
KS32C50100 RISC MICROCONTROLLER PRODUCT OVERVIEW

1-1

1 PRODUCT OVERVIEW

OVERVIEW

Samsung's KS32C50100 16/32-bit RISC microcontroller is a cost-effective, high-performance microcontroller
solution for Ethernet-based systems. An integrated Ethernet controller, the KS32C50100, is designed for use in
managed communication hubs and routers.

The KS32C50100 is built around an outstanding CPU core: the 16/32-bit ARM7TDMI RISC processor designed by
Advanced RISC Machines, Ltd. The ARM7TDMI core is a low-power, general purpose microprocessor macro-cell
that was developed for use in application-specific and custom-specific integrated circuits. Its simple, elegant, and
fully static design is particularly suitable for cost-sensitive and power-sensitive applications.

The KS32C50100 offers a configurable 8-Kbyte unified cache/SRAM and Ethernet controller which reduces total
system cost. Most of the on-chip function blocks have been designed using an HDL synthesizer and the
KS32C50100 has been fully verified in Samsung's state-of-the-art ASIC test environment.

Important peripheral functions include two HDLC channels with buffer descriptor, two UART channels, 2-channel
GDMA, two 32-bit timers, and 18 programmable I/O ports. On-board logic includes an interrupt controller, DRAM/
SDRAM controller, and a controller for ROM/SRAM and flash memory. The System Manager includes an internal
32-bit system bus arbiter and an external memory controller.

The following integrated on-chip functions are described in detail in this user's manual:

• 8-Kbyte unified cache/SRAM

• I2C interface

• Ethernet controller

• HDLC

• GDMA

• UART

• Timers

• Programmable I/O ports

• Interrupt controller

PRODUCT OVERVIEW KS32C50100 RISC MICROCONTROLLER

1-2

FEATURES

Architecture

• Integrated system for embedded ethernet
applications

• Fully 16/32-bit RISC architecture

• Little/Big-Endian mode supported basically, the
internal architecture is big-endian.
So, the little-endian mode only support for
external memory.

• Efficient and powerful ARM7TDMI core

• Cost-effective JTAG-based debug solution

• Boundary scan

System Manager

• 8/16/32-bit external bus support for ROM/SRAM,
flash memory, DRAM, and external I/O

• One external bus master with bus request/
acknowledge pins

• Support for EDO/normal or SDRAM

• Programmable access cycle (0–7 wait cycles)

• Four-word depth write buffer

• Cost-effective memory-to-peripheral DMA
interface

Unified Instruction/Data Cache

• Two-way, set-associative, unified 8-Kbyte cache

• Support for LRU (least recently used) protocol

• Cache is configurable as an internal SRAM

I2C Serial Interface

• Master mode operation only

• Baud rate generator for serial clock generation

Ethernet Controller

• DMA engine with burst mode

• DMA Tx/Rx buffers (256 bytes Tx, 256 bytes Rx)

• MAC Tx/Rx FIFO buffers (80 bytes Tx, 16 bytes
Rx)

• Data alignment logic

• Endian translation

• 100/10-Mbit per second operation

• Full compliance with IEEE standard 802.3

• MII and 7-wire 10-Mbps interface

• Station management signaling

• On-chip CAM (up to 21 destination addresses)

• Full-duplex mode with PAUSE feature

• Long/short packet modes

• PAD generation

HDLCs

• HDLC protocol features:

– Flag detection and synchronization

– Zero insertion and deletion

– Idle detection and transmission

– FCS generation and detection (16-bit)

– Abort detection and transmission

• Address search mode (expandable to 4 bytes)

• Selectable CRC or No CRC mode

• Automatic CRC generator preset

• Digital PLL block for clock recovery

• Baud rate generator

• NRZ/NRZI/FM/Manchester data formats for Tx/Rx

• Loop-back and auto-echo modes

• Tx/Rx FIFOs have 8-word (8 × 32-bit) depth

• Selectable 1-word or 4-word data transfer mode

• Data alignment logic

• Endian translation

• Programmable interrupts

• Modem interface

• Up to 10 Mbps operation

• HDLC frame length based on octets

• 2-channel DMA buffer descriptor for Tx/Rx on
each HDLC

KS32C50100 RISC MICROCONTROLLER PRODUCT OVERVIEW

1-3

DMA Controller

• 2-channel General DMA for memory-to-memory,
memory-to-UART, UART-to-memory data
transfers without CPU intervention

• Initiated by a software or external DMA request

• Increments or decrements a source or destination
address in 8-bit, 16-bit or 32-bit data transfers

• 4-data burst mode

UARTs

• Two UART (serial I/O) blocks with DMA-based or
interrupt-based operation

• Support for 5-bit, 6-bit, 7-bit, or 8-bit serial data
transmit and receive

• Programmable baud rates

• 1 or 2 stop bits

• Odd or even parity

• Break generation and detection

• Parity, overrun, and framing error detection

• ×16 clock mode

• Infra-red (IR) Tx/Rx support (IrDA)

Timers

• Two programmable 32-bit timers

• Interval mode or toggle mode operation

Programmable I/O

• 18 programmable I/O ports

• Pins individually configurable to input, output, or
I/O mode for dedicated signals

Interrupt Controller

• 21 interrupt sources, including 4 external interrupt
sources

• Normal or fast interrupt mode (IRQ, FIQ)

• Prioritized interrupt handling

PLL

• The external clock can be multiplied by on-chip
PLL to provide high frequency system clock

• The input frequency range is 10-40MHz

• The output frequency is 5 times of input clock. To
get 50MHz, input clock frequency should be
10MHz.

Operating Voltage Range

• 3.3 V ± 5 %

Operating Temperature Range

• 0 °C to + 70 °C

Operating Frequency

• Up to 50 MHz

Package Type

• 208 pin QFP

PRODUCT OVERVIEW KS32C50100 RISC MICROCONTROLLER

1-4

Figure 1-1 KS32C50100 Block Diagram

ARM7TDMI
32-Bit RISC CPU

ICE-
Breaker

CPU Interface

8-Kbyte
Unified
Cache

Bus Router

I2C

18 General I/O Ports

Interrupt Controller

UART 0, 1

32-Bit Timer 0, 1

GDMA 0, 1

PLL

4-Word
Write
Buffer

32-Bit
System
Bus

Memory
Controller

with
Refresh
Control

System
Bus
Arbiter

2-Channel HDLCs
with DMAs

Ethernet Controller

TAP Controller for JTAG

2-Channel BDMA

MAC
Tx FIFO (80 Bytes)
Rx FIFO (16 Bytes)

BDMA RAMs
Tx Buffer (256 Bytes)
Rx Buffer (256 Bytes)
CAM (128 Bytes)

6-Bank
ROM
SRAM
FLASH

4-Bank
DRAM

4-Bank
External

I/O
Device

External
Bus

Master

Remote
Port A, B

Ext. Bus
REQ/ACK

SCL
SDA

18 I/O Ports including
 4: Ext INT req,
 2: Timer out (0, 1),
 2: Ext DMA REQ,
 2: Ext DMA ACK

MII or
7-wire

Console

Xtal
Osc

KS32C50100 RISC MICROCONTROLLER PRODUCT OVERVIEW

1-5

Figure 1-2 KS32C50100 Pin Assignment Diagram

V
D

D
a

V
S

S
a

F
IL

T
E

R
V

D
D

V
S

S
T

C
K

T
M

S
T

D
I

T
D

0
nT

R
S

T
T

M
O

D
E

U
C

LK
V

D
D

V
S

S
nE

C
S

<
0>

nE
C

S
<

1>
nE

C
S

<
2>

nE
C

S
<

3>
nE

W
A

IT
nO

E
B

O
S

IZ
E

<
0>

B
O

S
IZ

E
<

1>
nR

C
S

<
0>

C
LK

O
E

N
S

D
C

LK
/M

C
LK

O
V

D
D

V
S

S
X

C
LK

V
S

S
nR

E
S

E
T

C
LK

S
E

L
nR

C
S

<
1>

nR
C

S
<

2>
nR

C
S

<
3>

nR
C

S
<

4>
nR

C
S

<
5>

nS
D

C
S

<
0>

/n
R

A
S

<
0>

nS
D

C
S

<
1>

/n
R

A
S

<
1>

nS
D

C
S

<
2>

/n
R

A
S

<
2>

V
D

D
V

S
S

nS
D

C
S

<
3>

/n
R

A
S

<
3>

nS
D

R
A

S
/n

C
A

S
<

0>
nS

D
C

A
S

/n
C

A
S

<
1>

C
K

E
/n

C
A

S
<

2>
nC

A
S

<
3>

nD
W

E
D

Q
M

0/
nW

B
E

<
0>

D
Q

M
1/

nW
B

E
<

1>
D

Q
M

2/
nW

B
E

<
2>

V
D

D
V

S
S

V
S

S
V

D
D

U
A

R
X

D
1

nU
A

D
S

R
0

U
A

T
X

D
0

nU
A

D
T

R
0

U
A

R
X

D
0

S
D

A
S

C
L

P
<

17
>

/T
O

U
T

1
V

S
S

V
D

D
P

<
16

>
/T

O
U

T
0

P
<

15
>

/n
X

D
A

C
K

<
1>

P
<

14
>

/n
X

D
A

C
K

<
0>

P
<

13
>

/n
X

D
R

E
Q

<
1>

P
<

12
>

/n
X

D
R

E
Q

<
0>

P
<

11
>

/x
IN

R
E

Q
<

3>
P

<
10

>
/x

IN
R

E
Q

<
2>

P
<

9>
/x

IN
R

E
Q

<
1>

V
S

S
V

D
D

P
<

8>
/x

IN
R

E
Q

<
0>

P
<

7>
P

<
6>

P
<

5>
P

<
4>

P
<

3>
P

<
2>

P
<

1>
V

S
S

V
D

D
P

<
0>

X
D

A
TA

<
31

>
X

D
A

TA
<

30
>

X
D

A
TA

<
29

>
X

D
A

TA
<

28
>

X
D

A
TA

<
27

>
X

D
A

TA
<

26
>

X
D

A
TA

<
25

>
V

S
S

V
D

D
X

D
A

TA
<

24
>

X
D

A
TA

<
23

>
X

D
A

TA
<

22
>

X
D

A
TA

<
21

>
X

D
A

TA
<

20
>

X
D

A
TA

<
19

>
X

D
A

TA
<

18
>

X
D

A
TA

<
17

>
V

S
S

V
D

D

VSS
VDD
XDATA<16>
XDATA<15>
XDATA<14>
XDATA<13>
XDATA<12>
XDATA<11>
XDATA<10>
XDATA<9>
XDATA<8>
XDATA<7>
XDATA<6>
VSS
VDD
XDATA<5>
XDATA<4>
XDATA<3>
XDATA<2>
XDATA<1>
XDATA<0>
ADDR<21>
ADDR<20>
ADDR<19>
ADDR<18>
VSS
VDD
ADDR<17>
ADDR<16>
ADDR<15>
ADDR<14>
ADDR<13>
ADDR<12>
ADDR<11>
ADDR<10>/AP
ADDR<9>
ADDR<8>
VSS
VDD
ADDR<7>
ADDR<6>
ADDR<5>
ADDR<4>
ADDR<3>
ADDR<2>
ADDR<1>
ADDR<0>
ExtMACK
ExtMREQ
nWBE<3>/DQM<3>
VSS
VDD

KS32C50100

208-QFP

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52

156
155
154
153
152
151
150
149
148
147
146
145
144
143
142
141
140
139
138
137
136
135
134
133
132
131
130
129
128
127
126
125
124
123
122
121
120
119
118
117
116
115
114
113
112
111
110
109
108
107
106
105

20
8

20
7

20
6

20
5

20
4

20
3

20
2

20
1

20
0

19
9

19
8

19
7

19
6

19
5

19
4

19
3

19
2

19
1

19
0

18
9

18
8

18
7

18
6

18
5

18
4

18
3

18
2

18
1

18
0

17
9

17
8

17
7

17
6

17
5

17
4

17
3

17
2

17
1

17
0

16
9

16
8

16
7

16
6

16
5

16
4

16
3

16
2

16
1

16
0

15
9

15
8

15
7

53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 10
0

10
1

10
2

10
3

10
4

VDD
VSS

nUADTR1
UATXD1

nUADSR1
nDTRA
RXDA

nRTSA
TXDA

nCTSA
VDD
VSS

nDCDA
RXCA

nSYNCA
TXCA

nDTRB
RTDB

nRTSB
TXDB

VDD
VSS

nCTSB
nDCDB

RXCB
nSYNCB

TXCB
CRS/CRS_10M

RX_DV/LINK_10M
RXD<0>/RXD_10M

VDD
VSS

RXD<1>
RXD<2>
RXD<3>
RX_ERR

RX_CLK/RXCLK_10K
COL/COL_10M

TXD<0>/TXD_10M
TXD<1>/LOOP_10M

VDD
VSS

TXD<2>
TXD<3>

TX_ERR/PCOMP_10M
TX_CLK/TXCLK_10M

TX_EN/TXEN_10M
MDIO

LITTLE
MDC
VDD
VSS

PRODUCT OVERVIEW KS32C50100 RISC MICROCONTROLLER

1-6

SIGNAL DESCRIPTIONS

Table 1-1 KS32C50100 Signal Descriptions

Signal Pin No. Type Description

XCLK 80 I KS32C50100 System Clock source. If CLKSEL is Low, PLL output
clock is used as the KS32C50100 internal system clock. If CLKSEL
is High, XCLK is used as the KS32C50100 internal system clock.

MCLKO/SDCLK (1) 77 O System Clock Out. MCLKO is monitored as the same phase of
internal system clock, MCLK.
SDCLK is system clock for SDRAM

CLKSEL 83 I Clock Select. When CLKSEL is '0'(low level), PLL output clock can
be used as the master clock. When CLKSEL is '1'(high level), the
XCLK is used as the master clock.

nRESET 82 I Not Reset. nRESET is the global reset input for the KS32C50100.
TO allow a system reset, and for internal digital filtering, nRESET
must be held to Low level for at least 64 master clock cycles. Refer
to "Figure 3. KS32C50100 reset timing diagram" for more details
about reset timing.

CLKOEN 76 I Clock Out Enable/Disable. (See the pin description for MCLKO.)

TMODE 63 I Test Mode. The TMODE bit settings are interpreted as follows:
'0' = normal operating mode, '1' = chip test mode.
This TMODE pin also can be used to change MF of PLL.
To get 5 times internal system clock from external clock, '0'(low
level) should be assigned to TMODE. If '1'(high level), MF will be
changed to 6.6.

FILTER 55 AI If the PLL is used, 820pF capacitor should be connected between
the pin and analog groud.

TCK 58 I JTAG Test Clock. The JTAG test clock shifts state information and
test data into, and out of, the KS32C50100 during JTAG test
operations. This pin is internally connected pull-down.

TMS 59 I JTAG Test Mode Select. This pin controls JTAG test operations in
the KS32C50100. This pin is internally connected pull-up.

TDI 60 I JTAG Test Data In. The TDI level is used to serially shift test data
and instructions into the KS32C50100 during JTAG test operations.
This pin is internally connected pull-up.

TDO 61 O JTAG Test Data Out. The TDO level is used to serially shift test data
and instructions out of the KS32C50100 during JTAG test
operations.

nTRST 62 I JTAG Not Reset. Asynchronous reset of the JTAG logic.
This pin is internally connected pull-up.

KS32C50100 RISC MICROCONTROLLER PRODUCT OVERVIEW

1-7

ADDR[21:0]/

ADDR[10]/AP (1)
117–110,
129–120,
135–132

O Address Bus. The 22-bit address bus, ADDR[21:0], covers the full
4M word address range of each ROM/SRAM, flash memory,
DRAM, and the external I/O banks.
The 23-bit internal address bus used to generate DRAM address.
The number of column address bits in DRAM bank can be
programmed 8bits to 11bits use by DRAMCON registers.
ADDR[10]/AP is the auto precharge control pin. The auto precharge
command is issued at the same time as burst read or burst write
by asserting high on ADDR[10]/AP.

XDATA[31:0] 141–136,
154–144,
166–159,
175–169

I/O External (bi-directional, 32-bit) Data Bus. The KS32C50100 data
bus supports external 8-bit, 16-bit, and 32-bit bus sizes.

nRAS[3:0]/

nSDCS[3:0] (1)
94, 91, 90,

89
O Not Row Address Strobe for DRAM. The KS32C50100 supports up

to four DRAM banks. One nRAS output is provided for each bank.
nSDCS[3:0] are chip select pins for SDRAM.

nCAS[3:0]
nCAS[0]/nSDRAS
nCAS[1]/nSDCAS

nCAS[2]/CKE (1)

98, 97, 96,
95

O Not column address strobe for DRAM. The four nCAS outputs
indicate the byte selections whenenver a DRAM bank is accessed.
nSDRAS is row address strobe signal for SDRAM. Latches row
addresses on the positive going edge of the SDCLK with nSDRAS
low. Enable row access and precharge. nSDCAS is column address
strobe for SDRAM. Latches column addresses on the positive going
edge of the SDCLK with nSDCAS low. Enables column access.
CKE is clock enable signal for SDRAM. Masks SDRAM system
clock, SDCLK to freeze operation from the next clock cycle.
SDCLK should be enabled at least one cycle prior to new
command. Disable input buffers of SDRAM for power down in
standby.

nDWE 99 O DRAM Not Write Enable. This pin is provided for DRAM bank write
operations. (nWBE[3:0] is used for write operations to the ROM/
SRAM/flash memory banks.) .

nECS[3:0] 70, 69, 68,
67

O Not External I/O Chip Select. Four external I/O banks are provided
for external memory-mapped I/O operations. Each I/O bank stores
up to 16 Kbytes. nECS signals indicate which of the four external
I/O banks is selected.

nEWAIT 71 I Not External Wait. This signal is activated when an external I/O
device or ROM/SRAM/flash bank 5 needs more access cycles than
those defined in the corresponding control register.

nRCS[5:0] 88–84, 75 O Not ROM/SRAM/Flash Chip Select. The KS32C50100 can access
up to six external ROM/SRAM/Flash banks. By controlling the
nRCS signals, you can map CPU addresses into the physical
memory banks.

B0SIZE[1:0] 74, 73 I Bank 0 Data Bus Access Size. Bank 0 is used for the boot program.
You use these pins to set the size of the bank 0 data bus as follows:
'01' = one byte, '10' = half-word, '11' = one word, and '00' =
reserved.

Table 1-1 KS32C50100 Signal Descriptions

Signal Pin No. Type Description

PRODUCT OVERVIEW KS32C50100 RISC MICROCONTROLLER

1-8

nOE 72 O Not Output Enable. Whenever a memory access occurs, the nOE
output controls the output enable port of the specific memory
device.

nWBE[3:0]/

DQM[3:0] (1)
107,

102–100
O Not Write Byte Enable. Whenever a memory write access occurs,

the nWBE output controls the write enable port of the specific
memory device (except for DRAM). For DRAM banks, CAS[3:0]
and nDWE are used for the write operation.
DQM is data input/output mask signal for SDRAM.

ExtMREQ 108 I External Bus Master Request. An external bus master uses this pin
to request the external bus. When it activates the ExtMREQ signal,
the KS32C50100 drives the state of external bus pins to high
impedance. This lets the external bus master take control of the
external bus. When it has the control, the external bus master
assumes responsibility for DRAM refresh operations. The
ExtMREQ signal is deactivated when the external bus master
releases the external bus. When this occurs, ExtMACK goes Low
level and the KS32C50100 assumes the control of the bus.

ExtMACK 109 O External Bus Acknowledge. (See the ExtMREQ pin description.)

MDC 50 O Management Data Clock. The signal level at the MDC pin is used
as a timing reference for data transfers that are controlled by the
MDIO signal.

MDIO 48 I/O Management Data I/O. When a read command is being executed,
data that is clocked out of the PHY is presented on this pin. When a
write command is being executed, data that is clocked out of the
controller is presented on this pin for the Physical Layer Entity, PHY.

LITTLE 49 I Little endian mode select pin. If LITTLE is High, KS32C50100
operate in little endian mode. If Low, then in Big endian mode.
Default value is low because this pin is pull-downed internally.

COL/COL_10M 38 I Collision Detected/Collision Detected for 10M. COL is asserted
asynchronously with minimum delay from the start of a collision on
the medium in MII mode. COL_10M is asserted when a 10-Mbit/s
PHY detects a collision.

TX_CLK/
TXCLK_10M

46 I Transmit Clock/Transmit Clock for 10M. The controller drives
TXD[3:0] and TX_EN from the rising edge of TX_CLK. In MII mode,
the PHY samples TXD[3:0] and TX_EN on the rising edge of
TX_CLK. For data transfers, TXCLK_10M is provided by the 10-
Mbit/s PHY.

TXD[3:0]
LOOP_10M
TXD_10M

44, 43,
40,
39

O Transmit Data/Transmit Data for 10 M/Loop-back for 10M. Transmit
data is aligned on nibble boundaries. TXD[0] corresponds to the
first bit to be transmitted on the physical medium, which is the LSB
of the first byte and the fifth bit of that byte during the next clock.
TXD_10M is shared with TXD[0] and is a data line for transmitting to
the 10-Mbit/s PHY. LOOP_10M is shared with TXD[1] and is driven
by the loop-back bit in the control register.

Table 1-1 KS32C50100 Signal Descriptions

Signal Pin No. Type Description

KS32C50100 RISC MICROCONTROLLER PRODUCT OVERVIEW

1-9

TX_EN/
TXEN_10M

47 O Transmit Enable/Transmit Enable for 10M. TX_EN provides precise
framing for the data carried on TXD[3:0]. This pin is active during
the clock periods in which TXD[3:0] contains valid data to be
transmitted from the preamble stage through CRC. When the
controller is ready to transfer data, it asserts TXEN_10M.

