   7-7
Program counter, assembly   5-12, 5-33, 

5-119
Program-relative

expressions   5-119
labels   5-33

Pseudo-instructions, assembly language
table of   5-3
ADR   5-14
ADR (Thumb)   5-25



Index

ARM DUI 0067B Copyright © 1999, 2000 ARM Limited. All rights reserved. Index-9

ADRL   5-15
LDFD   5-17, 5-19, 5-91
LDFS   5-18, 5-20, 5-91
LDR   5-21, 5-91
LDR (Thumb)   5-26
MOV (Thumb)   5-28
NOP   5-23
NOP (Thumb)   5-29

ptrdiff_t   3-19
Pure functions   3-5

Q
Qualifiers

__packed   3-26
type   3-26
volatile   3-28

Quiet NaN   8-35

R
Range reduction, floating-point   8-26
Register

keyword   3-19
names, assembly   5-10
returning a structure in   3-6
variables   3-19

Register-relative
expressions   5-119

Register-relative labels   5-33
Relational operators, assembly   5-123
Remainder function   8-30
REQUIRE directive   5-99
:RIGHT: operator   5-121
RLIST directive   5-5, 5-100
RN directive   5-101
Rogue Wave C++ library

see C++ library
ropi   2-11
Round to integer function   8-30
Rounding   8-36
Rounding mode control   8-13, 8-15, 

8-18
ROUT directive   5-34, 5-35, 5-102
RTTI   3-31
Runtime memory model   4-60
Runtime type identification, C++   3-31

rwpi   2-11

S
Scale by a power of 2 function   8-31
scanf argument checking   3-3
Scatter load description file   6-39

area syntax   6-46
content of   6-42
execution region syntax   6-45
execution regions   6-30
FIRST   6-48
LAST   6-48
load regions

syntax   6-43
pseudo-attributes   6-48
sections   6-40
structure of   6-41
synonyms in   6-48

Scatter loading
linker command-line option   6-40
region matching   6-49
section placement   6-11, 6-12
section-related symbols   6-25
symbols defined by linker   6-40
+FIRST   6-11
+LAST   6-12

Search paths   2-13
ARMINC   2-6
Berkely UNIX   2-6
default   2-8
Kernighan and Ritchie   2-13
rules   2-6
specifying   2-13

Sections
aligning   6-22
control of   2-22
input   6-17
multiple matches in scatterloading   

6-49
placement of   6-11, 6-12, 6-21, 6-40, 

6-48
by attribute   6-21
FIRST and LAST   6-22

in region   6-17
sorting rules   6-21
unused   6-9, 6-13

Semihosting

avoiding   4-10
SETA directive   5-8, 5-12, 5-31, 5-98, 

5-103
SETL directive   5-8, 5-12, 5-31, 5-98, 

5-104
SETS directive   5-8, 5-12, 5-31, 5-98, 

5-105
Shift operators, assembly   5-122
Signalling NaN   8-35
Significand function   8-31
Single-precision   8-32
Size of code and data areas   2-22
size_t   3-19
SN directive   5-106
Source language modes

ANSI C   2-3, 2-12
C++   2-3
EC++   2-3
strict   2-13
strict ANSI C   2-13

SPACE directive   5-107
Specifying

additional checks   2-29
function declaration keywords   3-4
preprocessor options   2-14
search paths   2-13
structure alignment   2-22, 2-24
warning messages   2-24

Speed
and structure packing   3-26

Stack checking   3-4
C and C++   2-11, 2-12

Standard C++
support for   3-30

Standard error function   8-27
Standards

C and C++   2-2
C library implementation   4-81
C++ implementation   3-30
C++ language support   3-30
C++ library implementation   4-87
Standard C++   3-41
Standard C++ support   3-30
variation from   3-11

Static data
tailoring access   4-23

Static member constants, C++   3-31
static, C and C++ keyword   3-22
__STDC__, C and C++ macro   3-39



Index

Index-10 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI 0067B

Sticky flags   8-11, 8-12, 8-16
STM instruction   5-5, 5-100
String

character sets   3-15
expressions, assembly   5-115
manipulation, assembly   5-121
size limits   3-41
variable, assembly   5-31

String literals, assembly   5-115
Structures

specifying alignment   2-24
Structures, C and C++

alignment   3-21
bitfields   3-25
implementation   3-20
packed   3-22
packing   3-26
padding   3-22
specifying alignment   2-22

struct, C and C++ keyword   3-20
SUBT directive   5-108
SWI

semihosting, avoiding the   4-10
Symbols

assembly language   5-30
assembly language, Naming rules   

5-30
defining, C and C++   2-14, 2-15
Image$$   6-40
input section-related   6-25
linker   6-14, 6-23
region-related   6-23
scatter loading   6-40
section-related   6-24
undefined   6-15
ZI   6-24
$$   6-23

T
Table of contents   iii
tcpp   3-38
Templates, C++   3-32

default template arguments   3-31
instantiation directive   3-31
member templates   3-32
ordering   3-32
partial specialization   3-32

specialization directive   3-31
Truncate   8-36
TTL directive   5-109
Type qualifiers   3-26
typeid, C++ keyword   3-31
typename, C++ keyword   3-31

U
Unary operators, assembly   5-120
union, C and C++ keyword   3-20
Unused declaration warning   2-27
Unused this warning   2-27

V
Variable declaration keywords   3-7

__int64   3-8
register   3-19

Variables
ARMLIB   6-27

Variables, assembly   5-31
built-in   5-12
global   5-79, 5-80, 5-81, 5-103, 

5-104, 5-105
local   5-88, 5-89, 5-90, 5-103, 

5-104, 5-105
substitution   5-32

Variants
compilers   2-2

Veneers
ARM to ARM   6-30
ARM to Thumb   6-30
size   6-13
Thumb to ARM   6-30

VFP directives and notation   5-11
VFPASSERT SCALAR directive   

5-110
VFPASSERT VECTOR directive   

5-111
Via files   2-9, 6-14
Virtual functions (C and C++)   3-21
volatile, C and C++ keyword   3-26, 

3-28

W
Warning messages, compilers

assignment operator   2-25
char constants   2-26
deprecated declaration   2-25
deprecated features   2-28
enabling warnings off by default   

2-30
future compatibility   2-27
implicit constructor   2-26
implicit conversion   2-27
implicit narrowing cast   2-26
implicit return   2-27
implicit virtual   2-27
initialization order   2-27
inventing extern   2-25
lower precision   2-26
non-ANSI include   2-27
padding inserted in structure   2-27
pointer casts   2-25
specifying   2-24
specifying additional checks   2-29
unguarded header   2-26
unused declaration   2-27
unused this   2-27

wchar_t, C++   3-31
WEAK symbol   5-66, 5-84
WEND directive   5-113
WHILE directive   5-96, 5-113
Wide characters, C++   3-31

Z
ZI symbols   6-24

Symbols
! directive   5-86
# directive   5-68
$ in identifiers   3-34
$$ symbols   6-23
% directive   5-107
& directive   5-48
* directive   5-64
:LEN: operator   5-120
:STR: operator   5-120



Index

ARM DUI 0067B Copyright © 1999, 2000 ARM Limited. All rights reserved. Index-11

= directive   5-47
[ directive   5-83
] directive   5-62
^ directive   5-95
| directive   5-61
|$$$$$$$|, assembly language   5-40


	Preface
	About this book
	Intended audience
	Using this book
	Typographical conventions
	Further reading

	Feedback
	Feedback on the ARM Developer Suite
	Feedback on this book


	Contents
	Introduction
	1.1 About the ARM Developer Suite
	1.1.1 Components of the toolkit

	1.2 Supported platforms

	C and C++ Compilers
	2.1 About the C and C++ compilers
	2.1.1 Compiler variants
	2.1.2 Source language modes
	2.1.3 Library support