TX_ERR/
PCOMP_10M

45 O Transmit Error/Packet Compression Enable for 10M. TX_ERR is
driven synchronously to TX_CLK and sampled continuously by the
Physical Layer Entity, PHY. If asserted for one or more TX_CLK
periods, TX_ERR causes the PHY to emit one or more symbols
which are not part of the valid data, or delimiter set located
somewhere in the frame that is being transmitted. PCOMP_10M is
asserted immediately after the packet’s DA field is received.
PCOMP_10M is used with the Management Bus of the DP83950
Repeater Interface Controller (from National Semiconductor). The
MAC can be programmed to assert PCOMP if there is a CAM
match, or if there is not a match. The RIC (Repeater Interface
Controller) uses this signal to compress (shorten) the packet
received for management purposes and to reduce memory usage.
(See the DP83950 Data Sheet, published by National
Semiconductor, for details on the RIC Management Bus.)
This pin is controlled by a special register, with which you can
define the polarity and assertion method (CAM match active or not
match active) of the PCOMP signal.

CRS/CRS_10M 28 I Carrier Sense/Carrier Sense for 10M. CRS is asserted
asynchronously with minimum delay from the detection of a non-
idle medium in MII mode. CRS_10M is asserted when a 10-Mbit/s
PHY has data to transfer. A 10-Mbit/s transmission also uses this
signal.

RX_CLK/
RXCLK_10M

37 I Receive Clock/Receive Clock for 10M. RX_CLK is a continuous
clock signal. Its frequency is 25 MHz for 100-Mbit/s operation, and
2.5 MHz for 10-Mbit/s. RXD[3:0], RX_DV, and RX_ERR are driven
by the PHY off the falling edge of RX_CLK, and sampled on the
rising edge of RX_CLK. To receive data, the TXCLK_10 M clock
comes from the 10-Mbit/s PHY.

RXD[3:0]/
RXD_10M

35, 34, 33,
30

I Receive Data/Receive Data for 10M. RXD is aligned on nibble
boundaries. RXD[0] corresponds to the first bit received on the
physical medium, which is the LSB of the byte in one clock period
and the fifth bit of that byte in the next clock. RXD_10M is shared
with RXD[0] and it is a line for receiving data from the 10-Mbit/s
PHY.

Table 1-1 KS32C50100 Signal Descriptions

Signal Pin No. Type Description

PRODUCT OVERVIEW KS32C50100 RISC MICROCONTROLLER

1-10

RX_DV/LINK_10M 29 I Receive Data Valid/Link Status for 10M. PHY asserts RX_DV
synchronously, holding it active during the clock periods in which
RXD[3:0] contains valid data received. PHY asserts RX_DV no later
than the clock period when it places the first nibble of the start
frame delimiter (SFD) on RXD[3:0]. If PHY asserts RX_DV prior to
the first nibble of the SFD, then RXD[3:0] carries valid preamble
symbols. LINK_10M is shared with RX_DV and used to convey the
link status of the 10-Mbit/s endec. The value is stored in a status
register.

RX_ERR 36 I Receive Error. PHY asserts RX_ERR synchronously whenever it
detects a physical medium error (e.g., a coding violation). PHY
asserts RX_ERR only when it asserts RX_DV.

TXDA 9 O HDLC Ch-A Transmit Data. The serial output data from the
transmitter is coded in NRZ/NRZI/FM/Manchester data format.

RXDA 7 I HDLC Ch-A Receive Data. The serial input data received by the
device should be coded in NRZ/NRZI/FM/Manchester data format.
The data rate should not exceed the rate of the KS32C50100
internal master clock.

nDTRA 6 O HDLC Ch-A Data Terminal Ready. nDTRA output indicates that the
data terminal device is ready for transmission and reception.

nRTSA 8 O HDLC Ch-A Request To Send. The nRTSA output goes low when
there is exist data to be sent in TxFIFO. The data to be sent is
transmitted the nCTS is active state.

nCTSA 10 I HDLC Ch-A Clear To Send. The KS32C50100 stores each
transition of nCTS to ensure that its occurrence would be
acknowledged by the system.

nDCDA 13 I HDLC Ch-A Data Carrier Detected. A High level on this pin resets
and inhibits the receiver register. Data from a previous frame that
may remain in the RxFIFO is retained. The KS32C50100 stores
each transition of nDCD.

nSYNCA 15 O HDLC Ch-A Sync is detected. This indicates the reception of a flag.
The nSYNC output goes low for one bit time beginning at the last bit
of the flag.

RXCA 14 I HDLC Ch-A Receiver Clock. When this clock input is used as the
receiver clock, the receiver samples the data on the positive edge
of RXCA clock. This clock can be the source clock of the receiver,
the baud rate generator, or the DPLL.

TXCA 16 I/O HDLC Ch-A Transmitter Clock. When this clock input is used as the
transmitter clock, the transmitter shifts data on the negative
transition of the TXCA clock . If you do not use TXCA as the
transmitter clock, you can use it as an output pin for monitoring
internal clocks such as the transmitter clock, receiver clock, and
baud rate generator output clocks.

TXDB 20 O HDLC Ch-B Transmit Data. See the TXDA pin description.

RXDB 18 I HDLC Ch-B Receive Data. See the RXDA pin description.

Table 1-1 KS32C50100 Signal Descriptions

Signal Pin No. Type Description

KS32C50100 RISC MICROCONTROLLER PRODUCT OVERVIEW

1-11

nDTRB 17 O HDLC Ch-B Data Terminal Ready. See the nDTRA pin description.

nRTSB 19 O HDLC Ch-B Request To Send. See the nRTSA pin description.

nCTSB 23 I HDLC Ch-B Clear To Send. See the nCTSA pin description.

nDCDB 24 I HDLC Ch-B Data Carrier Detected. See the nDCDA pin description.

nSYNCB 26 O HDLC Ch-B Sync is detected. See the nSYNCA pin description.

RXCB 25 I HDLC Ch-B Receiver Clock. See the RXCA pin description.

TXCB 27 I/O HDLC Ch-B Transmitter Clock. See the TXCA pin description.

UCLK 64 I The external UART clock input. MCLK or PLL generated clock can
be used as the UART clock. You can use UCLK, with an appropriate
divided by factor, if a very precious baud rate clock is required.

UARXD0 202 I UART0 Receive Data. RXD0 is the UART 0 input signal for
receiving serial data.

UATXD0 204 O UART0 Transmit Data. TXD0 is the UART 0 output signal for
transmitting serial data.

nUADTR0 203 I Not UART0 Data Terminal Ready. This input signals the
KS32C50100 that the peripheral (or host) is ready to transmit or
receive serial data.

nUADSR0 205 O Not UART0 Data Set Ready. This output signals the host (or
peripheral) that UART 0 is ready to transmit or receive serial data.

UARXD1 206 I UART1 Receive Data. See the RXD0 pin description.

UATXD1 4 O UART1 Transmit Data. See the TXD0 pin description.

nUADTR1 3 I Not UART1 Data Terminal Ready. See the DTR0 pin description.

nUADSR1 5 O Not UART1 Data Set Ready. See the DSR0 pin description.

P[7:0] 185–179,
176

I/O General I/O ports. See the I/O ports, chapter 12.

XINTREQ[3:0]
P[11:8]

191–189,
186

I/O External interrupt request lines or general I/O ports.
See the I/O ports, chapter 12.

nXDREQ[1:0]/
P[13:12]

193, 192 I/O Not External DMA requests for GDMA or general I/O ports.
See the I/O ports, chapter 12.

nXDACK[1:0]
P[15:14]

195, 194 I/O Not External DMA acknowledge from GDMA or general I/O ports.
See the I/O ports, chapter 12.

TOUT0/P[16] 196 I/O Timer 0 out or general I/O port. See the I/O ports, chapter 12.

TOUT1/P[17] 199 I/O Timer 1 out or general I/O port. See the I/O ports, chapter 12.

SCL 200 I/O I2C serial clock.

SDA 201 I/O I2C serial data.

Table 1-1 KS32C50100 Signal Descriptions

Signal Pin No. Type Description

PRODUCT OVERVIEW KS32C50100 RISC MICROCONTROLLER

1-12

NOTES:
1. SDRAM or EDO/normal DRAM interface signal pins are shared functions. It’s functions will be configured by SYSCFG[31].

VDDP 1, 21, 41,
56, 78, 92,
105, 118,
130, 155,
167, 177,
197

Power I/O pad power

VDDI 11, 31, 51,
65, 103,
142, 157,
187, 207

Power Internal core power

VSSP 2, 22, 42,
57, 79, 81,
93, 106,
119, 131,
156, 168,
178, 198

GND I/O pad ground

VSSI 12, 32, 52,
66, 104,
143, 158,
188, 208

GND Internal core ground

VDDA 53 Power Analog power for PLL

VSSA/VBBA 54 GND Analog/Bulk ground for PLL

Table 1-1 KS32C50100 Signal Descriptions

Signal Pin No. Type Description

KS32C50100 RISC MICROCONTROLLER PRODUCT OVERVIEW

1-13

Table 1-2 KS32C50100 Pin List and PAD Type

Group Pin Name Pin
Counts

I/O
Type

Pad Type Description

System
Configuration
(8)

XCLK 1 I ptic KS32C50100 system source clock.

MCLKO 1 O pob4 System clock out.

CLKSEL 1 I ptic Clock select.

nRESET 1 I ptis Not reset.

CLKOEN 1 I ptic Clock out enable/disable.

TMODE 1 I ptic Test mode.

LITTLE 1 I pticd Little endian mode select pin

FILTER 1 I pia_bb PLL filter pin

TAP Control
(5)

TCK 1 I ptic JTAG test clock.

TMS 1 I pticu JTAG test mode select.

TDI 1 I pticu JTAG test data in.

TDO 1 O ptot2 JTAG test data out.

nTRST 1 I pticu JTAG not reset.

Memory
Interface
(83)

ADDR[21:0] 22 O ptot6 Address bus.

XDATA[31:0] 32 I/O ptbsut6 External, bi-directional, 32-bit data bus.

nRAS[3:0] 4 O pot4 Not row address strobe for DRAM.

nCAS[3:0] 4 O pot4 Not column address strobe for DRAM.

nDWE 1 O pot4 Not write enable

nECS[3:0] 4 O pot4 Not external I/O chip select.

nEWAIT 1 I ptic Not external wait signal.

nRCS[5:0] 6 O pot4 Not ROM/SRAM/flash chip select.

B0SIZE[1:0] 2 I ptic Bank 0 data bus access size.

nOE 1 O pot4 Not output enable.

nWBE[3:0] 4 O pot4 Not write byte enable.

ExtMREQ 1 I ptic External master bus request.

ExtMACK 1 O pob1 External bus acknowledge.

PRODUCT OVERVIEW KS32C50100 RISC MICROCONTROLLER

1-14

Ethernet
Controller
(18)

MDC 1 O pob4 Management data clock.

MDIO 1 I/O ptbcut4 Management data I/O.

COL/
COL_10M

1 I ptis Collision detected/collision detected for 10M.

TX_CLK/
TXCLK_10M

1 I ptis Transmit data/transmit data for 10M.

TXD[3:0]/
TXD_10M/
LOOP_10M

4 O pob4 Transmit data/transmit data for 10M.

TX_EN/
TXEN_10M

1 O pob4 Transmit enable or transmit enable for 10M.

TX_ERR/
PCOMP_10M

1 O pob4 Transmit error/packet compression enable for
10M.

CRS/
CRS_10M

1 I ptis Carrier sense/carrier sense for 10M.

RX_CLK/
RXCLK_10M

1 I ptis Receive clock/receive clock for 10M.

RXD[3:0]/
RXD_10M

4 I ptis Receive data/receive data for 10M.

RX_DV/
LINK_10M

1 I ptis Receive data valid.

RX_ERR 1 I ptis Receive error.

HDLC
Channel A
(9)

TXDA 1 O pob4 HDLC channel A transmit data.

RXDA 1 I ptis HDLC channel A receive data.

nDTRA 1 O pob4 HDLC channel A data terminal ready.

nRTSA 1 O pob4 HDLC channel A request to send.

nCTSA 1 I ptis HDLC channel A clear to send.

nDCDA 1 I ptis HDLC channel A data carrier detected.

nSYNCA 1 O pob4 HDLC channel A sync is detected.

RXCA 1 I ptis HDLC channel A receiver clock.

TXCA 1 I/O ptbsut1 HDLC channel A transmitter clock.

Table 1-2 KS32C50100 Pin List and PAD Type

Group Pin Name Pin
Counts

I/O
Type

Pad Type Description

KS32C50100 RISC MICROCONTROLLER PRODUCT OVERVIEW

1-15

HDLC
Channel B
(9)

TXDB 1 O pob4 HDLC channel B transmit data.

RXDB 1 I ptis HDLC channel B receive data.

nDTRB 1 O pob4 HDLC channel B data terminal ready.

nRTSB 1 O pob4 HDLC channel B request to send.

nCTSB 1 I ptis HDLC channel B clear to send.

nDCDB 1 I ptis HDLC channel B data carrier detected.

nSYNCB 1 O pob4 HDLC channel B sync is detected.

RXCB 1 I ptis HDLC channel B receiver clock.

TXCB 1 I/O ptbsut1 HDLC channel B transmitter clock.

UART 0
(5)

UCLK 1 I ptis UART External Clock for UART0/UART1

UARXD0 1 I ptic UART 0 receive data.

UATXD0 1 O pob4 UART 0 transmit data.

nUADTR0 1 I ptic Not UART 0 data terminal ready.

nUADSR0 1 O pob4 Not UART0 data set ready.

UART 1
(4)

UARXD1 1 I ptic UART 1 receive data.

UATXD1 1 O pob4 UART 1 transmit data.

nUADTR1 1 I ptic Not UART 1 data terminal ready.

nUADSR1 1 O pob4 Not UART 1 data set ready.

General-
Purpose
I/O Ports,
(xINTREQ,
 nXDREQ,
 nXDACK,
 Timer 0, 1)
(18)

P[7:0] 8 I/O ptbst4sm General I/O ports.

xINTREQ[3:0]
/P[11:8]

4 I/O ptbst4sm External interrupt requests or general I/O ports.

nXDREQ[1:0]/
P[13:12]

2 I/O ptbst4sm External DMA requests for GDMA or general
I/O ports.

nXDACK[1:0]/
P[15:14]

2 I/O ptbst4sm External DMA acknowledge from GDMA or
general I/O ports.

TIMER0/P[16] 1 I/O ptbst4sm Timer 0 out or general I/O port.

TIMER1/P[17] 1 I/O ptbst4sm Timer 1 out or general I/O port.

I2C
(2)

SCL 1 I/O ptbcd4 I2C serial clock.

SDA 1 I/O ptbcd4 I2C serial data.

Table 1-2 KS32C50100 Pin List and PAD Type

Group Pin Name Pin
Counts

I/O
Type

Pad Type Description

PRODUCT OVERVIEW KS32C50100 RISC MICROCONTROLLER

1-16

NOTE: 1. pticu and pticd provides 100K Ohm Pull-up(down) register.
For detail information about the pad type, see Chapter 4. Input/Output Cells of the "STD90/MDL90 0.35um 3.3V
Standard Cell Library Data Book", produced by Samsung Electronics Co., Ltd, ASIC Team .

Table 1-3 KS32C50100 PAD Type
Pad
Type

I/O
Type

Current
Drive

Cell Type Feature
Slew-Rate

Control

ptic I – LVCMOS Level 5V-tolerant –

ptis I –
LVCMOS Schmit
Trigger Level

5V-tolerant –

pticu I –
LVCMOS Level 5V-tolerant

Pull-up register
–

pticd I –
LVCMOS Level 5V-tolerant

Pull-down register
–

pia_bb I –
Analog input with
seperate bulk bias

– –

pob1 O 1mA Normal Buffer – –

ptot2 O 2mA Tri-state Buffer 5V-tolerant –

pob4 O 4mA Normal Buffer – –

ptot4 O 4mA Tri-state Buffer 5V-tolerant –

ptot6 O 6mA Tri-state Buffer 5V-tolerant –

ptbsut1 I/O 1mA
LVCMOS Schmit trigger
level Tri-state Buffer

5V-tolerant
Pull-up register

–

ptbcut4 I/O 4mA
LVCMOS Level
Tri-state Buffer

5V-tolerant Medium

ptbcd4 I/O 4mA
LVCMOS Level
Open drain Buffer

5V-tolerant –

Figure 1-3 Reset Timing Diagramt

nRESET

nRCS0

64*f MCLK 512*f MCLK

NOTE: After the falling edge of nRESET, the KS32C50100 count 64 cycles for a
 sysetem reset and needs further 512 cycles for a TAG RAM clear of cache.
 After these cycles, the KS32C50100 asserts nRCS0 when the nRESET is
 released.

KS32C50100 RISC MICROCONTROLLER PRODUCT OVERVIEW

1-17

CPU CORE OVERVIEW

The KS32C50100 CPU core is a general purpose 32-bit ARM7TDMI microprocessor, developed by Advanced
RISC Machines, Ltd. (ARM). The core architecture is based on Reduced Instruction Set Computer (RISC)
principles. The RISC architecture makes the instruction set and its related decoding mechanism simpler and more
efficient than those with microprogrammed Complex Instruction Set Computer (CISC) systems. High instruction
throughput and impressive real-time interrupt response are among the major beneifts of the architecture. Pipelining
is also employed so that all components of the processing and memory systems can operate continuously. The
ARM7TDMI has a 32-bit address bus.

An important feature of the ARM7TDMI processor that makes itself distinct from the ARM7 processor is a unique
architectural strategy called THUMB. The THUMB strategy is an extension of the basic ARM architecture
consisting of 36 instruction formats. These formats are based on the standard 32-bit ARM instruction set, while
having been re-coded using 16-bit wide opcodes.

As THUMB instructions are one-half the bit width of normal ARM instructions, they produce very high-density
codes. When a THUMB instruction is executed, its 16-bit opcode is decoded by the processor into its equivalent
instruction in the standard ARM instruction set. The ARM core then processes the 16-bit instruction as it would a
normal 32-bit instruction. In other words, the THUMB architecture gives 16-bit systems a way to access the 32-bit
performance of the ARM core without requiring the full overhead of 32-bit processing.

As the ARM7TDMI core can execute both standard 32-bit ARM instructions and 16-bit THUMB instructions, it
allows you to mix the routines of THUMB instructions and ARM code in the same address space. In this way, you
can adjust code size and performance, routine by routine, to find the best programming solution for a specific
application.

Figure 1-4 ARM7TDMI Core Block Diagram

ADDRESS
REGISTER

ADDRESS
INCREMENTER

REGISTER BANK

BARREL
SHIFTER

WRITE DATA
REGISTER

INSTRUCTION
DECODER and
LOGIC CONTROL

INSTRUCTION
PIPELINE and READ
DATA REGISTER

MULTIPLIER

32-BIT ALU

PRODUCT OVERVIEW KS32C50100 RISC MICROCONTROLLER

1-18

INSTRUCTION SET

The KS32C50100 instruction set is divided into two subsets: a standard 32-bit ARM instruction set and a 16-bit
THUMB instruction set.

The 32-bit ARM instruction set is comprised of thirteen basic instruction types, which can, in turn, be divided into
four broad classes:

• Four types of branch instructions which control program execution flow, instruction privilege levels, and
switching between an ARM code and a THUMB code.

• Three types of data processing instructions which use the on-chip ALU, barrel shifter, and multiplier to
perform high-speed data operations in a bank of 31 registers (all with 32-bit register widths).

• Three types of load and store instructions which control data transfer between memory locations and the
registers. One type is optimized for flexible addressing, another for rapid context switching, and the third for
swapping data.

• Three types of co-processor instructions which are dedicated to controlling external co-processors. These
instructions extend the off-chip functionality of the instruction set in an open and uniform way.

NOTE

 All 32-bit ARM instructions can be executed conditionally.

The 16-bit THUMB instruction set contains 36 instruction formats drawn from the standard 32-bit ARM instruction
set. The THUMB instructions can be divided into four functional groups:

• Four branch instructions.

• Twelve data processing instructions, which are a subset of the standard ARM data processing instructions.

• Eight load and store register instructions.

• Four load and store multiple instructions.

NOTE

Each 16-bit THUMB instruction has a corresponding 32-bit ARM instruction with an identical
processing model.

The 32-bit ARM instruction set and the 16-bit THUMB instruction set are good targets for compilers of many
different high-level languages. When an assembly code is required for critical code segments, the ARM
programming technique is straightforward, unlike that of some RISC processors which depend on sophisticated
compiler technology to manage complicated instruction interdependencies.

Pipelining is employed so that all parts of the processor and memory systems can operate continuously. Typically,
while one instruction is being executed, its successor is being decoded, and the third instruction is being fetched
from memory.

KS32C50100 RISC MICROCONTROLLER PRODUCT OVERVIEW

1-19

MEMORY INTERFACE

The CPU memory interface has been designed to help the highest performance potential to be realized without
incurring high costs in the memory system. Speed-critical control signals are pipelined so that system control
functions can be implemented in standard low-power logic. These pipelined control signals allow you to fully exploit
the fast local access modes, offered by industry standard dynamic RAMs.

OPERATING STATES

From a programmer’s point of view, the ARM7TDMI core is always in one of two operating states. These states,
which can be switched by software or by exception processing, are:

• ARM state (when executing 32-bit, word-aligned, ARM instructions), and

• THUMB state (when executing 16-bit, half-word aligned THUMB instructions).

OPERATING MODES

The ARM7TDMI core supports seven operating modes:

• User mode: a normal program execution state

• FIQ (Fast Interrupt Request) mode: for supporting a specific data transfer or channel processing

• IRQ (Interrupt ReQuest) mode: for general purpose interrupt handling

• Supervisor mode: a protected mode for the operating system

• Abort mode: entered when a data or instruction pre-fetch is aborted

• System mode: a privileged user mode for the operating system

• Undefined mode: entered when an undefined instruction is executed

Operating mode changes can be controlled by software. They can also be caused by external interrupts or
exception processing. Most application programs execute in User mode. Privileged modes (that is, all modes other
than User mode) are entered to service interrupts or exceptions, or to access protected resources.