	2.2 File usage
	2.2.1 Naming conventions
	2.2.2 Included files

	2.3 Command syntax
	2.3.1 Invoking the compiler
	2.3.2 Procedure Call Standard options
	2.3.3 Setting the source language
	2.3.4 Specifying search paths
	2.3.5 Setting preprocessor options
	2.3.6 Specifying output format
	2.3.7 Specifying the target processor or architecture
	2.3.8 Generating debug information
	2.3.9 Controlling code generation
	2.3.10 Controlling warning messages
	2.3.11 Specifying additional checks
	2.3.12 Controlling error messages


	ARM Compiler Reference
	3.1 Compiler-specific features
	3.1.1 Pragmas
	3.1.2 Function declaration keywords
	3.1.3 Variable declaration keywords
	3.1.4 Size and alignment of basic data types

	3.2 Standard C implementation definition
	3.2.1 Nonconformance with ANSI
	3.2.2 Translation
	3.2.3 Environment
	3.2.4 Identifiers
	3.2.5 Characters
	3.2.6 Integers
	3.2.7 Floating-point
	3.2.8 Arrays and pointers
	3.2.9 Registers
	3.2.10 Structures, unions, enumerations, and bitfields
	3.2.11 Qualifiers
	3.2.12 Declarators
	3.2.13 Statements
	3.2.14 Preprocessing directives
	3.2.15 Library functions

	3.3 Standard C++ implementation definition
	3.3.1 EC++ support
	3.3.2 Integral conversion
	3.3.3 Calling a pure virtual function
	3.3.4 Minor features of language support
	3.3.5 Major features of language support
	3.3.6 Standard C++ library implementation definition

	3.4 C and C++ language extensions
	3.4.1 C language extensions
	3.4.2 C and C++ language extensions

	3.5 Predefined macros
	3.6 Implementation limits
	3.6.1 C++ ISO/IEC Standard Limits
	3.6.2 Internal limits

	3.7 Limits for integral numbers
	3.8 Limits for floating-point numbers

	The C and C++ Libraries
	4.1 About the runtime libraries
	4.1.1 Build options and library variants
	4.1.2 Library directory structure
	4.1.3 Reentrancy and static data

	4.2 Building an application with the C library
	4.2.1 Building an application for a semihosted environment
	4.2.2 Building an application for a non-semihosted environment

	4.3 Building an application without the C library
	4.3.1 Integer and FP helper functions
	4.3.2 Bare machine integer C
	4.3.3 Bare machine C with floating-point
	4.3.4 Exploiting the C library
	4.3.5 The standalone C library functions

	4.4 Tailoring the C library to a new execution environment
	4.4.1 How C and C++ programs use the library functions
	4.4.2 Exiting from the program

	4.5 Tailoring static data access
	4.6 Tailoring locale and CTYPE
	4.6.1 Selecting locale at link time
	4.6.2 Selecting locale at run time
	4.6.3 Macros and utility functions
	4.6.4 _get_lc_ctype()
	4.6.5 _get_lc_collate()
	4.6.6 _get_lc_monetary()
	4.6.7 _get_lc_numeric()
	4.6.8 _get_lc_time()
	4.6.9 _get_lconv()
	4.6.10 localeconv()
	4.6.11 setlocale()
	4.6.12 _findlocale()
	4.6.13 __LC_CTYPE_DEF
	4.6.14 __LC_COLLATE_DEF
	4.6.15 __LC_TIME_DEF
	4.6.16 __LC_NUMERIC_DEF
	4.6.17 __LC_MONETARY_DEF
	4.6.18 __LC_INDEX_END
	4.6.19 The lconv structure

	4.7 Tailoring error signalling, error handling, and program exit
	4.7.1 _sys_exit()
	4.7.2 errno
	4.7.3 __rt_errno_addr()
	4.7.4 __raise()
	4.7.5 __rt_raise()
	4.7.6 __default_signal_handler()
	4.7.7 _ttywrch()
	4.7.8 __rt_fp_status_addr()