PRODUCT OVERVIEW KS32C50100 RISC MICROCONTROLLER

1-20

REGISTERS

The KS32C50100 CPU core has a total of 37 registers: 31 general-purpose 32-bit registers, and 6 status registers.
Not all of these registers are always available. Whether a registers is available to the programmer at any given time
depends on the current processor operating state and mode.

NOTE

When the KS32C50100 is operating in ARM state, 16 general registers and one or two status
registers can be accessed at any time. In privileged mode, mode-specific banked registers are
switched in.

Two register sets, or banks, can also be accessed, depending on the core’s current state, the ARM state register
set and the THUMB state register set:

• The ARM state register set contains 16 directly accessible registers: R0–R15. All of these registers, except for
R15, are for general-purpose use, and can hold either data or address values. An additional (17th) register, the
CPSR (Current Program Status Register), is used to store status information.

• The THUMB state register set is a subset of the ARM state set. You can access 8 general registers, R0–R7, as
well as the program counter (PC), a stack pointer register (SP), a link register (LR), and the CPSR. Each
privileged mode has a corresponding banked stack pointer, link register, and saved process status register
(SPSR).

The THUMB state registers are related to the ARM state registers as follows:

• THUMB state R0–R7 registers and ARM state R0–R7 registers are identical

• THUMB state CPSR and SPSRs and ARM state CPSR and SPSRs are identical

• THUMB state SP, LR, and PC are mapped directly to ARM state registers R13, R14, and R15, respectively

In THUMB state, registers R8–R15 are not part of the standard register set. However, you can access them for
assembly language programming and use them for fast temporary storage, if necessary.

KS32C50100 RISC MICROCONTROLLER PRODUCT OVERVIEW

1-21

EXCEPTIONS

An exception arises when the normal flow of program execution is interrupted, e.g., when processing is diverted to
handle an interrupt from a peripheral. The processor state just prior to handling the exception must be preserved so
that the program flow can be resumed when the exception routine is completed. Multiple exceptions may arise
simultaneously.

To process exceptions, the KS32C50100 uses the banked core registers to save the current state. The old PC
value and the CPSR contents are copied into the appropriate R14 (LR) and SPSR register.s The PC and mode bits
in the CPSR are adjusted to the value corresponding to the type of exception being processed.

The KS32C50100 core supports seven types of exceptions. Each exception has a fixed priority and a
corresponding privileged processor mode, as shown in Table 1-4.

Table 1-4 KS32C50100 CPU Exceptions

Exception Mode on Entry Priority

Reset Supervisor mode 1 (Highest)

Data abort Abort mode 2

FIQ FIQ mode 3

IRQ IRQ mode 4

Prefetch abort Abort mode 5

Undefined instruction Undefined mode 6

SWI Supervisor mode 6 (Lowest)

PRODUCT OVERVIEW KS32C50100 RISC MICROCONTROLLER

1-22

SPECIAL REGISTERS

Table 1-5 KS32C50100 Special Registers

Group Registers Offset R/W Description Reset Value

System
Manager

SYSCFG 0x0000 R/W System configuration register 0x3FFFF91

CLKCON 0x3000 R/W Clock control register 0x00000000

EXTACON0 0x3008 R/W External I/O timing register 1 0x00000000

EXTACON1 0x300C R/W External I/O timing register 2 0x00000000

EXTDBWTH 0x3010 R/W Data bus width for each memory bank 0x00000000

ROMCON0 0x3014 R/W ROM/SRAM/Flash bank 0 control register 0x20000060

ROMCON1 0x3018 R/W ROM/SRAM/Flash bank 1 control register 0x00000060

ROMCON2 0x301C R/W ROM/SRAM/Flash bank 2 control register 0x00000060

ROMCON3 0x3020 R/W ROM/SRAM/Flash bank 3 control register 0x00000060

ROMCON4 0x3024 R/W ROM/SRAM/Flash bank 4 control register 0x00000060

ROMCON5 0x3028 R/W ROM/SRAM/Flash bank 5 control register 0x00000060

DRAMCON0 0x302C R/W DRAM bank 0 control register 0x00000000

DRAMCON1 0x3030 R/W DRAM bank 1 control register 0x00000000

DRAMCON2 0x3034 R/W DRAM bank 2 control register 0x00000000

DRAMCON3 0x3038 R/W DRAM bank 3 control register 0x00000000

REFEXTCON 0x303C R/W Refresh and external I/O control register 0x83FD0000

Ethernet
(BDMA)

BDMATXCON 0x9000 R/W Buffered DMA receive control register 0x00000000

BDMARXCON 0x9004 R/W Buffered DMA transmit control register 0x00000000

BDMATXPTR 0x9008 R/W Transmit trame descriptor start address 0xFFFFFFFF

BDMARXPTR 0x900C R/W Receive frame descriptor start address 0xFFFFFFFF

BDMARXLSZ 0x9010 R/W Receive frame maximum size Undefined

BDMASTAT 0x9014 R/W Buffered DMA status 0x00000000

CAM 0x9100–
0x917C

W CAM content (32 words) Undefined

BDMATXBUF 0x9200–
0x92FC

R/W BDMA Tx buffer (64 words) for test mode
addressing

Undefined

BDMARXBUF 0x9800–
0x99FC

R/W BDMA Rx buffer (64 words) for test mode
addressing

Undefined

KS32C50100 RISC MICROCONTROLLER PRODUCT OVERVIEW

1-23

Ethernet
(MAC)

MACON 0xA000 R/W Ethernet MAC control register 0x00000000

CAMCON 0xA004 R/W CAM control register 0x00000000

MACTXCON 0xA008 R/W MAC transmit control register 0x00000000

MACTXSTAT 0xA00C R/W MAC transmit status register 0x00000000

MACRXCON 0xA010 R/W MAC receive control register 0x00000000

MACRXSTAT 0xA014 R/W MAC receive status register 0x00000000

STADATA 0xA018 R/W Station management data 0x00000000

STACON 0xA01C R/W Station management control and address 0x00006000

CAMEN 0xA028 R/W CAM enable register 0x00000000

EMISSCNT 0xA03C R/W Missed error count register 0x00000000

EPZCNT 0xA040 R Pause count register 0x00000000

ERMPZCNT 0xA044 R Remote pause count register 0x00000000

ETXSTAT 0x9040 R Transmit control frame status 0x00000000

HDLC
Channel A

HMODE 0x7000 R/W HDLC mode register 0x00000000

HCON 0x7004 R/W HDLC control register 0x00000000

HSTAT 0x7008 R/W HDLC status register 0x00010400

HINTEN 0x700c R/W HDLC interrupt enable register 0x00000000

HTXFIFOC 0x7010 W TxFIFO frame continue register –

HTXFIFOT 0x7014 W TxFIFO frame terminate register –

HRXFIFO 0x7018 R HDLC RxFIFO entry register 0x00000000

HBRGTC 0x701c R/W HDLC Baud rate generate time constant 0x00000000

HPRMB 0x7020 R/W HDLC Preamble Constant 0x00000000

HSAR0 0x7024 R/W HDLC station address 0 0x00000000

HSAR1 0x7028 R/W HDLC station address 1 0x00000000

HSAR2 0x702c R/W HDLC station address 2 0x00000000

HSAR3 0x7030 R/W HDLC station address 3 0x00000000

HMASK 0x7034 R/W HDLC mask register 0x00000000

HDMATXPTR 0x7038 R/W DMA Tx buffer descriptor pointer 0xFFFFFFFF

HDMARXPTR 0x703c R/W DMA Rx buffer descriptor pointer 0xFFFFFFFF

HMFLR 0x7040 R/W Maximum frame length register 0xXXXX0000

HRBSR 0x7044 R/W DMA receive buffer size register 0xXXXX0000

Table 1-5 KS32C50100 Special Registers

Group Registers Offset R/W Description Reset Value

PRODUCT OVERVIEW KS32C50100 RISC MICROCONTROLLER

1-24

HDLC
Channel B

HMODE 0x8000 R/W HDLC mode register 0x00000000

HCON 0x8004 R/W HDLC control register 0x00000000

HSTAT 0x8008 R/W HDLC status register 0x00010400

HINTEN 0x800C R/W HDLC interrupt enable register 0x00000000

HTXFIFOC 0x8010 W TxFIFO frame continue register –

HTXFIFOT 0x8014 W TxFIFO frame terminate register –

HRXFIFO 0x8018 R HDLC RxFIFO entry register 0x00000000

HBRGTC 0x801C R/W HDLC Baud rate generate time constant 0x00000000

HPRMB 0x8020 R/W HDLC Preamble Constant 0x00000000

HSAR0 0x8024 R/W HDLC station address 0 0x00000000

HSAR1 0x8028 R/W HDLC station address 1 0x00000000

HSAR2 0x802c R/W HDLC station address 2 0x00000000

HSAR3 0x8030 R/W HDLC station address 3 0x00000000

HMASK 0x8034 R/W HDLC mask register 0x00000000

HDMATXPTR 0x8038 R/W DMA Tx buffer descriptor pointer 0xFFFFFFFF

HDMARXPTR 0x803c R/W DMA Rx buffer descriptor pointer 0xFFFFFFFF

HMFLR 0x8040 R/W Maximum frame length register 0xXXXX0000

HRBSR 0x8044 R/W DMA receive buffer size register 0xXXXX0000

I/O Ports IOPMOD 0x5000 R/W I/O port mode register 0x00000000

IOPCON 0x5004 R/W I/O port control register 0x00000000

IOPDATA 0x5008 R/W Input port data register Undefined

Interrupt
Controller

INTMOD 0x4000 R/W Interrupt mode register 0x00000000

INTPND 0x4004 R/W Interrupt pending register 0x00000000

INTMSK 0x4008 R/W Interrupt mask register 0x003FFFFF

INTPRI0 0x400C R/W Interrupt priority register 0 0x03020100

INTPRI1 0x4010 R/W Interrupt priority register 1 0x07060504

INTPRI2 0x4014 R/W Interrupt priority register 2 0x0B0A0908

INTPRI3 0x4018 R/W Interrupt priority register 3 0x0F0E0D0C

INTPRI4 0x401C R/W Interrupt priority register 4 0x13121110

INTPRI5 0x4020 R/W Interrupt priority register 5 0x00000014

INTOFFSET 0x4024 R Interrupt offset address register 0x00000054

INTOSET_FIQ 0x4030 R FIQ interrupt offset register 0x00000054

INTOSET_IRQ 0x4034 R IRQ interrupt offset register 0x00000054

Table 1-5 KS32C50100 Special Registers

Group Registers Offset R/W Description Reset Value

KS32C50100 RISC MICROCONTROLLER PRODUCT OVERVIEW

1-25

I2C Bus IICCON 0xF000 R/W I2C bus control status register 0x00000054

IICBUF 0xF004 R/W I2C bus shift buffer register Undefined

IICPS 0xF008 R/W I2C bus prescaler register 0x00000000

IICCOUNT 0xF00C R I2C bus prescaler counter register 0x00000000

GDMA GDMACON0 0xB000 R/W GDMA channel 0 control register 0x00000000

GDMACON1 0xC000 R/W GDMA channel 1 control register 0x00000000

GDMASRC0 0xB004 R/W GDMA source address register 0 Undefined

GDMADST0 0xB008 R/W GDMA destination address register 0 Undefined

GDMASRC1 0xC004 R/W GDMA source address register 1 Undefined

GDMADST1 0xC008 R/W GDMA destination address register 1 Undefined

GDMACNT0 0xB00C R/W GDMA channel 0 transfer count register Undefined

GDMACNT1 0xC00C R/W GDMA channel 1 transfer count register Undefined

UART ULCON0 0xD000 R/W UART channel 0 line control register 0x00

ULCON1 0xE000 R/W UART channel 1 line control register 0x00

UCON0 0xD004 R/W UART channel 0 control register 0x00

UCON1 0xE004 R/W UART channel 1 control register 0x00

USTAT0 0xD008 R UART channel 0 status register 0xC0

USTAT1 0xE008 R UART channel 1 status register 0xC0

UTXBUF0 0xD00C W UART channel 0 transmit holding register Undefined

UTXBUF1 0xE00C W UART channel 1 transmit holding register Undefined

URXBUF0 0xD010 R UART channel 0 receive buffer register Undefined

URXBUF1 0xE010 R UART channel 1 receive buffer register Undefined

UBRDIV0 0xD014 R/W Baud rate divisor register 0 0x00

UBRDIV1 0xE014 R/W Baud rate divisor register 1 0x00

Timers TMOD 0x6000 R/W Timer mode register 0x00000000

TDATA0 0x6004 R/W Timer 0 data register 0x00000000

TDATA1 0x6008 R/W Timer 1 data register 0x00000000

TCNT0 0x600C R/W Timer 0 count register 0xFFFFFFFF

TCNT1 0x6010 R/W Timer 1 count register 0xFFFFFFFF

Table 1-5 KS32C50100 Special Registers

Group Registers Offset R/W Description Reset Value

PRODUCT OVERVIEW KS32C50100 RISC MICROCONTROLLER

1-26

NOTES

KS32C50100 RISC MICROCONTROLLER PROGRAMMER’S MODEL

2-1

2 Programmer’s Model

OVERVIEW

KS32C50100 was developed using the advanced ARM7TDMI core designed by Advanced RISC Machines, Ltd.

PROCESSOR OPERATING STATES

From the programmer’s point of view, the ARM7TDMI can be in one of two states:

• ARM state which executes 32-bit, word-aligned ARM instructions.

• THUMB state which operates with 16-bit, halfword-aligned THUMB instructions. In this state, the PC uses bit 1
to select between alternate halfwords.

NOTE

Transition between these two states does not affect the processor mode or the contents of the registers.

SWITCHING STATE

Entering THUMB State

Entry into THUMB state can be achieved by executing a BX instruction with the state bit (bit 0) set in the operand
register.

Transition to THUMB state will also occur automatically on return from an exception (IRQ, FIQ, UNDEF, ABORT,
SWI etc.), if the exception was entered with the processor in THUMB state.

Entering ARM State

Entry into ARM state happens:

1. On execution of the BX instruction with the state bit clear in the operand register.

2. On the processor taking an exception (IRQ, FIQ, RESET, UNDEF, ABORT, SWI etc.). In this case, the PC is
placed in the exception mode’s link register, and execution commences at the exception’s vector address.

MEMORY FORMATS

ARM7TDMI views memory as a linear collection of bytes numbered upwards from zero. Bytes 0 to 3 hold the first
stored word, bytes 4 to 7 the second and so on. ARM7TDMI can treat words in memory as being stored either in
Big-Endian or Little-Endian format.

PROGRAMMER’S MODEL KS32C50100 RISC MICROCONTROLER

2-2

BIG-ENDIAN FORMAT

In Big-Endian format, the most significant byte of a word is stored at the lowest numbered byte and the least
significant byte at the highest numbered byte. Byte 0 of the memory system is therefore connected to data lines 31
through 24.

NOTE

The data locations in the external memory are different with Figure 2-1 in the KS32C6200. Please refer to
the chapter 4, System Manager.

LITTLE-ENDIAN FORMAT

In Little-Endian format, the lowest numbered byte in a word is considered the word’s least significant byte, and the
highest numbered byte the most significant. Byte 0 of the memory system is therefore connected to data lines 7
through 0.

INSTRUCTION LENGTH

Instructions are either 32 bits long (in ARM state) or 16 bits long (in THUMB state).

Data Types

ARM7TDMI supports byte (8-bit), halfword (16-bit) and word (32-bit) data types. Words must be aligned to four-byte
boundaries and half words to two-byte boundaries.

Higher Address 31
24

23
16

15 8 7 0 Word Address

8 9 10 11 8

4 5 6 7 4

0 1 2 3 0

Lower Address • Most significant byte is at lowest address
• Word is addressed by byte address of most significant byte

Figure 2-1. Big-Endian Addresses of Bytes within Words

Higher Address 31
24

23
16

15 8 7 0 Word Address

11 10 9 8 8

7 6 5 4 4

3 2 1 0 0

Lower Address • Least significant byte is at lowest address
• Word is addressed by byte address of least significant byte

Figure 2-2. Little-Endian Addresses of Bytes within Words

KS32C50100 RISC MICROCONTROLLER PROGRAMMER’S MODEL

2-3

OPERATING MODES

ARM7TDMI supports seven modes of operation:

• User (usr): The normal ARM program execution state

• FIQ (fiq): Designed to support a data transfer or channel process

• IRQ (irq): Used for general-purpose interrupt handling

• Supervisor (svc): Protected mode for the operating system

• Abort mode (abt): Entered after a data or instruction prefetch abort

• System (sys): A privileged user mode for the operating system

• Undefined (und): Entered when an undefined instruction is executed

Mode changes may be made under software control, or may be brought about by external interrupts or exception
processing. Most application programs will execute in User mode. The non-user modes—known as privileged
modes—are entered in order to service interrupts or exceptions, or to access protected resources.

REGISTERS

ARM7TDMI has a total of 37 registers - 31 general-purpose 32-bit registers and six status registers - but these
cannot all be seen at once. The processor state and operating mode dictate which registers are available to the
programmer.

The ARM State Register Set

In ARM state, 16 general registers and one or two status registers are visible at any one time. In privileged (non-
User) modes, mode-specific banked registers are switched in. Figure 2-3 shows which registers are available in
each mode: the banked registers are marked with a shaded triangle.

The ARM state register set contains 16 directly accessible registers: R0 to R15. All of these except R15 are
general-purpose, and may be used to hold either data or address values. In addition to these, there is a
seventeenth register used to store status information

Register 14 is used as the subroutine link register. This receives a copy of R15 when a Branch and
Link (BL) instruction is executed. At all other times it may be treated as a general-
purpose register. The corresponding banked registers R14_svc, R14_irq, R14_fiq,
R14_abt and R14_und are similarly used to hold the return values of R15 when
interrupts and exceptions arise, or when Branch and Link instructions are executed
within interrupt or exception routines.

Register 15 holds the Program Counter (PC). In ARM state, bits [1:0] of R15 are zero and bits [31:2]
contain the PC. In THUMB state, bit [0] is zero and bits [31:1] contain the PC.

Register 16 is the CPSR (Current Program Status Register). This contains condition code flags and
the current mode bits.

FIQ mode has seven banked registers mapped to R8-14 (R8_fiq-R14_fiq). In ARM state, many FIQ handlers do not
need to save any registers. User, IRQ, Supervisor, Abort and Undefined each have two banked registers mapped
to R13 and R14, allowing each of these modes to have a private stack pointer and link registers.

PROGRAMMER’S MODEL KS32C50100 RISC MICROCONTROLER

2-4

Figure 2-3. Register Organization in ARM State

ARM State General Registers and Program Counter

R0

R1

R2

R3

R4

R5

R6

R7

R8

R9

R10

R11

R12

R13

R14

R15 (PC)

R0

R1

R2

R3

R4

R5

R6

R7

R8_fiq

R9_fiq

R10_fiq

R11_fiq

R12_fiq

R13_fiq

R14_fiq

R15 (PC)

R0

R1

R2

R3

R4

R5

R6

R7

R8

R9

R10

R11

R12

R13_svc

R14_svc

R15 (PC)

R0

R1

R2

R3

R4

R5

R6

R7

R8

R9

R10

R11

R12

R13_abt

R14_abt

R15 (PC)

R0

R1

R2

R3

R4

R5

R6

R7

R8

R9

R10

R11

R12

R13_irq

R14_irq

R15 (PC)

R0

R1

R2

R3

R4

R5

R6

R7

R8

R9

R10

R11

R12

R13_und

R14_und

R15 (PC)

System & User FIQ Supervisor Abort IRQ Undefined

CPSR CPSR

SPSR_fiq

CPSR

SPSR_svc

CPSR

SPSR_abt

CPSR

SPSR_irq

CPSR

SPSR_und

ARM State Program Status Registers

= banked register

KS32C50100 RISC MICROCONTROLLER PROGRAMMER’S MODEL

2-5

The THUMB State Register Set

The THUMB state register set is a subset of the ARM state set. The programmer has direct access to eight general
registers, R0-R7, as well as the Program Counter (PC), a stack pointer register (SP), a link register (LR), and the
CPSR. There are banked Stack Pointers, Link Registers and Saved Process Status Registers (SPSRs) for each
privileged mode. This is shown in Figure 2-4.

Figure 2-4. Register Organization in THUMB State

R0

R1

R2

R3

R4

R5

R6

R7

SP

LR

PC

System & User FIQ Supervisor Abort IRQ Undefined

CPSR CPSR

SPSR_fiq

CPSR

SPSR_svc

CPSR

SPSR_abt

CPSR

SPSR_irq

CPSR

SPSR_und

R0

R1

R2

R3

R4

R5

R6

R7

SP_fiq

LR_fiq

PC

R0

R1

R2

R3

R4

R5

R6

R7

SP_svc

LR_svc

PC

R0

R1

R2

R3

R4

R5

R6

R7

SP_abt

LR_abt

PC

R0

R1

R2

R3

R4

R5

R6

R7

SP_irq

LR_irq

PC

R0

R1

R2

R3

R4

R5

R6

R7

SP_und

LR_und

PC

THUMB State General Registers and Program Counter

THUMB State Program Status Registers

= banked register

PROGRAMMER’S MODEL KS32C50100 RISC MICROCONTROLER

2-6

The relationship between ARM and THUMB state registers

The THUMB state registers relate to the ARM state registers in the following way:

• THUMB state R0-R7 and ARM state R0-R7 are identical

• THUMB state CPSR and SPSRs and ARM state CPSR and SPSRs are identical

• THUMB state SP maps onto ARM state R13

• THUMB state LR maps onto ARM state R14

• The THUMB state Program Counter maps onto the ARM state Program Counter (R15)

This relationship is shown in Figure 2-5.