	4.8 Tailoring storage management
	4.8.1 Support for malloc
	4.8.2 Creating your own storage-management system
	4.8.3 __Heap_Descriptor
	4.8.4 __Heap_Initialize()
	4.8.5 __Heap_DescSize()
	4.8.6 __Heap_ProvideMemory()
	4.8.7 __Heap_Alloc()
	4.8.8 __Heap_Free()
	4.8.9 __Heap_Realloc()
	4.8.10 __Heap_Stats()
	4.8.11 __Heap_Valid()
	4.8.12 __Heap_Full()
	4.8.13 __Heap_Broken()

	4.9 Tailoring the run-time memory model
	4.9.1 The memory models
	4.9.2 Controlling the run-time memory model
	4.9.3 Writing your own memory model
	4.9.4 __user_initial_stackheap()
	4.9.5 __user_heap_extend()
	4.9.6 __user_heap_extent()
	4.9.7 __user_stack_slop()
	4.9.8 __rt_stackheap_init()
	4.9.9 __rt_stack_overflow()
	4.9.10 __rt_heap_extend()
	4.9.11 __rt_stack_postlongjmp()

	4.10 Tailoring the input/output functions
	4.10.1 Dependencies on low-level functions
	4.10.2 Target-dependent input/output support functions
	4.10.3 _sys_open()
	4.10.4 _sys_close()
	4.10.5 _sys_read()
	4.10.6 _sys_write()
	4.10.7 _sys_ensure()
	4.10.8 _sys_flen()
	4.10.9 _sys_seek()
	4.10.10 _sys_istty()
	4.10.11 _sys_tmpnam()
	4.10.12 _sys_command_string()

	4.11 Tailoring other C library functions
	4.11.1 clock()
	4.11.2 _clock_init()
	4.11.3 time()
	4.11.4 remove()
	4.11.5 rename()
	4.11.6 system()
	4.11.7 getenv()
	4.11.8 _getenv_init()

	4.12 ISO implementation definition
	4.12.1 ANSI C library implementation definition
	4.12.2 Standard C++ library implementation definition

	4.13 C library extensions
	4.13.1 atoll()
	4.13.2 strtoll()
	4.13.3 strtoull()
	4.13.4 snprintf()
	4.13.5 vsnprintf()
	4.13.6 lldiv()
	4.13.7 llabs()
	4.13.8 alloca()
	4.13.9 _fisatty()
	4.13.10 __heapstats()
	4.13.11 __heapvalid()

	4.14 Library naming conventions

	Assembler
	5.1 Introduction
	5.1.1 Location of directives and pseudo-instructions

	5.2 Command syntax
	5.3 Format of source lines
	5.4 Predefined register and coprocessor names
	5.4.1 Predeclared register names
	5.4.2 Predeclared program status register names
	5.4.3 Predeclared floating-point register names
	5.4.4 Predeclared coprocessor names

	5.5 VFP directives and notation
	5.6 Built-in variables
	5.7 ARM pseudo-instructions
	5.7.1 ADR ARM pseudo-instruction
	5.7.2 ADRL ARM pseudo-instruction
	5.7.3 FLDD ARM pseudo-instruction
	5.7.4 FLDS ARM pseudo-instruction
	5.7.5 LDFD ARM pseudo-instruction
	5.7.6 LDFS ARM pseudo-instruction
	5.7.7 LDR ARM pseudo-instruction
	5.7.8 NOP ARM pseudo-instruction

	5.8 Thumb pseudo-instructions
	5.8.1 ADR Thumb pseudo-instruction
	5.8.2 LDR Thumb pseudo-instruction
	5.8.3 MOV Thumb pseudo-instruction
	5.8.4 NOP Thumb pseudo-instruction