Figure 2-5. Mapping of THUMB State Registers onto ARM State Registers

R0

R1

R2

R3

R5

R6

R7

R8

R9

R10

R11

R12

Stack Pointer (R13)

Link Register (R14)

Program Counter (R15)

R0

R1

R2

R3

R5

R6

R7

Stack Pointer (SP)

Link Register (LR)

Program Counter (PC)

CPSR CPSR

SPSR SPSR

THUMB state ARM state

R4R4

Lo
-r

eg
is

te
rs

H
i-r

eg
is

te
rs

KS32C50100 RISC MICROCONTROLLER PROGRAMMER’S MODEL

2-7

Accessing Hi-Registers in THUMB State

In THUMB state, registers R8-R15 (the Hi registers) are not part of the standard register set. However, the assembly
language programmer has limited access to them, and can use them for fast temporary storage.

A value may be transferred from a register in the range R0-R7 (a Lo register) to a Hi register, and from a Hi register
to a Lo register, using special variants of the MOV instruction. Hi register values can also be compared against or
added to Lo register values with the CMP and ADD instructions. For more information, refer to Figure 3-34.

THE PROGRAM STATUS REGISTERS

The ARM7TDMI contains a Current Program Status Register (CPSR), plus five Saved Program Status Registers
(SPSRs) for use by exception handlers. These register’s functions are:

• Hold information about the most recently performed ALU operation

• Control the enabling and disabling of interrupts

• Set the processor operating mode

The arrangement of bits is shown in Figure 2-6.

Figure 2-6 . Program Status Register Format

0123456782728293031

M0M1M2M3M4. FIVCZN

Overflow
Carry / Borrow

Zero
Negative / Less Than

Mode bits

FIQ disable
IRQ disable

. .

condition code flags control bits

State bit

(reserved)

23

. .

24

T

25

.

26

.

/ Extend

PROGRAMMER’S MODEL KS32C50100 RISC MICROCONTROLER

2-8

The Condition Code Flags

The N, Z, C and V bits are the condition code flags. These may be changed as a result of arithmetic and logical
operations, and may be tested to determine whether an instruction should be executed.

In ARM state, all instructions may be executed conditionally: see Table 3-2 for details.

In THUMB state, only the Branch instruction is capable of conditional execution: see Figure 3-46 for details.

The Control Bits

The bottom 8 bits of a PSR (incorporating I, F, T and M[4:0]) are known collectively as the control bits. These will
change when an exception arises. If the processor is operating in a privileged mode, they can also be manipulated
by software.

The T bit This reflects the operating state. When this bit is set, the processor is executing in
THUMB state, otherwise it is executing in ARM state. This is reflected on the TBIT
external signal.

Note that the software must never change the state of the TBIT in the CPSR. If this
happens, the processor will enter an unpredictable state.

Interrupt disable bits The I and F bits are the interrupt disable bits. When set, these disable the IRQ and FIQ
interrupts respectively.

The mode bits The M4, M3, M2, M1 and M0 bits (M[4:0]) are the mode bits. These determine the
processor’s operating mode, as shown in Table 2-1. Not all combinations of the mode
bits define a valid processor mode. Only those explicitly described shall be used. The
user should be aware that if any illegal value is programmed into the mode bits, M[4:0],
then the processor will enter an unrecoverable state. If this occurs, reset should be
applied.

KS32C50100 RISC MICROCONTROLLER PROGRAMMER’S MODEL

2-9

Table 2-1. PSR Mode Bit Values

Reserved bits The remaining bits in the PSRs are reserved. When changing a PSR’s flag or control
bits, you must ensure that these unused bits are not altered. Also, your program should
not rely on them containing specific values, since in future processors they may read as
one or zero.

M[4:0] Mode Visible THUMB state
registers

Visible ARM state
registers

10000 User R7..R0,
LR, SP
PC, CPSR

R14..R0,
PC, CPSR

10001 FIQ R7..R0,
LR_fiq, SP_fiq
PC, CPSR, SPSR_fiq

R7..R0,
R14_fiq..R8_fiq,
PC, CPSR, SPSR_fiq

10010 IRQ R7..R0,
LR_irq, SP_irq
PC, CPSR, SPSR_irq

R12..R0,
R14_irq..R13_irq,
PC, CPSR, SPSR_irq

10011 Supervisor R7..R0,
LR_svc, SP_svc,
PC, CPSR, SPSR_svc

R12..R0,
R14_svc..R13_svc,
PC, CPSR, SPSR_svc

10111 Abort R7..R0,
LR_abt, SP_abt,
PC, CPSR, SPSR_abt

R12..R0,
R14_abt..R13_abt,
PC, CPSR, SPSR_abt

11011 Undefined R7..R0
LR_und, SP_und,
PC, CPSR,
SPSR_und

R12..R0,
R14_und..R13_und,
PC, CPSR

11111 System R7..R0,
LR, SP
PC, CPSR

R14..R0,
PC, CPSR

PROGRAMMER’S MODEL KS32C50100 RISC MICROCONTROLER

2-10

EXCEPTIONS

Exceptions arise whenever the normal flow of a program has to be halted temporarily, for example to service an
interrupt from a peripheral. Before an exception can be handled, the current processor state must be preserved so
that the original program can resume when the handler routine has finished.

It is possible for several exceptions to arise at the same time. If this happens, they are dealt with in a fixed order.
See Exception Priorities on page 2-14.

Action on Entering an Exception

When handling an exception, the ARM7TDMI:

1. Preserves the address of the next instruction in the appropriate Link Register. If the
exception has been entered from ARM state, then the address of the next instruction is
copied into the Link Register (that is, current PC + 4 or PC + 8 depending on the
exception. See Table 2-2 on for details). If the exception has been entered from THUMB
state, then the value written into the Link Register is the current PC offset by a value
such that the program resumes from the correct place on return from the exception.
This means that the exception handler need not determine which state the exception
was entered from. For example, in the case of SWI, MOVS PC, R14_svc will always
return to the next instruction regardless of whether the SWI was executed in ARM or
THUMB state.

2. Copies the CPSR into the appropriate SPSR

3. Forces the CPSR mode bits to a value which depends on the exception

4. Forces the PC to fetch the next instruction from the relevant exception vector

It may also set the interrupt disable flags to prevent otherwise unmanageable nestings of exceptions.

If the processor is in THUMB state when an exception occurs, it will automatically switch into ARM state when the
PC is loaded with the exception vector address.

Action on Leaving an Exception

On completion, the exception handler:

1. Moves the Link Register, minus an offset where appropriate, to the PC. (The offset will
vary depending on the type of exception.)

2. Copies the SPSR back to the CPSR

3. Clears the interrupt disable flags, if they were set on entry

NOTE

An explicit switch back to THUMB state is never needed, since restoring the CPSR from the SPSR
automatically sets the T bit to the value it held immediately prior to the exception.

KS32C50100 RISC MICROCONTROLLER PROGRAMMER’S MODEL

2-11

Exception Entry/Exit Summary

Table 2-2 summarises the PC value preserved in the relevant R14 on exception entry, and the recommended
instruction for exiting the exception handler.

NOTES
1. Where PC is the address of the BL/SWI/Undefined Instruction fetch which had the prefetch abort.
2. Where PC is the address of the instruction which did not get executed since the FIQ or IRQ took priority.
3. Where PC is the address of the Load or Store instruction which generated the data abort.
4. The value saved in R14_svc upon reset is unpredictable.

FIQ

The FIQ (Fast Interrupt Request) exception is designed to support a data transfer or channel process, and in ARM
state has sufficient private registers to remove the need for register saving (thus minimising the overhead of context
switching).

FIQ is externally generated by taking the nFIQ input LOW. This input can except either synchronous or
asynchronous transitions, depending on the state of the ISYNC input signal. When ISYNC is LOW, nFIQ and nIRQ
are considered asynchronous, and a cycle delay for synchronization is incurred before the interrupt can affect the
processor flow.

Irrespective of whether the exception was entered from ARM or Thumb state, a FIQ handler should leave the
interrupt by executing

SUBS PC,R14_fiq,#4

FIQ may be disabled by setting the CPSR’s F flag (but note that this is not possible from User mode). If the F flag is
clear, ARM7TDMI checks for a LOW level on the output of the FIQ synchroniser at the end of each instruction.

Table 2-2. Exception Entry/Exit

Return Instruction Previous State Notes

ARM
R14_x

THUMB
R14_x

BL MOV PC, R14 PC + 4 PC + 2 1

SWI MOVS PC, R14_svc PC + 4 PC + 2 1

UDEF MOVS PC, R14_und PC + 4 PC + 2 1

FIQ SUBS PC, R14_fiq, #4 PC + 4 PC + 4 2

IRQ SUBS PC, R14_irq, #4 PC + 4 PC + 4 2

PABT SUBS PC, R14_abt, #4 PC + 4 PC + 4 1

DABT SUBS PC, R14_abt, #8 PC + 8 PC + 8 3

RESET NA – – 4

PROGRAMMER’S MODEL KS32C50100 RISC MICROCONTROLER

2-12

IRQ

The IRQ (Interrupt Request) exception is a normal interrupt caused by a LOW level on the nIRQ input. IRQ has a
lower priority than FIQ and is masked out when a FIQ sequence is entered. It may be disabled at any time by
setting the I bit in the CPSR, though this can only be done from a privileged (non-User) mode.

Irrespective of whether the exception was entered from ARM or Thumb state, an IRQ handler should return from
the interrupt by executing

SUBS PC,R14_irq,#4

Abort

An abort indicates that the current memory access cannot be completed. It can be signalled by the external
ABORT input. ARM7TDMI checks for the abort exception during memory access cycles.

There are two types of abort:

• Prefetch abort: occurs during an instruction prefetch.

• Data abort: occurs during a data access.

If a prefetch abort occurs, the prefetched instruction is marked as invalid, but the exception will not be taken until
the instruction reaches the head of the pipeline. If the instruction is not executed - for example because a branch
occurs while it is in the pipeline - the abort does not take place.

If a data abort occurs, the action taken depends on the instruction type:

• Single data transfer instructions (LDR, STR) write back modified base registers: the Abort handler must be
aware of this.

• The swap instruction (SWP) is aborted as though it had not been executed.

• Block data transfer instructions (LDM, STM) complete. If write-back is set, the base is updated. If the instruction
would have overwritten the base with data (ie it has the base in the transfer list), the overwriting is prevented.
All register overwriting is prevented after an abort is indicated, which means in particular that R15 (always the
last register to be transferred) is preserved in an aborted LDM instruction.

The abort mechanism allows the implementation of a demand paged virtual memory system. In such a system the
processor is allowed to generate arbitrary addresses. When the data at an address is unavailable, the Memory
Management Unit (MMU) signals an abort. The abort handler must then work out the cause of the abort, make the
requested data available, and retry the aborted instruction. The application program needs no knowledge of the
amount of memory available to it, nor is its state in any way affected by the abort.

After fixing the reason for the abort, the handler should execute the following irrespective of the state (ARM or
Thumb):

SUBS PC,R14_abt,#4 ; for a prefetch abort, or
SUBS PC,R14_abt,#8 ; for a data abort

This restores both the PC and the CPSR, and retries the aborted instruction.

KS32C50100 RISC MICROCONTROLLER PROGRAMMER’S MODEL

2-13

Software Interrupt

The software interrupt instruction (SWI) is used for entering Supervisor mode, usually to request a particular
supervisor function. A SWI handler should return by executing the following irrespective of the state (ARM or
Thumb):

MOV PC,R14_svc

This restores the PC and CPSR, and returns to the instruction following the SWI.

NOTE

nFIQ, nIRQ, ISYNC, LOCK, BIGEND, and ABORT pins exist only in the internal ARM7TDMI CPU core.

Undefined Instruction

When ARM7TDMI comes across an instruction which it cannot handle, it takes the undefined instruction trap. This
mechanism may be used to extend either the THUMB or ARM instruction set by software emulation.

After emulating the failed instruction, the trap handler should execute the following irrespective of the state (ARM or
Thumb):

MOVS PC,R14_und

This restores the CPSR and returns to the instruction following the undefined instruction.

Exception Vectors

The following table shows the exception vector addresses.

Table 2-3. Exception Vectors

Address Exception Mode on entry

0x00000000 Reset Supervisor

0x00000004 Undefined instruction Undefined

0x00000008 Software interrupt Supervisor

0x0000000C Abort (prefetch) Abort

0x00000010 Abort (data) Abort

0x00000014 Reserved Reserved

0x00000018 IRQ IRQ

0x0000001C FIQ FIQ

PROGRAMMER’S MODEL KS32C50100 RISC MICROCONTROLER

2-14

Exception Priorities

When multiple exceptions arise at the same time, a fixed priority system determines the order in which they are
handled:

Highest priority:

1. Reset

2. Data abort

3. FIQ

4. IRQ

5. Prefetch abort

Lowest priority:

6. Undefined Instruction, Software interrupt.

Not All Exceptions Can Occur at Once:

Undefined Instruction and Software Interrupt are mutually exclusive, since they each correspond to particular (non-
overlapping) decodings of the current instruction.

If a data abort occurs at the same time as a FIQ, and FIQs are enabled (ie the CPSR’s F flag is clear), ARM7TDMI
enters the data abort handler and then immediately proceeds to the FIQ vector. A normal return from FIQ will cause
the data abort handler to resume execution. Placing data abort at a higher priority than FIQ is necessary to ensure
that the transfer error does not escape detection. The time for this exception entry should be added to worst-case
FIQ latency calculations.

INTERRUPT LATENCIES

The worst case latency for FIQ, assuming that it is enabled, consists of the longest time the request can take to pass
through the synchroniser (Tsyncmax if asynchronous), plus the time for the longest instruction to complete (Tldm,
the longest instruction is an LDM which loads all the registers including the PC), plus the time for the data abort entry
(Texc), plus the time for FIQ entry (Tfiq). At the end of this time ARM7TDMI will be executing the instruction at 0x1C.

Tsyncmax is 3 processor cycles, Tldm is 20 cycles, Texc is 3 cycles, and Tfiq is 2 cycles. The total time is therefore
28 processor cycles. This is just over 1.4 microseconds in a system which uses a continuous 20 MHz processor
clock. The maximum IRQ latency calculation is similar, but must allow for the fact that FIQ has higher priority and
could delay entry into the IRQ handling routine for an arbitrary length of time. The minimum latency for FIQ or IRQ
consists of the shortest time the request can take through the synchroniser (Tsyncmin) plus Tfiq. This is 4
processor cycles.

RESET

When the nRESET signal goes LOW, ARM7TDMI abandons the executing instruction and then continues to fetch
instructions from incrementing word addresses.

When nRESET goes HIGH again, ARM7TDMI:

1. Overwrites R14_svc and SPSR_svc by copying the current values of the PC and CPSR into them. The value of
the saved PC and SPSR is not defined.

2. Forces M[4:0] to 10011 (Supervisor mode), sets the I and F bits in the CPSR, and clears the CPSR’s T bit.

3. Forces the PC to fetch the next instruction from address 0x00.

4. Execution resumes in ARM state.

KS32C50100 RISC MICROCONTROLLER ARM INSTRUCTION SET

3-1

3 Instruction set

INSTRUCTION SET SUMMAY

This chapter describes the ARM instruction set and the THUMB instruction set in the ARM7TDMI core.

FORMAT SUMMARY

The ARM instruction set formats are shown below.

NOTE

Some instruction codes are not defined but do not cause the Undefined instruction trap to be taken, for
instance a Multiply instruction with bit 6 changed to a 1. These instructions should not be used, as their
action may change in future ARM implementations.

Figure 3-1. ARM Instruction Set Format

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Cond 0 0 I Opcode S Rn Rd Operand 2 Data Processing /
PSR Transfer

Cond 0 0 0 0 0 0 A S Rd Rn Rs 1 0 0 1 Rm Multiply

Cond 0 0 0 0 1 U A S RdHi RdLo Rn 1 0 0 1 Rm Multiply Long

Cond 0 0 0 1 0 B 0 0 Rn Rd 0 0 0 0 1 0 0 1 Rm Single Data Swap

Cond 0 0 0 1 0 0 1 0 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 1 Rn Branch and Exchange

Cond 0 0 0 P U 0 W L Rn Rd 0 0 0 0 1 S H 1 Rm Halfword Data Tranfer:
register offset

Cond 0 0 0 P U 1 W L Rn Rd Offset 1 S H 1 Offset Halfword Data Transfer:
immediate offset

Cond 0 1 I P U B W L Rn Rd Offset Single Data Transfer

Cond 0 1 1 1 Undefined

Cond 1 0 0 P U S W L Rn Register List Block Data Transfer

Cond 1 0 1 L Offset Branch

Cond 1 1 0 P U N W L Rn CRd CP# Offset Coprocessor Data
Transfer

Cond 1 1 1 0 CP Opc CRn CRd CP# CP 0 CRm Coprocessor Data
Operation

Cond 1 1 1 0 CP Opc L CRn Rd CP# CP 1 CRm Coprocessor Register
Transfer

Cond 1 1 1 1 Ignored by processor Software Interrupt

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

ARM INSTRUCTION SET KS32C50100 RISC MICROCONTROLER

3-2

INSTRUCTION SUMMARY

Table 3-1. The ARM Instruction Set

Mnemonic Instruction Action

ADC Add with carry Rd: = Rn + Op2 + Carry

ADD Add Rd: = Rn + Op2

AND AND Rd: = Rn AND Op2

B Branch R15: = address

BIC Bit Clear Rd: = Rn AND NOT Op2

BL Branch with Link R14: = R15, R15: = address

BX Branch and Exchange R15: = Rn,
T bit: = Rn[0]

CDP Coprocesor Data
Processing

(Coprocessor-specific)

CMN Compare Negative CPSR flags: = Rn + Op2

CMP Compare CPSR flags: = Rn – Op2

EOR Exclusive OR Rd: = (Rn AND NOT Op2)
OR (op2 AND NOT Rn)

LDC Load coprocessor from
memory

Coprocessor load

LDM Load multiple registers Stack manipulation (Pop)

LDR Load register from memory Rd: = (address)

MCR Move CPU register to
coprocessor register

cRn: = rRn {<op>cRm}

MLA Multiply Accumulate Rd: = (Rm * Rs) + Rn

MOV Move register or constant Rd: = Op2

MRC Move from coprocessor
register to CPU register

Rn: = cRn {<op>cRm}

MRS Move PSR status/flags to
register

Rn: = PSR

MSR Move register to PSR
status/flags

PSR: = Rm

MUL Multiply Rd: = Rm * Rs

MVN Move negative register Rd: = 0xFFFFFFFF EOR
Op2

ORR OR Rd: = Rn OR Op2

RSB Reverse Subtract Rd: = Op2 – Rn

RSC Reverse Subtract with
Carry

Rd: = Op2 – Rn – 1 + Carry

KS32C50100 RISC MICROCONTROLLER ARM INSTRUCTION SET

3-3

SBC Subtract with Carry Rd: = Rn – Op2 - 1 + Carry

STC Store coprocessor register
to memory

address: = CRn

STM Store Multiple Stack manipulation (Push)

STR Store register to memory <address>: = Rd

SUB Subtract Rd: = Rn – Op2

SWI Software Interrupt OS call

SWP Swap register with
memory

Rd: = [Rn], [Rn] := Rm

TEQ Test bitwise equality CPSR flags: = Rn EOR Op2

TST Test bits CPSR flags: = Rn AND Op2

Table 3-1. The ARM Instruction Set (Continued)

Mnemonic Instruction Action

ARM INSTRUCTION SET KS32C50100 RISC MICROCONTROLER

3-4

THE CONDITION FIELD

In ARM state, all instructions are conditionally executed according to the state of the CPSR condition codes and the
instruction’s condition field. This field (bits 31:28) determines the circumstances under which an instruction is to be
executed. If the state of the C, N, Z and V flags fulfils the conditions encoded by the field, the instruction is
executed, otherwise it is ignored.

There are sixteen possible conditions, each represented by a two-character suffix that can be appended to the
instruction’s mnemonic. For example, a Branch (B in assembly language) becomes BEQ for "Branch if Equal",
which means the Branch will only be taken if the Z flag is set.

In practice, fifteen different conditions may be used: these are listed in Table 3-2. The sixteenth (1111) is reserved,
and must not be used.

In the absence of a suffix, the condition field of most instructions is set to "Always" (sufix AL). This means the
instruction will always be executed regardless of the CPSR condition codes.

Table 3-2. Condition Code Summary

Code Suffix Flags Meaning

0000 EQ Z set equal

0001 NE Z clear not equal

0010 CS C set unsigned higher or same

0011 CC C clear unsigned lower

0100 MI N set negative

0101 PL N clear positive or zero

0110 VS V set overflow

0111 VC V clear no overflow

1000 HI C set and Z clear unsigned higher

1001 LS C clear or Z set unsigned lower or same

1010 GE N equals V greater or equal

1011 LT N not equal to V less than

1100 GT Z clear AND (N equals V) greater than

1101 LE Z set OR (N not equal to V) less than or equal

1110 AL (ignored) always

KS32C50100 RISC MICROCONTROLLER ARM INSTRUCTION SET

3-5

BRANCH AND EXCHANGE (BX)

This instruction is only executed if the condition is true. The various conditions are defined in Table 3-2.

This instruction performs a branch by copying the contents of a general register, Rn, into the program counter, PC.
The branch causes a pipeline flush and refill from the address specified by Rn. This instruction also permits the
instruction set to be exchanged. When the instruction is executed, the value of Rn[0] determines whether the
instruction stream will be decoded as ARM or THUMB instructions.

INSTRUCTION CYCLE TIMES

The BX instruction takes 2S + 1N cycles to execute, where S and N are defined as sequential (S-cycle) and non-
sequencial (N-cycle), respectively.

ASSEMBLER SYNTAX

BX - branch and exchange.

BX {cond} Rn
{cond} Two character condition mnemonic. See Table 3-2.
Rn is an expression evaluating to a valid register number.

USING R15 AS AN OPERAND

If R15 is used as an operand, the behaviour is undefined.

Figure 3-2. Branch and Exchange Instructions

Cond 0 0 0 1 0 0 1 0 0 0 0 1 Rn

034781112151619202324272831

[3:0] Operand register
If bit 0 of Rn = 1, subsequent instructions decoded as THUMB instructions
If bit 0 of Rn = 0, subsequent instructions decoded as ARM instructions

[31:28] Condition Field

1 1 1 1 1 1 1 1 1 1 1 1

ARM INSTRUCTION SET KS32C50100 RISC MICROCONTROLER

3-6

Examples

ADR R0, Into_THUMB + 1 ; Generate branch target address
; and set bit 0 high - hence
; arrive in THUMB state.

BX R0 ; Branch and change to THUMB
; state.

CODE16 ; Assemble subsequent code as
Into_THUMB ; THUMB instructions
.
.
.
ADR R5, Back_to_ARM : Generate branch target to word aligned address

; - hence bit 0 is low and so change back to ARM state.
BX R5 ; Branch and change back to ARM state.
.
.
.
ALIGN ; Word align
CODE32 ; Assemble subsequent code as ARM instructions
Back_to_ARM

KS32C50100 RISC MICROCONTROLLER ARM INSTRUCTION SET

3-7

BRANCH AND BRANCH WITH LINK (B, BL)

The instruction is only executed if the condition is true. The various conditions are defined Table 3-2. The instruction
encoding is shown in Figure 3-3, below.

Branch instructions contain a signed 2's complement 24 bit offset. This is shifted left two bits, sign extended to 32
bits, and added to the PC. The instruction can therefore specify a branch of +/- 32Mbytes. The branch offset must
take account of the prefetch operation, which causes the PC to be 2 words (8 bytes) ahead of the current
instruction.

Branches beyond +/- 32Mbytes must use an offset or absolute destination which has been previously loaded into a
register. In this case the PC should be manually saved in R14 if a Branch with Link type operation is required.

THE LINK BIT

Branch with Link (BL) writes the old PC into the link register (R14) of the current bank. The PC value written into
R14 is adjusted to allow for the prefetch, and contains the address of the instruction following the branch and link
instruction. Note that the CPSR is not saved with the PC and R14[1:0] are always cleared.

To return from a routine called by Branch with Link use MOV PC,R14 if the link register is still valid or LDM
Rn!,{..PC} if the link register has been saved onto a stack pointed to by Rn.

INSTRUCTION CYCLE TIMES

Branch and Branch with Link instructions take 2S + 1N incremental cycles, where S and N are defined as squential
(S-cycle) and internal (I-cycle).

Figure 3-3. Branch Instructions

31 28 27 25 24 23 0

Cond 101 L offset

[24] Link bit
0 = Branch 1 = Branch with link

[31:28] Condition field

ARM INSTRUCTION SET KS32C50100 RISC MICROCONTROLER

3-8

ASSEMBLER SYNTAX

Items in {} are optional. Items in <> must be present.

B{L}{cond} <expression>

{L} Used to request the Branch with Link form of the instruction. If absent, R14 will not be
affected by the instruction.

{cond} A two-character mnemonic as shown in Table 3-2. If absent then AL (ALways) will be
used.

<expression> The destination. The assembler calculates the offset.

EXAMPLES

here BAL here ; Assembles to 0xEAFFFFFE (note effect of PC offset).
B there ; Always condition used as default.
CMP R1,#0 ; Compare R1 with zero and branch to fred

; if R1 was zero, otherwise continue.
BEQ fred ; Continue to next instruction.

BL sub+ROM ; Call subroutine at computed address.
ADDS R1,#1 ; Add 1 to register 1, setting CPSR flags

; on the result then call subroutine if
BLCC sub ; the C flag is clear, which will be the

; case unless R1 held 0xFFFFFFFF.

KS32C50100 RISC MICROCONTROLLER ARM INSTRUCTION SET

3-9

DATA PROCESSING

The data processing instruction is only executed if the condition is true. The conditions are defined in Table 3-2. The
instruction encoding is shown in Figure 3-4.

Figure 3-4. Data Processing Instructions

31 28 27 26 25 24 20 19 16 15 12 11 10 021

Cond 00 I OpCode S Rn Rd Operand 2

[15:12] Destination register
0 = Branch 1 = Branch with Link

[19:16] 1st operand register
0 = Branch 1 = Branch with Link

[20] Set condition codes
0 = Do not after condition codes 1 = Set condition codes

[24:21] Operation code
0000 = AND - Rd: = Op1 AND Op2
0001 = EOR - Rd: = Op1 EOR Op2
0010 = SUB - Rd: = Op1 - Op2
0011 = RSB - Rd: = Op2 - Op1
0100 = ADD - Rd: = Op1 + Op2
0101 = ADC - Rd: = Op1 + Op2 + C
0110 = SBC - Rd: = Op1 - Op2 + C - 1
0111 = RSC - Rd: = Op2 - Op1 + C - 1
1000 = TST - set condition codes on Op 1 AND Op2
1001 = TEO - set condition codes on Op1 EOR Op2
1010 = CMP - set condition codes on Op1 - Op2
1011 = SMN - set condition codes on Op1 + Op2
1100 = ORR - Rd: = Op1 OR Op2
1101 = MOV - Rd: = Op2
1110 = BIC - Rd: = Op1 AND NOT Op2
1111 = MVN - Rd: = NOT Op2

[25] Immediate operand
0 = Operand 2 is a register 1 = Operand 2 is an Immediate Value

[11:0] Operand 2 type selection

11 03

Shift Rm

4

[3:0] 2nd Operand Register [11:4] Shift Applied to Rm

11 0

Imm

[7:0] Unsigned 8 bit immediate value [11:8] Shift applied to lmm

7

Rotate

8

[31:28] Condition field

ARM INSTRUCTION SET KS32C50100 RISC MICROCONTROLER

3-10

The instruction produces a result by performing a specified arithmetic or logical operation on one or two operands.
The first operand is always a register (Rn).

The second operand may be a shifted register (Rm) or a rotated 8 bit immediate value (Imm) according to the value
of the I bit in the instruction. The condition codes in the CPSR may be preserved or updated as a result of this
instruction, according to the value of the S bit in the instruction.

Certain operations (TST, TEQ, CMP, CMN) do not write the result to Rd. They are used only to perform tests and to
set the condition codes on the result and always have the S bit set. The instructions and their effects are listed in
Table 3-3.

KS32C50100 RISC MICROCONTROLLER ARM INSTRUCTION SET

3-11

CPSR FLAGS

The data processing operations may be classified as logical or arithmetic. The logical operations (AND, EOR, TST,
TEQ, ORR, MOV, BIC, MVN) perform the logical action on all corresponding bits of the operand or operands to
produce the result. If the S bit is set (and Rd is not R15, see below) the V flag in the CPSR will be unaffected, the C
flag will be set to the carry out from the barrel shifter (or preserved when the shift operation is LSL #0), the Z flag will
be set if and only if the result is all zeros, and the N flag will be set to the logical value of bit 31 of the result.

The arithmetic operations (SUB, RSB, ADD, ADC, SBC, RSC, CMP, CMN) treat each operand as a 32 bit integer
(either unsigned or 2's complement signed, the two are equivalent). If the S bit is set (and Rd is not R15) the V flag
in the CPSR will be set if an overflow occurs into bit 31 of the result; this may be ignored if the operands were
considered unsigned, but warns of a possible error if the operands were 2's complement signed. The C flag will be
set to the carry out of bit 31 of the ALU, the Z flag will be set if and only if the result was zero, and the N flag will be
set to the value of bit 31 of the result (indicating a negative result if the operands are considered to be 2's
complement signed).

Table 3-3. ARM Data Processing Instructions

Assembler
Mnemonic

Op-Code Action

AND 0000 Operand1 AND operand2

EOR 0001 Operand1 EOR operand2

SUB 0010 Operand1 – operand2

RSB 0011 Operand2 operand1

ADD 0100 Operand1 + operand2

ADC 0101 Operand1 + operand2 + carry

SBC 0110 Operand1 – operand2 + carry – 1

RSC 0111 Operand2 – operand1 + carry – 1

TST 1000 As AND, but result is not written

TEQ 1001 As EOR, but result is not written

CMP 1010 As SUB, but result is not written

CMN 1011 As ADD, but result is not written

ORR 1100 Operand1 OR operand2

MOV 1101 Operand2 (operand1 is ignored)

BIC 1110 Operand1 AND NOT operand2 (Bit clear)

MVN 1111 NOT operand2 (operand1 is ignored)

ARM INSTRUCTION SET KS32C50100 RISC MICROCONTROLER

3-12

SHIFTS

When the second operand is specified to be a shifted register, the operation of the barrel shifter is controlled by the
Shift field in the instruction. This field indicates the type of shift to be performed (logical left or right, arithmetic right
or rotate right). The amount by which the register should be shifted may be contained in an immediate field in the
instruction, or in the bottom byte of another register (other than R15). The encoding for the different shift types is
shown in Figure 3-5.

Instruction specified shift amount

When the shift amount is specified in the instruction, it is contained in a 5 bit field which may take any value from 0
to 31. A logical shift left (LSL) takes the contents of Rm and moves each bit by the specified amount to a more
significant position. The least significant bits of the result are filled with zeros, and the high bits of Rm which do not
map into the result are discarded, except that the least significant discarded bit becomes the shifter carry output
which may be latched into the C bit of the CPSR when the ALU operation is in the logical class (see above). For
example, the effect of LSL #5 is shown in Figure 3-6.

NOTE

LSL #0 is a special case, where the shifter carry out is the old value of the CPSR C flag. The contents of
Rm are used directly as the second operand. A logical shift right (LSR) is similar, but the contents of Rm
are moved to less significant positions in the result. LSR #5 has the effect shown in Figure 3-7.

Figure 3-5. ARM Shift Operations

Figure 3-6. Logical Shift Left

11 7 6 5 4

0

[6:5] Shift type
00 = logical left 01 = logical right
10 = arithmetic right 11 = rotate right

[11:7] Shift amount
5 bit unsigned integer

[6:5] Shift type
00 = logical left 01 = logical right
10 = arithmetic right 11 = rotate right

[11:8] Shift register
Shift amount specified in
bottom-byte of Rs

11 7 6 5 4

1

8

0RS

31 27 26 0

carry out

00000

Contents of Rm

Value of operand 2

KS32C50100 RISC MICROCONTROLLER ARM INSTRUCTION SET

3-13

.

The form of the shift field which might be expected to correspond to LSR #0 is used to encode LSR #32, which has
a zero result with bit 31 of Rm as the carry output. Logical shift right zero is redundant as it is the same as logical
shift left zero, so the assembler will convert LSR #0 (and ASR #0 and ROR #0) into LSL #0, and allow LSR #32 to
be specified.

An arithmetic shift right (ASR) is similar to logical shift right, except that the high bits are filled with bit 31 of Rm
instead of zeros. This preserves the sign in 2's complement notation. For example, ASR #5 is shown in Figure 3-8.

The form of the shift field which might be expected to give ASR #0 is used to encode ASR #32. Bit 31 of Rm is
again used as the carry output, and each bit of operand 2 is also equal to bit 31 of Rm. The result is therefore all
ones or all zeros, according to the value of bit 31 of Rm.

Figure 3-7. Logical Shift Right

Figure 3-8. Arithmetic Shift Right

0

carry out

00000

Contents of Rm

Value of operand 2

5 431

0

carry out

Contents of Rm

Value of operand 2

5 43031

ARM INSTRUCTION SET KS32C50100 RISC MICROCONTROLER

3-14

Rotate right (ROR) operations reuse the bits which “overshoot” in a logical shift right operation by reintroducing
them at the high end of the result, in place of the zeros used to fill the high end in logical right operations. For
example, ROR #5 is shown in Figure 3-9. The form of the shift field which might be expected to give ROR #0 is

used to encode a special function of the barrel shifter, rotate right extended (RRX). This is a rotate right by one bit
position of the 33 bit quantity formed by appending the CPSR C flag to the most significant end of the contents of
Rm as shown in Figure 3-10.

Figure 3-9. Rotate Right

Figure 3-10. Rotate Right Extended

0

carry out

Contents of Rm

Value of operand 2

5 431

0

Contents of Rm

Value of operand 2

31 1

C
in

carry out

KS32C50100 RISC MICROCONTROLLER ARM INSTRUCTION SET

3-15

Register specified shift amount

Only the least significant byte of the contents of Rs is used to determine the shift amount. Rs can be any general
register other than R15.

If this byte is zero, the unchanged contents of Rm will be used as the second operand, and the old value of the
CPSR C flag will be passed on as the shifter carry output.

If the byte has a value between 1 and 31, the shifted result will exactly match that of an instruction specified shift
with the same value and shift operation.

If the value in the byte is 32 or more, the result will be a logical extension of the shift described above:

1 LSL by 32 has result zero, carry out equal to bit 0 of Rm.

2 LSL by more than 32 has result zero, carry out zero.

3 LSR by 32 has result zero, carry out equal to bit 31 of Rm.

4 LSR by more than 32 has result zero, carry out zero.

5 ASR by 32 or more has result filled with and carry out equal to bit 31 of Rm.

6 ROR by 32 has result equal to Rm, carry out equal to bit 31 of Rm.

7 ROR by n where n is greater than 32 will give the same result and carry out as ROR by n-32; therefore
repeatedly subtract 32 from n until the amount is in the range 1 to 32 and see above.

NOTE

The zero in bit 7 of an instruction with a register controlled shift is compulsory; a one in this bit will cause
the instruction to be a multiply or undefined instruction.

ARM INSTRUCTION SET KS32C50100 RISC MICROCONTROLER

3-16

IMMEDIATE OPERAND ROTATES

The immediate operand rotate field is a 4 bit unsigned integer which specifies a shift operation on the 8 bit
immediate value. This value is zero extended to 32 bits, and then subject to a rotate right by twice the value in the
rotate field. This enables many common constants to be generated, for example all powers of 2.

WRITING TO R15

When Rd is a register other than R15, the condition code flags in the CPSR may be updated from the ALU flags as
described above.

When Rd is R15 and the S flag in the instruction is not set the result of the operation is placed in R15 and the CPSR
is unaffected.

When Rd is R15 and the S flag is set the result of the operation is placed in R15 and the SPSR corresponding to
the current mode is moved to the CPSR. This allows state changes which atomically restore both PC and CPSR.
This form of instruction should not be used in User mode.

USING R15 AS AN OPERAND

If R15 (the PC) is used as an operand in a data processing instruction the register is used directly.

The PC value will be the address of the instruction, plus 8 or 12 bytes due to instruction prefetching. If the shift
amount is specified in the instruction, the PC will be 8 bytes ahead. If a register is used to specify the shift amount
the PC will be 12 bytes ahead.

TEQ, TST, CMP AND CMN OPCODES

NOTE

TEQ, TST, CMP and CMN do not write the result of their operation but do set flags in the CPSR. An
assembler should always set the S flag for these instructions even if this is not specified in the mnemonic.

The TEQP form of the TEQ instruction used in earlier ARM processors must not be used: the PSR transfer
operations should be used instead.

The action of TEQP in the ARM7TDMI is to move SPSR_<mode> to the CPSR if the processor is in a
privileged mode and to do nothing if in User mode.

INSTRUCTION CYCLE TIMES

Data Processing instructions vary in the number of incremental cycles taken as follows:

NOTE: S, N and I are as defined sequential (S-cycle), non-sequencial (N-cycle), and internal (I-cycle) respectively.

Table 3-4. Incremental Cycle Times

Processing Type Cycles

Normal Data Processing 1S

Data Processing with register specified shift 1S + 1I

Data Processing with PC written 2S + 1N

Data Processing with register specified shift and PC
written

2S + 1N + 1I

KS32C50100 RISC MICROCONTROLLER ARM INSTRUCTION SET

3-17

ASSEMBLER SYNTAX

• MOV,MVN (single operand instructions).
<opcode>{cond}{S} Rd,<Op2>

• CMP,CMN,TEQ,TST (instructions which do not produce a result).
<opcode>{cond} Rn,<Op2>

• AND,EOR,SUB,RSB,ADD,ADC,SBC,RSC,ORR,BIC
<opcode>{cond}{S} Rd,Rn,<Op2>

where:

<Op2> Rm{,<shift>} or,<#expression>

{cond} A two-character condition mnemonic. See Table 3-2.

{S} Set condition codes if S present (implied for CMP, CMN, TEQ, TST).

Rd, Rn and Rm Expressions evaluating to a register number.

<#expression> If this is used, the assembler will attempt to generate a shifted immediate 8-bit field to
match the expression. If this is impossible, it will give an error.

<shift> <Shiftname> <register> or <shiftname> #expression, or RRX (rotate right one bit with
extend).

<shiftname>s ASL, LSL, LSR, ASR, ROR. (ASL is a synonym for LSL, they assemble to the same
code.)

EXAMPLES

ADDEQ R2,R4,R5 ; If the Z flag is set make R2:=R4+R5
TEQS R4,#3 ; Test R4 for equality with 3.

; (The S is in fact redundant as the
; assembler inserts it automatically.)

SUB R4,R5,R7,LSR R2 ; Logical right shift R7 by the number in
; the bottom byte of R2, subtract result
; from R5, and put the answer into R4.

MOV PC,R14 ; Return from subroutine.
MOVS PC,R14 ; Return from exception and restore CPSR

; from SPSR_mode.

ARM INSTRUCTION SET KS32C50100 RISC MICROCONTROLER

3-18

PSR TRANSFER (MRS, MSR)

The instruction is only executed if the condition is true. The various conditions are defined in Table 3-2.

The MRS and MSR instructions are formed from a subset of the Data Processing operations and are implemented
using the TEQ, TST, CMN and CMP instructions without the S flag set. The encoding is shown in Figure 3-11.

These instructions allow access to the CPSR and SPSR registers. The MRS instruction allows the contents of the
CPSR or SPSR_<mode> to be moved to a general register. The MSR instruction allows the contents of a general
register to be moved to the CPSR or SPSR_<mode> register.

The MSR instruction also allows an immediate value or register contents to be transferred to the condition code
flags (N,Z,C and V) of CPSR or SPSR_<mode> without affecting the control bits. In this case, the top four bits of
the specified register contents or 32 bit immediate value are written to the top four bits of the relevant PSR.

OPERAND RESTRICTIONS

• In user mode, the control bits of the CPSR are protected from change, so only the condition code flags of the
CPSR can be changed. In other (privileged) modes the entire CPSR can be changed.

• Note that the software must never change the state of the T bit in the CPSR. If this happens, the processor will
enter an unpredictable state.

• The SPSR register which is accessed depends on the mode at the time of execution. For example, only
SPSR_fiq is accessible when the processor is in FIQ mode.

• You must not specify R15 as the source or destination register.

• Also, do not attempt to access an SPSR in User mode, since no such register exists.

KS32C50100 RISC MICROCONTROLLER ARM INSTRUCTION SET

3-19

Figure 3-11. PSR Transfer

31 28 27 23 22 16 15 12 11 021

Cond 00010 Ps 001111 Rd 000000000000

MRS (transfer PSR contents to a register)

[15:12] Destination register

[22] Source PSR
0 = CPSR 1 = SPSR_<current mode>

[31:28] Condition field

31 28 27 23 22 12 11 021

Cond 00010 Pd 1010011111 00000000

MRS (transfer register contents to PSR)

4 3

Rm

[3:0] Source register

[22] Destination PSR
0 = CPSR 1 = SPSR_<current mode>

[31:28] Condition field

31 28 27 22 12 11 021

Cond 00 Pd 1010001111 Source operand

MRS (transfer register contents or immdiate value to PSR flag bits only)
26 25 24 23

10I

[22] Destination PSR
0 = CPSR 1 = SPSR_<current mode>

[25] Immediate Operand
0 = Source operand is a register
1 = SPSR_<current mode>

[11:0] Source operand
11 03

00000000 Rm

4

[3:0] Source register
[11:4] Source operand is an immediate value

11 0

Imm

[7:0] Unsigned 8 bit immediate value
[11:8] Shift applied to lmm

7

Rotate

8

[31:28] Condition field

ARM INSTRUCTION SET KS32C50100 RISC MICROCONTROLER

3-20

RESERVED BITS

Only twelve bits of the PSR are defined in ARM7TDMI (N,Z,C,V,I,F, T & M[4:0]); the remaining bits are reserved for
use in future versions of the processor. Refer to Figure 2-6 for a full description of the PSR bits.

To ensure the maximum compatibility between ARM7TDMI programs and future processors, the following rules
should be observed:

• The reserved bits should be preserved when changing the value in a PSR.

• Programs should not rely on specific values from the reserved bits when checking the PSR status, since they
may read as one or zero in future processors.

A read-modify-write strategy should therefore be used when altering the control bits of any PSR register; this
involves transferring the appropriate PSR register to a general register using the MRS instruction, changing only
the relevant bits and then transferring the modified value back to the PSR register using the MSR instruction.

EXAMPLES

The following sequence performs a mode change:

MRS R0,CPSR ; Take a copy of the CPSR.
BIC R0,R0,#0x1F ; Clear the mode bits.
ORR R0,R0,#new_mode ; Select new mode
MSR CPSR,R0 ; Write back the modified CPSR.

When the aim is simply to change the condition code flags in a PSR, a value can be written directly to the flag bits
without disturbing the control bits. The following instruction sets the N,Z,C and V flags:

MSR CPSR_flg,#0xF0000000 ; Set all the flags egardless of their previous state
; (does not affect any control bits).

No attempt should be made to write an 8 bit immediate value into the whole PSR since such an operation cannot
preserve the reserved bits.

INSTRUCTION CYCLE TIMES

PSR transfers take 1S incremental cycles, where S is defined as Sequential (S-cycle).

KS32C50100 RISC MICROCONTROLLER ARM INSTRUCTION SET

3-21

ASSEMBLER SYNTAX

• MRS - transfer PSR contents to a register
MRS{cond} Rd,<psr>

• MSR - transfer register contents to PSR
MSR{cond} <psr>,Rm

• MSR - transfer register contents to PSR flag bits only
MSR{cond} <psrf>,Rm

The most significant four bits of the register contents are written to the N,Z,C & V flags respectively.