	5.9 Symbols
	5.9.1 Symbol naming rules
	5.9.2 Variables
	5.9.3 Numeric constants
	5.9.4 Assembly time substitution of variables
	5.9.5 Labels
	5.9.6 Local labels

	5.10 Directives
	5.10.1 Nesting directives
	5.10.2 ALIGN directive
	5.10.3 AREA directive
	5.10.4 ASSERT directive
	5.10.5 CN directive
	5.10.6 CODE16 directive
	5.10.7 CODE32 directive
	5.10.8 CP directive
	5.10.9 DATA directive
	5.10.10 DCB or = directive
	5.10.11 DCD or & directive
	5.10.12 DCDO directive
	5.10.13 DCDU directive
	5.10.14 DCFD directive
	5.10.15 DCFDU directive
	5.10.16 DCFS directive
	5.10.17 DCFSU directive
	5.10.18 DCI
	5.10.19 DCQ directive
	5.10.20 DCQU directive
	5.10.21 DCW directive
	5.10.22 DCWU directive
	5.10.23 DN directive
	5.10.24 ELSE or | directive
	5.10.25 END directive
	5.10.26 ENDFUNC directive
	5.10.27 ENDIF or ] directive
	5.10.28 ENDP directive
	5.10.29 ENTRY directive
	5.10.30 EQU or * directive
	5.10.31 EXPORT or GLOBAL directive
	5.10.32 EXTERN directive
	5.10.33 FIELD or # directive
	5.10.34 FN directive
	5.10.35 FRAME ADDRESS directive
	5.10.36 FRAME POP directive
	5.10.37 FRAME PUSH directive
	5.10.38 FRAME REGISTER directive
	5.10.39 FRAME RESTORE directive
	5.10.40 FRAME SAVE directive
	5.10.41 FRAME STATE REMEMBER directive
	5.10.42 FRAME STATE RESTORE directive
	5.10.43 FUNCTION directive
	5.10.44 GBLA directive
	5.10.45 GBLL directive
	5.10.46 GBLS directive
	5.10.47 GET or INCLUDE directive
	5.10.48 GLOBAL directive
	5.10.49 IF or [ directive
	5.10.50 IMPORT directive
	5.10.51 INCBIN directive
	5.10.52 INCLUDE directive
	5.10.53 INFO or ! directive
	5.10.54 KEEP directive
	5.10.55 LCLA directive
	5.10.56 LCLL directive
	5.10.57 LCLS directive
	5.10.58 LTORG directive
	5.10.59 MACRO directive
	5.10.60 MAP or ^ directive
	5.10.61 MEND directive
	5.10.62 MEXIT directive
	5.10.63 NOFP directive
	5.10.64 OPT directive
	5.10.65 PROC directive
	5.10.66 REQUIRE directive
	5.10.67 RLIST directive
	5.10.68 RN directive
	5.10.69 ROUT directive
	5.10.70 SETA directive
	5.10.71 SETL directive
	5.10.72 SETS directive
	5.10.73 SN directive
	5.10.74 SPACE or % directive
	5.10.75 SUBT directive
	5.10.76 TTL directive
	5.10.77 VFPASSERT SCALAR
	5.10.78 VFPASSERT VECTOR
	5.10.79 WEND directive
	5.10.80 WHILE directive

	5.11 Expressions, literals and operators
	5.11.1 String expressions
	5.11.2 String literals
	5.11.3 Numeric expressions
	5.11.4 Numeric literals
	5.11.5 Floating-point literals
	5.11.6 Register-relative and program-relative expressions
	5.11.7 Logical expressions
	5.11.8 Logical literals
	5.11.9 Unary operators
	5.11.10 Binary operators


	The ARM Linker
	6.1 About armlink
	6.1.1 Input to armlink
	6.1.2 Output from armlink
	6.1.3 Summary of armlink options

	6.2 Armlink syntax
	6.3 Image structure
	6.3.1 Building blocks for objects and images
	6.3.2 Load view and execution view of an image
	6.3.3 Specifying an image memory map
	6.3.4 Image entry points
	6.3.5 Section placement and sorting rules