• MSR - transfer immediate value to PSR flag bits only
MSR{cond} <psrf>,<#expression>

The expression should symbolise a 32 bit value of which the most significant four bits are written to the N,Z,C and
V flags respectively.

Key:

{cond} Two-character condition mnemonic. See Table 3-2..

Rd and Rm Expressions evaluating to a register number other than R15

<psr> CPSR, CPSR_all, SPSR or SPSR_all. (CPSR and CPSR_all are synonyms as are
SPSR and SPSR_all)

<psrf> CPSR_flg or SPSR_flg

<#expression> Where this is used, the assembler will attempt to generate a shifted immediate 8-bit
field to match the expression. If this is impossible, it will give an error.

EXAMPLES

In User mode the instructions behave as follows:

MSR CPSR_all,Rm ; CPSR[31:28] <- Rm[31:28]
MSR CPSR_flg,Rm ; CPSR[31:28] <- Rm[31:28]
MSR CPSR_flg,#0xA0000000 ; CPSR[31:28] <- 0xA (set N,C; clear Z,V)
MRS Rd,CPSR ; Rd[31:0] <- CPSR[31:0]

In privileged modes the instructions behave as follows:

MSR CPSR_all,Rm ; CPSR[31:0] <- Rm[31:0]
MSR CPSR_flg,Rm ; CPSR[31:28] <- Rm[31:28]
MSR CPSR_flg,#0x50000000 ; CPSR[31:28] <- 0x5 (set Z,V; clear N,C)
MSR SPSR_all,Rm ; SPSR_<mode>[31:0]<- Rm[31:0]
MSR SPSR_flg,Rm ; SPSR_<mode>[31:28] <- Rm[31:28]
MSR SPSR_flg,#0xC0000000 ; SPSR_<mode>[31:28] <- 0xC (set N,Z; clear C,V)
MRS Rd,SPSR ; Rd[31:0] <- SPSR_<mode>[31:0]

ARM INSTRUCTION SET KS32C50100 RISC MICROCONTROLER

3-22

MULTIPLY AND MULTIPLY-ACCUMULATE (MUL, MLA)

The instruction is only executed if the condition is true. The various conditions are defined in Table 3-2. The
instruction encoding is shown in Figure 3-12.

The multiply and multiply-accumulate instructions use an 8 bit Booth's algorithm to perform integer multiplication.

The multiply form of the instruction gives Rd:=Rm*Rs. Rn is ignored, and should be set to zero for compatibility with
possible future upgrades to the instruction set.The multiply-accumulate form gives Rd:=Rm*Rs+Rn, which can
save an explicit ADD instruction in some circumstances. Both forms of the instruction work on operands which may
be considered as signed (2’s complement) or unsigned integers.

The results of a signed multiply and of an unsigned multiply of 32 bit operands differ only in the upper 32 bits—the
low 32 bits of the signed and unsigned results are identical. As these instructions only produce the low 32 bits of a
multiply, they can be used for both signed and unsigned multiplies.

For example consider the multiplication of the operands:
Operand A Operand B Result
0xFFFFFFF6 0x0000001 0xFFFFFF38

If the Operands Are Interpreted as Signed

Operand A has the value -10, operand B has the value 20, and the result is -200 which is correctly represented as
0xFFFFFF38.

If the Operands Are Interpreted as Unsigned

Operand A has the value 4294967286, operand B has the value 20 and the result is 85899345720, which is
represented as 0x13FFFFFF38, so the least significant 32 bits are 0xFFFFFF38.

Operand Restrictions

The destination register Rd must not be the same as the operand register Rm. R15 must not be used as an operand
or as the destination register.

All other register combinations will give correct results, and Rd, Rn and Rs may use the same register when required.

Figure 3-12. Multiply Instructions

Cond 0 0 0 0 0 0 A S Rd Rn Rs 1 0 0 1 Rm

034781112151619202122272831

[15:12][11:8][3:0] Operand registers

[19:16] Destination register

[21] Set condition set

[21] Accumulate

0 = do not alter condition codes
1 = set condition codes

0 = multiply only
1 = multiply and accumulate

[31:28] Condition Field

KS32C50100 RISC MICROCONTROLLER ARM INSTRUCTION SET

3-23

CPSR FLAGS

Setting the CPSR flags is optional, and is controlled by the S bit in the instruction. The N (Negative) and Z (Zero)
flags are set correctly on the result (N is made equal to bit 31 of the result, and Z is set if and only if the result is
zero). The C (Carry) flag is set to a meaningless value and the V (oVerflow) flag is unaffected.

INSTRUCTION CYCLE TIMES

MUL takes 1S + mI and MLA 1S + (m+1)I cycles to execute, where S and I are defined as sequential (S-cycle) and
internal (I-cycle), respectively.

m The number of 8 bit multiplier array cycles is required to complete the multiply, which is
controlled by the value of the multiplier operand specified by Rs. Its possible values are
as follows

1 If bits [32:8] of the multiplier operand are all zero or all one.

2 If bits [32:16] of the multiplier operand are all zero or all one.

3 If bits [32:24] of the multiplier operand are all zero or all one.

4 In all other cases.

ASSEMBLER SYNTAX

MUL{cond}{S} Rd,Rm,Rs
MLA{cond}{S} Rd,Rm,Rs,Rn

{cond} Two-character condition mnemonic. See Table 3-2..

{S} Set condition codes if S present

Rd, Rm, Rs and Rn Expressions evaluating to a register number other than R15.

EXAMPLES

MUL R1,R2,R3 ; R1:=R2*R3
MLAEQS R1,R2,R3,R4 ; Conditionally R1:=R2*R3+R4, Setting condition codes.

ARM INSTRUCTION SET KS32C50100 RISC MICROCONTROLER

3-24

MULTIPLY LONG AND MULTIPLY-ACCUMULATE LONG (MULL,MLAL)

The instruction is only executed if the condition is true. The various conditions are defined in Table 3-2. The
instruction encoding is shown in Figure 3-13.

The multiply long instructions perform integer multiplication on two 32 bit operands and produce 64 bit results.
Signed and unsigned multiplication each with optional accumulate give rise to four variations.

The multiply forms (UMULL and SMULL) take two 32 bit numbers and multiply them to produce a 64 bit result of the
form RdHi,RdLo := Rm * Rs. The lower 32 bits of the 64 bit result are written to RdLo, the upper 32 bits of the result
are written to RdHi.

The multiply-accumulate forms (UMLAL and SMLAL) take two 32 bit numbers, multiply them and add a 64 bit
number to produce a 64 bit result of the form RdHi,RdLo := Rm * Rs + RdHi,RdLo. The lower 32 bits of the 64 bit
number to add is read from RdLo. The upper 32 bits of the 64 bit number to add is read from RdHi. The lower 32
bits of the 64 bit result are written to RdLo. The upper 32 bits of the 64 bit result are written to RdHi.

The UMULL and UMLAL instructions treat all of their operands as unsigned binary numbers and write an unsigned
64 bit result. The SMULL and SMLAL instructions treat all of their operands as two's-complement signed numbers
and write a two's-complement signed 64 bit result.

OPERAND RESTRICTIONS

• R15 must not be used as an operand or as a destination register.

• RdHi, RdLo, and Rm must all specify different registers.

CPSR FLAGS

Setting the CPSR flags is optional, and is controlled by the S bit in the instruction. The N and Z flags are set
correctly on the result (N is equal to bit 63 of the result, Z is set if and only if all 64 bits of the result are zero). Both
the C and V flags are set to meaningless values.

Figure 3-13. Multiply Long Instructions

Cond 0 0 0 0 1 U A S RdHi RdLo Rs 1 0 0 1 Rm

03478111215161920212223272831

[11:8][3:0] Operand registers
[19:16][15:12] Source destination registers

[20] Set condition code

[21] Accumulate

0 = do not alter condition codes
1 = set condition codes

0 = multiply only
1 = multiply and accumulate

0 = unsigned
1 = signed

[31:28] Condition Field

[22] Unsigned

KS32C50100 RISC MICROCONTROLLER ARM INSTRUCTION SET

3-25

INSTRUCTION CYCLE TIMES

MULL takes 1S + (m+1)I and MLAL 1S + (m+2)I cycles to execute, where m is the number of 8 bit multiplier array
cycles required to complete the multiply, which is controlled by the value of the multiplier operand specified by Rs.

Its possible values are as follows:

For Signed Instructions SMULL, SMLAL:

• If bits [31:8] of the multiplier operand are all zero or all one.

• If bits [31:16] of the multiplier operand are all zero or all one.

• If bits [31:24] of the multiplier operand are all zero or all one.

• In all other cases.

For Unsigned Instructions UMULL, UMLAL:

• If bits [31:8] of the multiplier operand are all zero.

• If bits [31:16] of the multiplier operand are all zero.

• If bits [31:24] of the multiplier operand are all zero.

• In all other cases.

S and I are defined as sequential (S-cycle) and internal (I-cycle), respectively.

ASSEMBLER SYNTAX

where:

{cond} Two-character condition mnemonic. See Table 3-2.

{S} Set condition codes if S present

RdLo, RdHi, Rm, Rs Expressions evaluating to a register number other than R15.

EXAMPLES

UMULL R1,R4,R2,R3 ; R4,R1:=R2*R3
UMLALS R1,R5,R2,R3 ; R5,R1:=R2*R3+R5,R1 also setting condition codes

Table 3-5. Assembler Syntax Descriptions

Mnemonic Description Purpose

UMULL{cond}{S} RdLo,RdHi,Rm,Rs Unsigned Multiply Long 32 x 32 = 64

UMLAL{cond}{S} RdLo,RdHi,Rm,Rs Unsigned Multiply & Accumulate Long 32 x 32 + 64 = 64

SMULL{cond}{S} RdLo,RdHi,Rm,Rs Signed Multiply Long 32 x 32 = 64

SMLAL{cond}{S} RdLo,RdHi,Rm,Rs Signed Multiply & Accumulate Long 32 x 32 + 64 = 64

ARM INSTRUCTION SET KS32C50100 RISC MICROCONTROLER

3-26

SINGLE DATA TRANSFER (LDR, STR)

The instruction is only executed if the condition is true. The various conditions are defined in Table 3-2. The
instruction encoding is shown in Figure 3-14.

The single data transfer instructions are used to load or store single bytes or words of data. The memory address
used in the transfer is calculated by adding an offset to or subtracting an offset from a base register.

The result of this calculation may be written back into the base register if auto-indexing is required.

Figure 3-14. Single Data Transfer Instructions

31 28 27 26 25 24 20 19 16 15 12 11 10 021

Cond 01 I L Rn Rd Offset

[15:12] Source/Destination register

[19:16] Base register

[20] Load/Store bit
0 = Store to memory
1 = Load from memory

[21] Write-back bit
0 = No write-back
1 = Write address into base

[22] Byte/Word bit
0 = Transfer word quantity
1 = Transfer byte quantity

[23] Up/Down bit
0 = Down: subtract offset from base
1 = Up: add offset to base

[24] Pre/Post indexing bit
0 = Post: add offset after transfer
1 = Pre: add offset before transfer

[25] Immediate offset
0 = Offset is an immediate value

[11:0] Offset
11 0

Immediate offset

[11:0] Unsigned 12 bit immediate offset

11 0

[3:0] Offset register[11:4] Shift applied to Rm

34

[31:28] Condition field

Shift Rm

23 22

P U B W

KS32C50100 RISC MICROCONTROLLER ARM INSTRUCTION SET

3-27

OFFSETS AND AUTO-INDEXING

The offset from the base may be either a 12 bit unsigned binary immediate value in the instruction, or a second
register (possibly shifted in some way). The offset may be added to (U=1) or subtracted from (U=0) the base
register Rn. The offset modification may be performed either before (pre-indexed, P=1) or after (post-indexed, P=0)
the base is used as the transfer address.

The W bit gives optional auto increment and decrement addressing modes. The modified base value may be
written back into the base (W=1), or the old base value may be kept (W=0). In the case of post-indexed addressing,
the write back bit is redundant and is always set to zero, since the old base value can be retained by setting the
offset to zero. Therefore post-indexed data transfers always write back the modified base. The only use of the W bit
in a post-indexed data transfer is in privileged mode code, where setting the W bit forces non-privileged mode for
the transfer, allowing the operating system to generate a user address in a system where the memory management
hardware makes suitable use of this hardware.

SHIFTED REGISTER OFFSET

The 8 shift control bits are described in the data processing instructions section. However, the register specified
shift amounts are not available in this instruction class. See Figure 3-5.

BYTES AND WORDS

This instruction class may be used to transfer a byte (B=1) or a word (B=0) between an ARM7TDMI register and
memory.

The action of LDR(B) and STR(B) instructions is influenced by the BIGEND control signal of ARM7TDMI core. The
two possible configurations are described below.

Little-Endian Configuration

A byte load (LDRB) expects the data on data bus inputs 7 through 0 if the supplied address is on a word boundary,
on data bus inputs 15 through 8 if it is a word address plus one byte, and so on. The selected byte is placed in the
bottom 8 bits of the destination register, and the remaining bits of the register are filled with zeros. Please see
Figure 2-2.

A byte store (STRB) repeats the bottom 8 bits of the source register four times across data bus outputs 31 through
0. The external memory system should activate the appropriate byte subsystem to store the data.

A word load (LDR) will normally use a word aligned address. However, an address offset from a word boundary will
cause the data to be rotated into the register so that the addressed byte occupies bits 0 to 7. This means that half-
words accessed at offsets 0 and 2 from the word boundary will be correctly loaded into bits 0 through 15 of the
register. Two shift operations are then required to clear or to sign extend the upper 16 bits.

A word store (STR) should generate a word aligned address. The word presented to the data bus is not affected if
the address is not word aligned. That is, bit 31 of the register being stored always appears on data bus output 31.

ARM INSTRUCTION SET KS32C50100 RISC MICROCONTROLER

3-28

Big-Endian Configuration

A byte load (LDRB) expects the data on data bus inputs 31 through 24 if the supplied address is on a word boundary,
on data bus inputs 23 through 16 if it is a word address plus one byte, and so on. The selected byte is placed in the
bottom 8 bits of the destination register and the remaining bits of the register are filled with zeros. Please see Figure
2-1.

A byte store (STRB) repeats the bottom 8 bits of the source register four times across data bus outputs 31 through
0. The external memory system should activate the appropriate byte subsystem to store the data.

A word load (LDR) should generate a word aligned address. An address offset of 0 or 2 from a word boundary will
cause the data to be rotated into the register so that the addressed byte occupies bits 31 through 24. This means
that half-words accessed at these offsets will be correctly loaded into bits 16 through 31 of the register. A shift
operation is then required to move (and optionally sign extend) the data into the bottom 16 bits. An address offset
of 1 or 3 from a word boundary will cause the data to be rotated into the register so that the addressed byte
occupies bits 15 through 8.

A word store (STR) should generate a word aligned address. The word presented to the data bus is not affected if
the address is not word aligned. That is, bit 31 of the register being stored always appears on data bus output 31.

Figure 3-15. Little-Endian Offset Addressing

A+3

A+2

A+1

A

A

B

C

D

24

16

8

0

A

B

C

D

24

16

8

0

memory register

LDR from word aligned address

A+3

A+2

A+1

A

A

B

C

D

24

16

8

0

A

B

C

D

24

16

8

0

LDR from address offset by 2

KS32C50100 RISC MICROCONTROLLER ARM INSTRUCTION SET

3-29

USE OF R15

Write-back must not be specified if R15 is specified as the base register (Rn). When using R15 as the base register
you must remember it contains an address 8 bytes on from the address of the current instruction.

R15 must not be specified as the register offset (Rm).

When R15 is the source register (Rd) of a register store (STR) instruction, the stored value will be address of the
instruction plus 12.

RESTRICTION ON THE USE OF BASE REGISTER

When configured for late aborts, the following example code is difficult to unwind as the base register, Rn, gets
updated before the abort handler starts. Sometimes it may be impossible to calculate the initial value.

After an abort, the following example code is difficult to unwind as the base register, Rn, gets updated before the
abort handler starts. Sometimes it may be impossible to calculate the initial value.

Example:
LDR R0,[R1],R1

Therefore a post-indexed LDR or STR where Rm is the same register as Rn should not be used.

DATA ABORTS

A transfer to or from a legal address may cause problems for a memory management system. For instance, in a
system which uses virtual memory the required data may be absent from main memory. The memory manager can
signal a problem by taking the processor ABORT input HIGH whereupon the Data Abort trap will be taken. It is up
to the system software to resolve the cause of the problem, then the instruction can be restarted and the original
program continued.

INSTRUCTION CYCLE TIMES

Normal LDR instructions take 1S + 1N + 1I and LDR PC take 2S + 2N +1I incremental cycles, where S,N and I are
defined as squential (S-cycle), non-sequential (N-cycle), and internal (I-cycle), respectively. STR instructions take
2N incremental cycles to execute.

ARM INSTRUCTION SET KS32C50100 RISC MICROCONTROLER

3-30

ASSEMBLER SYNTAX

<LDR|STR>{cond}{B}{T} Rd,<Address>

where:

LDR Load from memory into a register

STR Store from a register into memory

{cond} Two-character condition mnemonic. See Table 3-2.

{B} If B is present then byte transfer, otherwise word transfer

{T} If T is present the W bit will be set in a post-indexed instruction, forcing non-privileged
mode for the transfer cycle. T is not allowed when a pre-indexed addressing mode is
specified or implied.

Rd An expression evaluating to a valid register number.

Rn and Rm Expressions evaluating to a register number. If Rn is R15 then the assembler will
subtract 8 from the offset value to allow for ARM7TDMI pipelining. In this case base
write-back should not be specified.

<Address>can be:
1 An expression which generates an address:

The assembler will attempt to generate an instruction using the PC as a base and a
corrected immediate offset to address the location given by evaluating the expression.
This will be a PC relative, pre-indexed address. If the address is out of range, an error
will be generated.

2 A pre-indexed addressing specification:
[Rn] offset of zero
[Rn,<#expression>]{!} offset of <expression> bytes
[Rn,{+/-}Rm{,<shift>}]{!} offset of +/- contents of index register, shifted

by <shift>

3 A post-indexed addressing specification:
[Rn],<#expression> offset of <expression> bytes
[Rn],{+/-}Rm{,<shift>} offset of +/- contents of index register,

shifted as by <shift>.

<shift> General shift operation (see data processing instructions) but you cannot specify the
shift amount by a register.

{!} Writes back the base register (set the W bit) if! is present.

KS32C50100 RISC MICROCONTROLLER ARM INSTRUCTION SET

3-31

EXAMPLES

STR R1,[R2,R4]! ; Store R1 at R2+R4 (both of which are registers)
; and write back address to R2.

STR R1,[R2],R4 ; Store R1 at R2 and write back R2+R4 to R2.
LDR R1,[R2,#16] ; Load R1 from contents of R2+16, but don't write back.
LDR R1,[R2,R3,LSL#2] ; Load R1 from contents of R2+R3*4.
LDREQB R1,[R6,#5] ; Conditionally load byte at R6+5 into

; R1 bits 0 to 7, filling bits 8 to 31 with zeros.
STR R1,PLACE ; Generate PC relative offset to address PLACE.
PLACE

ARM INSTRUCTION SET KS32C50100 RISC MICROCONTROLER

3-32

HALFWORD AND SIGNED DATA TRANSFER (LDRH/STRH/LDRSB/LDRSH)

The instruction is only executed if the condition is true. The various conditions are defined in Table 3-2. The
instruction encoding is shown in Figure 3-16.

These instructions are used to load or store half-words of data and also load sign-extended bytes or half-words of
data. The memory address used in the transfer is calculated by adding an offset to or subtracting an offset from a
base register. The result of this calculation may be written back into the base register if auto-indexing is required.

Figure 3-16. Halfword and Signed Data Transfer with Register Offset

31 28 27 22 20 19 16 15 021

[3:0] Offset register

[6] [5] S H
 0 0 = SWP instruction
 0 1 = Unsigned halfwords
 1 0 = Signed byte
 1 1 = Signed halfwords

[15:12] Source/Destination register

[19:16] Base register

[20] Load/Store
0 = Store to memory
1 = Load from memory

[21] Write-back
0 = No write-back
1 = Write address into base

[23] Up/Down
0 = Down: subtract offset from base
1 = Up: add offset to base

[24] Pre/Post indexing
0 = Post: add/subtract offset after transfer
1 = Pre: add/subtract offset before transfer

[31:28] Condition field

Cond 000 W L Rn Rm

2325 24

P U 0

12 11 8 7

Rd 0000

6 5 4 3

1 S H 1

KS32C50100 RISC MICROCONTROLLER ARM INSTRUCTION SET

3-33

OFFSETS AND AUTO-INDEXING

The offset from the base may be either a 8-bit unsigned binary immediate value in the instruction, or a second
register. The 8-bit offset is formed by concatenating bits 11 to 8 and bits 3 to 0 of the instruction word, such that bit
11 becomes the MSB and bit 0 becomes the LSB. The offset may be added to (U=1) or subtracted from (U=0) the
base register Rn. The offset modification may be performed either before (pre-indexed, P=1) or after (post-indexed,
P=0) the base register is used as the transfer address.

The W bit gives optional auto-increment and decrement addressing modes. The modified base value may be
written back into the base (W=1), or the old base may be kept (W=0). In the case of post-indexed addressing, the
write back bit is redundant and is always set to zero, since the old base value can be retained if necessary by
setting the offset to zero. Therefore post-indexed data transfers always write back the modified base.

The Write-back bit should not be set high (W=1) when post-indexed addressing is selected.