	6.4 Linker-defined symbols
	6.4.1 Region-related symbols
	6.4.2 Output section related symbols
	6.4.3 Input section related symbols

	6.5 Library searching, selection and scanning
	6.5.1 Searching for libraries
	6.5.2 Selecting library variants
	6.5.3 Scanning the libraries

	6.6 Optimizations and modifications
	6.6.1 Common debug section elimination
	6.6.2 Common section elimination
	6.6.3 Unused section elimination
	6.6.4 Veneer generation

	6.7 Accessing symbols in another image
	6.7.1 Reading a symdefs file
	6.7.2 Creating a symdefs file
	6.7.3 Symdefs file format

	6.8 Creating simple images
	6.8.1 Type 1: one load region and contiguous output regions
	6.8.2 Type 2: one load region and non-contiguous output regions
	6.8.3 Type 3: two load regions and non-contiguous output regions

	6.9 Creating complex images with scatter loading
	6.9.1 Symbols defined for scatter loading
	6.9.2 Command-line option
	6.9.3 The scatter load description file
	6.9.4 Selecting veneer input sections in scatter loading descriptions
	6.9.5 Resolving multiple matches
	6.9.6 Scatter loading descriptions for simple images


	Toolkit Utilities
	7.1 Functions of the toolkit utilities
	7.2 The fromELF utility
	7.2.1 Image structure
	7.2.2 fromELF command-line options

	7.3 ARM profiler
	7.3.1 Profiler command-line options
	7.3.2 Sample output

	7.4 ARM librarian
	7.4.1 Librarian command-line options
	7.4.2 Examples

	7.5 The Flash downloader
	7.5.1 Using the Flash downloader from AXD or ADW
	7.5.2 Using the Flash downloader from armsd


	Floating-point Support
	8.1 About floating-point support
	8.2 The software floating-point library, fplib
	8.2.1 Arithmetic on numbers in a particular format
	8.2.2 Conversions between floats, doubles, and ints
	8.2.3 Conversions between long longs and other number formats
	8.2.4 Floating-point comparisons

	8.3 Controlling the floating-point environment
	8.3.1 The __fp_status function
	8.3.2 The __ieee_status function
	8.3.3 Microsoft compatibility functions
	8.3.4 C9X-compatible functions
	8.3.5 ARM extensions to the C9X interface

	8.4 The math library, mathlib
	8.4.1 Inverse hyperbolic functions (acosh, asinh, atanh)
	8.4.2 Cube root (cbrt)
	8.4.3 Copy sign (copysign)
	8.4.4 Error functions (erf, erfc)
	8.4.5 One less than exp(
	8.4.6 Determine if a number is finite (finite)
	8.4.7 Gamma function (gamma, gamma_r)
	8.4.8 Hypotenuse function (hypot)
	8.4.9 Return the exponent of a number (ilogb)
	8.4.10 Determine if a number is a NaN (isnan)
	8.4.11 Bessel functions of the first kind (j0, j1, jn)
	8.4.12 The logarithm of the gamma function (lgamma, lgamma_r)
	8.4.13 Logarithm of one more than x (log1p)
	8.4.14 Return the exponent of a number (logb)
	8.4.15 Return the next representable number (nextafter)
	8.4.16 IEEE 754 remainder function (remainder)
	8.4.17 IEEE round-to-integer operation (rint)
	8.4.18 Scale a number by a power of two (scalb, scalbn)
	8.4.19 Return the fraction part of a number (significand)
	8.4.20 Bessel functions of the second kind (y0, y1, yn)

	8.5 IEEE 754 arithmetic
	8.5.1 Basic data types
	8.5.2 Arithmetic and rounding
	8.5.3 Exceptions


	Glossary
	Index
	A
	B, C
	D, E
	F
	G, H, I, K
	L
	M, N, O, P
	Q, R, S
	T, U, V, W, Z, Symbols