Figure 3-17. Halfword and Signed Data Transfer with Immediate Offset and Auto-Indexing

31 28 27 22 20 19 16 15 021

[3:0] Immediate Offset (Low nibble)

[6] [5] S H
 0 0 = SWP instruction
 0 1 = Unsigned halfwords
 1 0 = Signed byte
 1 1 = Signed halfwords

[11:8] Immediate Offset (High nibble)

[15:12] Source/Destination register

[19:16] Base register

[20] Load/Store
0 = Store to memory
1 = Load from memory

[21] Write-back
0 = No write-back
1 = Write address into base

[23] Up/Down
0 = Down: subtract offset from base
1 = Up: add offset to base

[24] Pre/Post indexing
0 = Post: add/subtract offset after transfer
1 = Pre: add/subtract offset before transfer

[31:28] Condition field

Cond 000 W L Rn Offset

2325 24

P U 1

12 11 8 7

Rd Offset

6 5 4 3

1 S H 1

ARM INSTRUCTION SET KS32C50100 RISC MICROCONTROLER

3-34

HALFWORD LOAD AND STORES

Setting S=0 and H=1 may be used to transfer unsigned Half-words between an ARM7TDMI register and memory.

The action of LDRH and STRH instructions is influenced by the BIGEND control signal. The two possible
configurations are described in the section below.

SIGNED BYTE AND HALFWORD LOADS

The S bit controls the loading of sign-extended data. When S=1 the H bit selects between Bytes (H=0) and Half-
words (H=1). The L bit should not be set low (Store) when Signed (S=1) operations have been selected.

The LDRSB instruction loads the selected Byte into bits 7 to 0 of the destination register and bits 31 to 8 of the
destination register are set to the value of bit 7, the sign bit.

The LDRSH instruction loads the selected Half-word into bits 15 to 0 of the destination register and bits 31 to 16 of
the destination register are set to the value of bit 15, the sign bit.

The action of the LDRSB and LDRSH instructions is influenced by the BIGEND control signal. The two possible
configurations are described in the following section.

ENDIANNESS AND BYTE/HALFWORD SELECTION

Little-Endian Configuration

A signed byte load (LDRSB) expects data on data bus inputs 7 through to 0 if the supplied address is on a word
boundary, on data bus inputs 15 through to 8 if it is a word address plus one byte, and so on. The selected byte is
placed in the bottom 8 bit of the destination register, and the remaining bits of the register are filled with the sign bit,
bit 7 of the byte. Please see Figure 2-2.

A halfword load (LDRSH or LDRH) expects data on data bus inputs 15 through to 0 if the supplied address is on a
word boundary and on data bus inputs 31 through to 16 if it is a halfword boundary, (A[1]=1).The supplied address
should always be on a halfword boundary. If bit 0 of the supplied address is HIGH then the ARM7TDMI will load an
unpredictable value. The selected halfword is placed in the bottom 16 bits of the destination register. For unsigned
half-words (LDRH), the top 16 bits of the register are filled with zeros and for signed half-words (LDRSH) the top 16
bits are filled with the sign bit, bit 15 of the halfword.

A halfword store (STRH) repeats the bottom 16 bits of the source register twice across the data bus outputs 31
through to 0. The external memory system should activate the appropriate halfword subsystem to store the data.
Note that the address must be halfword aligned, if bit 0 of the address is HIGH this will cause unpredictable
behaviour.

KS32C50100 RISC MICROCONTROLLER ARM INSTRUCTION SET

3-35

Big-Endian Configuration

A signed byte load (LDRSB) expects data on data bus inputs 31 through to 24 if the supplied address is on a word
boundary, on data bus inputs 23 through to 16 if it is a word address plus one byte, and so on. The selected byte is
placed in the bottom 8 bit of the destination register, and the remaining bits of the register are filled with the sign bit,
bit 7 of the byte. Please see Figure 2-1.

A halfword load (LDRSH or LDRH) expects data on data bus inputs 31 through to 16 if the supplied address is on a
word boundary and on data bus inputs 15 through to 0 if it is a halfword boundary, (A[1]=1). The supplied address
should always be on a halfword boundary. If bit 0 of the supplied address is HIGH then the ARM7TDMI will load an
unpredictable value. The selected halfword is placed in the bottom 16 bits of the destination register. For unsigned
half-words (LDRH), the top 16 bits of the register are filled with zeros and for signed half-words (LDRSH) the top 16
bits are filled with the sign bit, bit 15 of the halfword.

A halfword store (STRH) repeats the bottom 16 bits of the source register twice across the data bus outputs 31
through to 0. The external memory system should activate the appropriate halfword subsystem to store the data.
Note that the address must be halfword aligned, if bit 0 of the address is HIGH this will cause unpredictable
behaviour.

USE OF R15

Write-back should not be specified if R15 is specified as the base register (Rn). When using R15 as the base
register you must remember it contains an address 8 bytes on from the address of the current instruction.

R15 should not be specified as the register offset (Rm).

When R15 is the source register (Rd) of a Half-word store (STRH) instruction, the stored address will be address of
the instruction plus 12.

DATA ABORTS

A transfer to or from a legal address may cause problems for a memory management system. For instance, in a
system which uses virtual memory the required data may be absent from the main memory. The memory manager
can signal a problem by taking the processor ABORT input HIGH whereupon the Data Abort trap will be taken. It is
up to the system software to resolve the cause of the problem, then the instruction can be restarted and the original
program continued.

INSTRUCTION CYCLE TIMES

Normal LDR(H,SH,SB) instructions take 1S + 1N + 1I. LDR(H,SH,SB) PC take 2S + 2N + 1I incremental cycles.
S,N and I are defined as squential (S-cycle), non-squential (N-cycle), and internal (I-cycle), respectively. STRH
instructions take 2N incremental cycles to execute.

ARM INSTRUCTION SET KS32C50100 RISC MICROCONTROLER

3-36

ASSEMBLER SYNTAX

<LDR|STR>{cond}<H|SH|SB> Rd,<address>

LDR Load from memory into a register

STR Store from a register into memory

{cond} Two-character condition mnemonic. See Table 3-2..

H Transfer halfword quantity

SB Load sign extended byte (Only valid for LDR)

SH Load sign extended halfword (Only valid for LDR)

Rd An expression evaluating to a valid register number.

<address> can be:

1 An expression which generates an address:
The assembler will attempt to generate an instruction using the PC as a base and a
corrected immediate offset to address the location given by evaluating the expression.
This will be a PC relative, pre-indexed address. If the address is out of range, an error
will be generated.

2 A pre-indexed addressing specification:
[Rn] offset of zero
[Rn,<#expression>]{!} offset of <expression> bytes
[Rn,{+/-}Rm]{!} offset of +/- contents of index register

3 A post-indexed addressing specification:
[Rn],<#expression> offset of <expression> bytes
[Rn],{+/-}Rm offset of +/- contents of index register.

4 Rn and Rm are expressions evaluating to a register number. If Rn is R15 then the
assembler will subtract 8 from the offset value to allow for ARM7TDMI pipelining. In this
case base write-back should not be specified.

{!} Writes back the base register (set the W bit) if ! is present.

KS32C50100 RISC MICROCONTROLLER ARM INSTRUCTION SET

3-37

EXAMPLES

LDRH R1,[R2,-R3]! ; Load R1 from the contents of the halfword address
; contained in R2-R3 (both of which are registers)
; and write back address to R2

STRH R3,[R4,#14] ; Store the halfword in R3 at R14+14 but don't write back.
LDRSB R8,[R2],#-223 ; Load R8 with the sign extended contents of the byte

; address contained in R2 and write back R2-223 to R2.
LDRNESH R11,[R0] ; Conditionally load R11 with the sign extended contents of

; the halfword address contained in R0.
HERE ; Generate PC relative offset to address FRED.
STRH R5, [PC,#(FRED-HERE-8)]; Store the halfword in R5 at address FRED
FRED

ARM INSTRUCTION SET KS32C50100 RISC MICROCONTROLER

3-38

BLOCK DATA TRANSFER (LDM, STM)

The instruction is only executed if the condition is true. The various conditions are defined in Table 3-2. The
instruction encoding is shown in Figure 3-18.

Block data transfer instructions are used to load (LDM) or store (STM) any subset of the currently visible registers.
They support all possible stacking modes, maintaining full or empty stacks which can grow up or down memory,
and are very efficient instructions for saving or restoring context, or for moving large blocks of data around main
memory.

THE REGISTER LIST

The instruction can cause the transfer of any registers in the current bank (and non-user mode programs can also
transfer to and from the user bank, see below). The register list is a 16 bit field in the instruction, with each bit
corresponding to a register. A 1 in bit 0 of the register field will cause R0 to be transferred, a 0 will cause it not to be
transferred; similarly bit 1 controls the transfer of R1, and so on.

Any subset of the registers, or all the registers, may be specified. The only restriction is that the register list should
not be empty.

Whenever R15 is stored to memory the stored value is the address of the STM instruction plus 12.

Figure 3-18. Block Data Transfer Instructions

31 28 27 22 20 19 16 15 021

[19:16] Base register

[20] Load/Store bit
0 = Store to memory
1 = Load from memory

[21] Write-back bit
0 = No write-back
1 = Write address into base

[[22] PSR & force user bit
0 = Do not load PSR or force user mode
1 = Load PSR or force user mode

[23] Up/Down bit
0 = Down; subtrack offset from base
1 = Up; add offset to base

[24] Pre/Post indexing bit
0 = Post; add offset after transfer
1 = Pre; add offset before transfer

[31:28] Condition field

Cond 100 W L Rn Register list

2325 24

P U S

KS32C50100 RISC MICROCONTROLLER ARM INSTRUCTION SET

3-39

ADDRESSING MODES

The transfer addresses are determined by the contents of the base register (Rn), the pre/post bit (P) and the up/
down bit (U). The registers are transferred in the order lowest to highest, so R15 (if in the list) will always be
transferred last. The lowest register also gets transferred to/from the lowest memory address. By way of illustration,
consider the transfer of R1, R5 and R7 in the case where Rn=0x1000 and write back of the modified base is
required (W=1). Figure 3.19–22 show the sequence of register transfers, the addresses used, and the value of Rn
after the instruction has completed.

In all cases, had write back of the modified base not been required (W=0), Rn would have retained its initial value of
0x1000 unless it was also in the transfer list of a load multiple register instruction, when it would have been
overwritten with the loaded value.

ADDRESS ALIGNMENT

The address should normally be a word aligned quantity and non-word aligned addresses do not affect the
instruction. However, the bottom 2 bits of the address will appear on A[1:0] and might be interpreted by the
memory system.

Figure 3-19. Post-Increment Addressing

0x100C

0x1000

0x0FF4

Rn

1

0x100C

0x1000

0x0FF4

2

R1

0x100C

0x1000

0x0FF4

3

0x100C

0x1000

0x0FF4

4

R1

R7

R5

R1

R5

Rn

ARM INSTRUCTION SET KS32C50100 RISC MICROCONTROLER

3-40

Figure 3-20. Pre-Increment Addressing

Figure 3-21. Post-Decrement Addressing

0x100C

0x1000

0x0FF4

Rn

1

0x100C

0x1000

0x0FF4

2

R1

0x100C

0x1000

0x0FF4

3

0x100C

0x1000

0x0FF4

4

R1

R7

R5

R1

R5

Rn

0x100C

0x1000

0x0FF4

Rn

1

0x100C

0x1000

0x0FF4

2

R1

0x100C

0x1000

0x0FF4

3

0x100C

0x1000

0x0FF4

4

R1

R7

R5

R1

R5

Rn

KS32C50100 RISC MICROCONTROLLER ARM INSTRUCTION SET

3-41

USE OF THE S BIT

When the S bit is set in a LDM/STM instruction its meaning depends on whether or not R15 is in the transfer list and
on the type of instruction. The S bit should only be set if the instruction is to execute in a privileged mode.

LDM with R15 in Transfer List and S Bit Set (Mode Changes)

If the instruction is a LDM then SPSR_<mode> is transferred to CPSR at the same time as R15 is loaded.

STM with R15 in Transfer List and S Bit Set (User Bank Transfer)

The registers transferred are taken from the User bank rather than the bank corresponding to the current mode.
This is useful for saving the user state on process switches. Base write-back should not be used when this
mechanism is employed.

R15 not in List and S Bit Set (User Bank Transfer)

For both LDM and STM instructions, the User bank registers are transferred rather than the register bank
corresponding to the current mode. This is useful for saving the user state on process switches. Base write-back
should not be used when this mechanism is employed.

When the instruction is LDM, care must be taken not to read from a banked register during the following cycle
(inserting a dummy instruction such as MOV R0, R0 after the LDM will ensure safety).

USE OF R15 AS THE BASE

R15 should not be used as the base register in any LDM or STM instruction.

Figure 3-22. Pre-Decrement Addressing

0x100C

0x1000

0x0FF4

Rn

1

0x100C

0x1000

0x0FF4

2

R1

0x100C

0x1000

0x0FF4

3

0x100C

0x1000

0x0FF4

4

R1

R7

R5

R1

R5

Rn

ARM INSTRUCTION SET KS32C50100 RISC MICROCONTROLER

3-42

INCLUSION OF THE BASE IN THE REGISTER LIST

When write-back is specified, the base is written back at the end of the second cycle of the instruction. During a
STM, the first register is written out at the start of the second cycle. A STM which includes storing the base, with the
base as the first register to be stored, will therefore store the unchanged value, whereas with the base second or
later in the transfer order, will store the modified value. A LDM will always overwrite the updated base if the base is
in the list.

DATA ABORTS

Some legal addresses may be unacceptable to a memory management system, and the memory manager can
indicate a problem with an address by taking the ABORT signal HIGH. This can happen on any transfer during a
multiple register load or store, and must be recoverable if ARM7TDMI is to be used in a virtual memory system.

Aborts during STM Instructions

If the abort occurs during a store multiple instruction, ARM7TDMI takes little action until the instruction completes,
whereupon it enters the data abort trap. The memory manager is responsible for preventing erroneous writes to the
memory. The only change to the internal state of the processor will be the modification of the base register if write-
back was specified, and this must be reversed by software (and the cause of the abort resolved) before the
instruction may be retried.

Aborts during LDM Instructions

When ARM7TDMI detects a data abort during a load multiple instruction, it modifies the operation of the instruction
to ensure that recovery is possible.

• Overwriting of registers stops when the abort happens. The aborting load will not take place but earlier ones
may have overwritten registers. The PC is always the last register to be written and so will always be
preserved.

• The base register is restored, to its modified value if write-back was requested. This ensures recoverability in
the case where the base register is also in the transfer list, and may have been overwritten before the abort
occurred.

The data abort trap is taken when the load multiple has completed, and the system software must undo any base
modification (and resolve the cause of the abort) before restarting the instruction.

INSTRUCTION CYCLE TIMES

Normal LDM instructions take nS + 1N + 1I and LDM PC takes (n+1)S + 2N + 1I incremental cycles, where S,N and
I are defined as squential (S-cycle), non-sequential (N-cycle), and internal (I-cycle), respectively. STM instructions
take (n-1)S + 2N incremental cycles to execute, where n is the number of words transferred.

KS32C50100 RISC MICROCONTROLLER ARM INSTRUCTION SET

3-43

ASSEMBLER SYNTAX

<LDM|STM>{cond}<FD|ED|FA|EA|IA|IB|DA|DB> Rn{!},<Rlist>{^}

where:

{cond} Two character condition mnemonic. See Table 3-2.

Rn An expression evaluating to a valid register number

<Rlist> A list of registers and register ranges enclosed in {} (e.g. {R0,R2-R7,R10}).

{!} If present requests write-back (W=1), otherwise W=0.

{^} If present set S bit to load the CPSR along with the PC, or force transfer of user bank
when in privileged mode.

Addressing Mode Names

There are different assembler mnemonics for each of the addressing modes, depending on whether the instruction
is being used to support stacks or for other purposes. The equivalence between the names and the values of the
bits in the instruction are shown in the following table 3-6.

FD, ED, FA, EA define pre/post indexing and the up/down bit by reference to the form of stack required. The F and
E refer to a “full” or “empty” stack, i.e. whether a pre-index has to be done (full) before storing to the stack. The A
and D refer to whether the stack is ascending or descending. If ascending, a STM will go up and LDM down, if
descending, vice-versa.

IA, IB, DA, DB allow control when LDM/STM are not being used for stacks and simply mean Increment After,
Increment Before, Decrement After, Decrement Before.

Table 3-6. Addressing Mode Names

Name Stack Other L bit P bit U bit

Pre-Increment Load LDMED LDMIB 1 1 1

Post-Increment Load LDMFD LDMIA 1 0 1

Pre-Dcrement Load LDMEA LDMDB 1 1 0

Post-Decrement Load LDMFA LDMDA 1 0 0

Pre-Increment Store STMFA STMIB 0 1 1

Post-Increment Store STMEA STMIA 0 0 1

Pre-Decrement Store STMFD STMDB 0 1 0

Post-Decrement Store STMED STMDA 0 0 0

ARM INSTRUCTION SET KS32C50100 RISC MICROCONTROLER

3-44

EXAMPLES

LDMFD SP!,{R0,R1,R2} ; Unstack 3 registers.
STMIA R0,{R0-R15} ; Save all registers.
LDMFD SP!,{R15} ; R15 <- (SP), CPSR unchanged.
LDMFD SP!,{R15}^ ; R15 <- (SP), CPSR <- SPSR_mode

; (allowed only in privileged modes).
STMFD R13,{R0-R14}^ ; Save user mode regs on stack

; (allowed only in privileged modes).

These instructions may be used to save state on subroutine entry, and restore it efficiently on return to the calling
routine:

STMED SP!,{R0-R3,R14} ; Save R0 to R3 to use as workspace
; and R14 for returning.

BL somewhere ; This nested call will overwrite R14
LDMED SP!,{R0-R3,R15} ; Restore workspace and return.

KS32C50100 RISC MICROCONTROLLER ARM INSTRUCTION SET

3-45

SINGLE DATA SWAP (SWP)

The instruction is only executed if the condition is true. The various conditions are defined in Table 3-2. The
instruction encoding is shown in Figure 3-23.

The data swap instruction is used to swap a byte or word quantity between a register and external memory. This
instruction is implemented as a memory read followed by a memory write which are “locked” together (the
processor cannot be interrupted until both operations have completed, and the memory manager is warned to treat
them as inseparable). This class of instruction is particularly useful for implementing software semaphores.

The swap address is determined by the contents of the base register (Rn). The processor first reads the contents of
the swap address. Then it writes the contents of the source register (Rm) to the swap address, and stores the old
memory contents in the destination register (Rd). The same register may be specified as both the source and
destination.

The LOCK output goes HIGH for the duration of the read and write operations to signal to the external memory
manager that they are locked together, and should be allowed to complete without interruption. This is important in
multi-processor systems where the swap instruction is the only indivisible instruction which may be used to
implement semaphores; control of the memory must not be removed from a processor while it is performing a
locked operation.

BYTES AND WORDS

This instruction class may be used to swap a byte (B=1) or a word (B=0) between an ARM7TDMI register and
memory. The SWP instruction is implemented as a LDR followed by a STR and the action of these is as described
in the section on single data transfers. In particular, the description of Big and Little Endian configuration applies to
the SWP instruction.

USE OF R15

Do not use R15 as an operand (Rd, Rn or Rs) in a SWP instruction.

Figure 3-23. Swap Instruction

31 28 27 23 22 20 19 16 15 12 11 8 7 4 3 021

Cond 00010 B 00 Rn Rd 0000 1001 Rm

[3:0] Source register

[15:12] Destination register

[19:16] Base register

[22] Byte/Word bit
0 = Swap word quantity
1 = Swap word quantity

[31:28] Condition field

ARM INSTRUCTION SET KS32C50100 RISC MICROCONTROLER

3-46

DATA ABORTS

If the address used for the swap is unacceptable to a memory management system, the memory manager can flag
the problem by driving ABORT HIGH. This can happen on either the read or the write cycle (or both), and in either
case, the Data Abort trap will be taken. It is up to the system software to resolve the cause of the problem, then the
instruction can be restarted and the original program continued.

INSTRUCTION CYCLE TIMES

Swap instructions take 1S + 2N +1I incremental cycles to execute, where S,N and I are defined as squential (S-
cycle), non-squential, and internal (I-cycle), respectively.

ASSEMBLER SYNTAX

<SWP>{cond}{B} Rd,Rm,[Rn]

{cond} Two-character condition mnemonic. See Table 3-2.

{B} If B is present then byte transfer, otherwise word transfer

Rd,Rm,Rn Expressions evaluating to valid register numbers

EXAMPLES

SWP R0,R1,[R2] ; Load R0 with the word addressed by R2, and
; store R1 at R2.

SWPB R2,R3,[R4] ; Load R2 with the byte addressed by R4, and
; store bits 0 to 7 of R3 at R4.

SWPEQ R0,R0,[R1] ; Conditionally swap the contents of the
; word addressed by R1 with R0.

KS32C50100 RISC MICROCONTROLLER ARM INSTRUCTION SET

3-47

SOFTWARE INTERRUPT (SWI)

The instruction is only executed if the condition is true. The various conditions are defined in Table 3-2. The
instruction encoding is shown in Figure 3-24, below.

The software interrupt instruction is used to enter Supervisor mode in a controlled manner. The instruction causes
the software interrupt trap to be taken, which effects the mode change. The PC is then forced to a fixed value
(0x08) and the CPSR is saved in SPSR_svc. If the SWI vector address is suitably protected (by external memory
management hardware) from modification by the user, a fully protected operating system may be constructed.

RETURN FROM THE SUPERVISOR

The PC is saved in R14_svc upon entering the software interrupt trap, with the PC adjusted to point to the word
after the SWI instruction. MOVS PC,R14_svc will return to the calling program and restore the CPSR.

Note that the link mechanism is not re-entrant, so if the supervisor code wishes to use software interrupts within
itself it must first save a copy of the return address and SPSR.

COMMENT FIELD

The bottom 24 bits of the instruction are ignored by the processor, and may be used to communicate information to
the supervisor code. For instance, the supervisor may look at this field and use it to index into an array of entry
points for routines which perform the various supervisor functions.

INSTRUCTION CYCLE TIMES

Software interrupt instructions take 2S + 1N incremental cycles to execute, where S and N are defined as squential
(S-cycle) and non-squential (N-cycle).

Figure 3-24. Software Interrupt Instruction

[31:28] Condition field

31 28 27 23 0

Cond 1111 Comment field (ignored by Processor)

24

ARM INSTRUCTION SET KS32C50100 RISC MICROCONTROLER

3-48

ASSEMBLER SYNTAX

SWI{cond} <expression>

{cond} Two character condition mnemonic, Table 3-2.

<expression> Evaluated and placed in the comment field (which is ignored by ARM7TDMI).

EXAMPLES

SWI ReadC ; Get next character from read stream.
SWI WriteI+”k” ; Output a “k” to the write stream.
SWINE 0 ; Conditionally call supervisor with 0 in comment field.

Supervisor code

The previous examples assume that suitable supervisor code exists, for instance:

0x08 B Supervisor ; SWI entry point
EntryTable ; Addresses of supervisor routines
DCD ZeroRtn
DCD ReadCRtn
DCD WriteIRtn
 . . .

Zero EQU 0
ReadC EQU 256
WriteI EQU 512

Supervisor ; SWI has routine required in bits 8-23 and data (if any) in
; bits 0–7. Assumes R13_svc points to a suitable stack

STMFD R13,{R0-R2,R14} ; Save work registers and return address.
LDR R0,[R14,#-4] ; Get SWI instruction.
BIC R0,R0,#0xFF000000 ; Clear top 8 bits.
MOV R1,R0,LSR#8 ; Get routine offset.
ADR R2,EntryTable ; Get start address of entry table.
LDR R15,[R2,R1,LSL#2] ; Branch to appropriate routine.
WriteIRtn ; Enter with character in R0 bits 0–7.

LDMFD R13,{R0-R2,R15}^ ; Restore workspace and return,

; restoring processor mode and flags.

KS32C50100 RISC MICROCONTROLLER ARM INSTRUCTION SET

3-49

COPROCESSOR DATA OPERATIONS (CDP)

The instruction is only executed if the condition is true. The various conditions are defined in Table 3-2. The
instruction encoding is shown in Figure 3-25.

This class of instruction is used to tell a coprocessor to perform some internal operation. No result is communicated
back to ARM7TDMI, and it will not wait for the operation to complete. The coprocessor could contain a queue of
such instructions awaiting execution, and their execution can overlap other activity, allowing the coprocessor and
ARM7TDMI to perform independent tasks in parallel.

COPROCESSOR INSTRUCTIONS

The KS32C6200, unlike some other ARM-based processors, does not have an external coprocessor interface. It
does not have a on-chip coprocessor also.

So then all coprocessor instructions will cause the undefinded instruction trap to be taken on the KS32C6200.
These coprocessor instructions can be emulated by the undefined trap handler. Even though external coprocessor
can not be connected to the KS32C6200, the coprocessor instructions are still described here in full for
completeness. (Remember that any external coprocessor described in this section is a software emulation.)

THE COPROCESSOR FIELDS

Only bit 4 and bits 24 to 31 are significant to ARM7TDMI. The remaining bits are used by coprocessors. The above
field names are used by convention, and particular coprocessors may redefine the use of all fields except CP# as
appropriate. The CP# field is used to contain an identifying number (in the range 0 to 15) for each coprocessor, and
a coprocessor will ignore any instruction which does not contain its number in the CP# field.

The conventional interpretation of the instruction is that the coprocessor should perform an operation specified in
the CP Opc field (and possibly in the CP field) on the contents of CRn and CRm, and place the result in CRd.

Figure 3-25. Coprocessor Data Operation Instruction

31 28 27 24 23 20 19 16 15 12 11 8 7 5 4 3 0

[3:0] Coprocessor operand register

[7:5] Coprocessor information

[11:8] Coprocessor number

[15:12] Coprocessor destination register

[19:16] Coprocessor operand register

[23:20] Coprocessor operation code

[31:28] Condition field

Cond 1110 CP Opc CRn CRd CP# CP 0 CRm

ARM INSTRUCTION SET KS32C50100 RISC MICROCONTROLER

3-50

INSTRUCTION CYCLE TIMES

Coprocessor data operations take 1S + bI incremental cycles to execute, where b is the number of cycles spent in
the coprocessor busy-wait loop.

S and I are defined as squential (S-cycle) and internal (I-cycle).

ASSEMBLER SYNTAX

CDP{cond} p#,<expression1>,cd,cn,cm{,<expression2>}

{cond} Two character condition mnemonic. See Table 3-2.

p# The unique number of the required coprocessor

<expression1> Evaluated to a constant and placed in the CP Opc field

cd, cn and cm Evaluate to the valid coprocessor register numbers CRd, CRn and CRm respectively

<expression2> Where present is evaluated to a constant and placed in the CP field

EXAMPLES

CDP p1,10,c1,c2,c3 ; Request coproc 1 to do operation 10
; on CR2 and CR3, and put the result in CR1.

CDPEQ p2,5,c1,c2,c3,2 ; If Z flag is set request coproc 2 to do operation 5 (type 2)
; on CR2 and CR3, and put the result in CR1.

KS32C50100 RISC MICROCONTROLLER ARM INSTRUCTION SET

3-51

COPROCESSOR DATA TRANSFERS (LDC, STC)

The instruction is only executed if the condition is true. The various conditions are defined in Table 3-2. The
instruction encoding is shown in Figure 3-26.

This class of instruction is used to load (LDC) or store (STC) a subset of a coprocessors’s registers directly to
memory. ARM7TDMI is responsible for supplying the memory address, and the coprocessor supplies or accepts
the data and controls the number of words transferred.

THE COPROCESSOR FIELDS

The CP# field is used to identify the coprocessor which is required to supply or accept the data, and a coprocessor
will only respond if its number matches the contents of this field.

The CRd field and the N bit contain information for the coprocessor which may be interpreted in different ways by
different coprocessors, but by convention CRd is the register to be transferred (or the first register where more than
one is to be transferred), and the N bit is used to choose one of two transfer length options. For instance N=0 could
select the transfer of a single register, and N=1 could select the transfer of all the registers for context switching.

Figure 3-26. Coprocessor Data Transfer Instructions

31 28 27 22 20 19 16 15 021

[7:0] Unsigned 8 bit immediate offset

[11:8] Coprocessor number

[15:12] Coprocessor source/destination register

[19:16] Base register

[20] Load/Store bit
0 = Store to memory
1 = Load from memory

[21] Write-back bit
0 = No write-back
1 = Write address into base

[22] Transfer length

[23] Up/Down bit
0 = Down: subtract offset from base
1 = Up: add offset to base

[24] Pre/Post indexing bit
0 = Post: add offset after transfer
1 = Pre: add offset before transfer

[31:28] Condition field

Cond 110 W L Rn Offset

2325 24

P U N

12 11 8 7

CRd CP#

ARM INSTRUCTION SET KS32C50100 RISC MICROCONTROLER

3-52

ADDRESSING MODES

ARM7TDMI is responsible for providing the address used by the memory system for the transfer, and the
addressing modes available are a subset of those used in single data transfer instructions. Note, however, that the
immediate offsets are 8 bits wide and specify word offsets for coprocessor data transfers, whereas they are 12 bits
wide and specify byte offsets for single data transfers.

The 8 bit unsigned immediate offset is shifted left 2 bits and either added to (U=1) or subtracted from (U=0) the
base register (Rn); this calculation may be performed either before (P=1) or after (P=0) the base is used as the
transfer address. The modified base value may be overwritten back into the base register (if W=1), or the old value
of the base may be preserved (W=0). Note that post-indexed addressing modes require explicit setting of the W bit,
unlike LDR and STR which always write-back when post-indexed.

The value of the base register, modified by the offset in a pre-indexed instruction, is used as the address for the
transfer of the first word. The second word (if more than one is transferred) will go to or come from an address one
word (4 bytes) higher than the first transfer, and the address will be incremented by one word for each subsequent
transfer.

ADDRESS ALIGNMENT

The base address should normally be a word aligned quantity. The bottom 2 bits of the address will appear on A[1:0]
and might be interpreted by the memory system.

USE OF R15

If Rn is R15, the value used will be the address of the instruction plus 8 bytes. Base write-back to R15 must not be
specified.

DATA ABORTS

If the address is legal but the memory manager generates an abort, the data trap will be taken. The write-back of
the modified base will take place, but all other processor state will be preserved. The coprocessor is partly
responsible for ensuring that the data transfer can be restarted after the cause of the abort has been resolved, and
must ensure that any subsequent actions it undertakes can be repeated when the instruction is retried.

INSTRUCTION CYCLE TIMES

Coprocessor data transfer instructions take (n-1)S + 2N + bI incremental cycles to execute, where:

n The number of words transferred.

b The number of cycles spent in the coprocessor busy-wait loop.

S, N and I are defined as squential (S-cycle), non-squential (N-cycle), and internal (I-cycle), respectively.

KS32C50100 RISC MICROCONTROLLER ARM INSTRUCTION SET

3-53

ASSEMBLER SYNTAX

<LDC|STC>{cond}{L} p#,cd,<Address>

LDC Load from memory to coprocessor

STC Store from coprocessor to memory

{L} When present perform long transfer (N=1), otherwise perform short transfer (N=0)

{cond} Two character condition mnemonic. See Table 3-2..

p# The unique number of the required coprocessor

cd An expression evaluating to a valid coprocessor register number that is placed in the
CRd field

<Address> can be:

1 An expression which generates an address:
The assembler will attempt to generate an instruction using the PC as a base and a
corrected immediate offset to address the location given by evaluating the expression.
This will be a PC relative, pre-indexed address. If the address is out of range, an error
will be generated

2 A pre-indexed addressing specification:
[Rn] offset of zero
[Rn,<#expression>]{!} offset of <expression> bytes

3 A post-indexed addressing specification:
Rn],<#expression offset of <expression> bytes
{!} write back the base register (set the W bit)

if! is present
Rn is an expression evaluating to a valid

ARM7TDMI register number.

NOTE

If Rn is R15, the assembler will subtract 8 from the offset value to allow for ARM7TDMI pipelining.

EXAMPLES

LDC p1,c2,table ; Load c2 of coproc 1 from address
; table, using a PC relative address.

STCEQL p2,c3,[R5,#24]! ; Conditionally store c3 of coproc 2
; into an address 24 bytes up from R5,
; write this address back to R5, and use
; long transfer option (probably to store multiple words).

NOTE

Although the address offset is expressed in bytes, the instruction offset field is in words. The assembler will
adjust the offset appropriately.

ARM INSTRUCTION SET KS32C50100 RISC MICROCONTROLER

3-54

COPROCESSOR REGISTER TRANSFERS (MRC, MCR)

The instruction is only executed if the condition is true. The various conditions are defined in Table 3-2.. The
instruction encoding is shown in Figure 3-27.

This class of instruction is used to communicate information directly between ARM7TDMI and a coprocessor. An
example of a coprocessor to ARM7TDMI register transfer (MRC) instruction would be a FIX of a floating point value
held in a coprocessor, where the floating point number is converted into a 32 bit integer within the coprocessor, and
the result is then transferred to ARM7TDMI register. A FLOAT of a 32 bit value in ARM7TDMI register into a floating
point value within the coprocessor illustrates the use of ARM7TDMI register to coprocessor transfer (MCR).

An important use of this instruction is to communicate control information directly from the coprocessor into the
ARM7TDMI CPSR flags. As an example, the result of a comparison of two floating point values within a
coprocessor can be moved to the CPSR to control the subsequent flow of execution.

THE COPROCESSOR FIELDS

The CP# field is used, as for all coprocessor instructions, to specify which coprocessor is being called upon.

The CP Opc, CRn, CP and CRm fields are used only by the coprocessor, and the interpretation presented here is
derived from convention only. Other interpretations are allowed where the coprocessor functionality is incompatible
with this one. The conventional interpretation is that the CP Opc and CP fields specify the operation the
coprocessor is required to perform, CRn is the coprocessor register which is the source or destination of the
transferred information, and CRm is a second coprocessor register which may be involved in some way which
depends on the particular operation specified.

Figure 3-27. Coprocesspr Register Transfer Instructions

31 28 27 24 23 20 19 16 15 12 11 8 7 5 4 3 0

[3:0] Coprocessor operand register

[7:5] Coprocessor information

[11:8] Coprocessor number

[15:12] ARM source/destination register

[19:16] Coprocessor source/destination register

[20] Load/Store bit
0 = Store to Co-Processor
1 = Load from Co-Processor

[23:21] Coprocessor operation mode

[31:28] Condition field

Cond 1110 CP Opc CRn Rd CP# CP 1 CRm

21

L

KS32C50100 RISC MICROCONTROLLER ARM INSTRUCTION SET

3-55

TRANSFERS TO R15

When a coprocessor register transfer to ARM7TDMI has R15 as the destination, bits 31, 30, 29 and 28 of the
transferred word are copied into the N, Z, C and V flags respectively. The other bits of the transferred word are
ignored, and the PC and other CPSR bits are unaffected by the transfer.

TRANSFERS FROM R15

A coprocessor register transfer from ARM7TDMI with R15 as the source register will store the PC+12.

INSTRUCTION CYCLE TIMES

MRC instructions take 1S + (b+1)I +1C incremental cycles to execute, where S, I and C are defined as squential (S-
cycle), internal (I-cycle), and coprocessor register transfer (C-cycle), respectively. MCR instructions take 1S + bI
+1C incremental cycles to execute, where b is the number of cycles spent in the coprocessor busy-wait loop.

ASSEMBLER SYNTAX

<MCR|MRC>{cond} p#,<expression1>,Rd,cn,cm{,<expression2>}

MRC Move from coprocessor to ARM7TDMI register (L=1)

MCR Move from ARM7TDMI register to coprocessor (L=0)

{cond} Two character condition mnemonic. See Table 3-2

p# The unique number of the required coprocessor

 <expression1> Evaluated to a constant and placed in the CP Opc field

Rd An expression evaluating to a valid ARM7TDMI register number

cn and cm Expressions evaluating to the valid coprocessor register numbers CRn and CRm
respectively

<expression2> Where present is evaluated to a constant and placed in the CP field

EXAMPLES

MRC p2,5,R3,c5,c6 ; Request coproc 2 to perform operation 5
; on c5 and c6, and transfer the (single
; 32-bit word) result back to R3.

MCR p6,0,R4,c5,c6 ; Request coproc 6 to perform operation 0
; on R4 and place the result in c6.

MRCEQ p3,9,R3,c5,c6,2 ; Conditionally request coproc 3 to
; perform operation 9 (type 2) on c5 and
; c6, and transfer the result back to R3.

ARM INSTRUCTION SET KS32C50100 RISC MICROCONTROLER

3-56

UNDEFINED INSTRUCTION

The instruction is only executed if the condition is true. The various conditions are defined in Table 3-2. The
instruction format is shown in Figure 3-28.

If the condition is true, the undefined instruction trap will be taken.

Note that the undefined instruction mechanism involves offering this instruction to any coprocessors which may be
present, and all coprocessors must refuse to accept it by driving CPA and CPB HIGH.

INSTRUCTION CYCLE TIMES

This instruction takes 2S + 1I + 1N cycles, where S, N and I are defined as squential (S-cycle), non-sequential (N-
cycle), and internal (I-cycle).

ASSEMBLER SYNTAX

The assembler has no mnemonics for generating this instruction. If it is adopted in the future for some specified
use, suitable mnemonics will be added to the assembler. Until such time, this instruction must not be used.

Figure 3-28. Undefined Instruction

31 28 27 24 5 4 3 0

Cond 011 1 xxxxxxxxxxxxxxxxxxxxxxxx

25

KS32C50100 RISC MICROCONTROLLER ARM INSTRUCTION SET

3-57

INSTRUCTION SET EXAMPLES

The following examples show ways in which the basic ARM7TDMI instructions can combine to give efficient code.
None of these methods saves a great deal of execution time (although they may save some), mostly they just save
code.

USING THE CONDITIONAL INSTRUCTIONS

Using Conditionals for Logical OR

CMP Rn,#p ; If Rn=p OR Rm=q THEN GOTO Label.
BEQ Label
CMP Rm,#q
BEQ Label

This can be replaced by

CMP Rn,#p
CMPNE Rm,#q ; If condition not satisfied try other test.
BEQ Label

Absolute Value

TEQ Rn,#0 ; Test sign
RSBMI Rn,Rn,#0 ; and 2's complement if necessary.

Multiplication by 4, 5 or 6 (Run Time)

MOV Rc,Ra,LSL#2 ; Multiply by 4,
CMP Rb,#5 ; Test value,
ADDCS Rc,Rc,Ra ; Complete multiply by 5,
ADDHI Rc,Rc,Ra ; Complete multiply by 6.

Combining Discrete and Range Tests

TEQ Rc,#127 ; Discrete test,
CMPNE Rc,#” ”-1 ; Range test
MOVLS Rc,#”.” ; IF Rc<=” ” OR Rc=ASCII(127)

; THEN Rc:=”.”

ARM INSTRUCTION SET KS32C50100 RISC MICROCONTROLER

3-58

Division and Remainder

A number of divide routines for specific applications are provided in source form as part of the ANSI C library
provided with the ARM Cross Development Toolkit, available from your supplier. A short general purpose divide
routine follows.

; Enter with numbers in Ra and Rb.
MOV Rcnt,#1 ; Bit to control the division.

Div1 CMP Rb,#0x80000000 ; Move Rb until greater than Ra.
CMPCC Rb,Ra
MOVCC Rb,Rb,ASL#1
MOVCC Rcnt,Rcnt,ASL#1
BCC Div1
MOV Rc,#0

Div2 CMP Ra,Rb ; Test for possible subtraction.
SUBCS Ra,Ra,Rb ; Subtract if ok,
ADDCS Rc,Rc,Rcnt ; Put relevant bit into result
MOVS Rcnt,Rcnt,LSR#1 ; Shift control bit
MOVNE Rb,Rb,LSR#1 ; Halve unless finished.
BNE Div2 ; Divide result in Rc, remainder in Ra.

Overflow Eetection in the ARM7TDMI

1. Overflow in unsigned multiply with a 32-bit result
UMULL Rd,Rt,Rm,Rn ; 3 to 6 cycles
TEQ Rt,#0 ; +1 cycle and a register
BNE overflow

2. Overflow in signed multiply with a 32-bit result

SMULL Rd,Rt,Rm,Rn ; 3 to 6 cycles
TEQ Rt,Rd ASR#31 ; +1 cycle and a register
BNE overflow

3. Overflow in unsigned multiply accumulate with a 32 bit result

UMLAL Rd,Rt,Rm,Rn ; 4 to 7 cycles
TEQ Rt,#0 ; +1 cycle and a register
BNE overflow

4. Overflow in signed multiply accumulate with a 32 bit result

SMLAL Rd,Rt,Rm,Rn ; 4 to 7 cycles
TEQ Rt,Rd, ASR#31 ; +1 cycle and a register
BNE overflow

KS32C50100 RISC MICROCONTROLLER ARM INSTRUCTION SET

3-59

5. Overflow in unsigned multiply accumulate with a 64 bit result

UMULL Rl,Rh,Rm,Rn ; 3 to 6 cycles
ADDS Rl,Rl,Ra1 ; Lower accumulate
ADC Rh,Rh,Ra2 ; Upper accumulate
BCS overflow ; 1 cycle and 2 registers

6. Overflow in signed multiply accumulate with a 64 bit result

SMULL Rl,Rh,Rm,Rn ; 3 to 6 cycles
ADDS Rl,Rl,Ra1 ; Lower accumulate
ADC Rh,Rh,Ra2 ; Upper accumulate
BVS overflow ; 1 cycle and 2 registers

NOTE

Overflow checking is not applicable to unsigned and signed multiplies with a 64-bit result, since overflow
does not occur in such calculations.

PSEUDO-RANDOM BINARY SEQUENCE GENERATOR

It is often necessary to generate (pseudo-) random numbers and the most efficient algorithms are based on shift
generators with exclusive-OR feedback rather like a cyclic redundancy check generator. Unfortunately the
sequence of a 32 bit generator needs more than one feedback tap to be maximal length (i.e. 2^32-1 cycles before
repetition), so this example uses a 33 bit register with taps at bits 33 and 20. The basic algorithm is newbit:=bit 33
eor bit 20, shift left the 33 bit number and put in newbit at the bottom; this operation is performed for all the newbits
needed (i.e. 32 bits). The entire operation can be done in 5 S cycles:

; Enter with seed in Ra (32 bits),
; Rb (1 bit in Rb lsb), uses Rc.

TST Rb,Rb,LSR#1 ; Top bit into carry
MOVS Rc,Ra,RRX ; 33 bit rotate right
ADC Rb,Rb,Rb ; Carry into lsb of Rb
EOR Rc,Rc,Ra,LSL#12 ; (involved!)
EOR Ra,Rc,Rc,LSR#20 ; (similarly involved!) new seed in Ra, Rb as before

MULTIPLICATION BY CONSTANT USING THE BARREL SHIFTER

Multiplication by 2^n (1,2,4,8,16,32..)

MOV Ra, Rb, LSL #n

Multiplication by 2^n+1 (3,5,9,17..)

ADD Ra,Ra,Ra,LSL #n

Multiplication by 2^n-1 (3,7,15..)
RSB Ra,Ra,Ra,LSL #n

ARM INSTRUCTION SET KS32C50100 RISC MICROCONTROLER

3-60

Multiplication by 6
ADD Ra,Ra,Ra,LSL #1 ; Multiply by 3
MOV Ra,Ra,LSL#1 ; and then by 2

Multiply by 10 and add in extra number
ADD Ra,Ra,Ra,LSL#2 ; Multiply by 5
ADD Ra,Rc,Ra,LSL#1 ; Multiply by 2 and add in next digit

General recursive method for Rb := Ra*C, C a constant:

1. If C even, say C = 2^n*D, D odd:

D=1: MOV Rb,Ra,LSL #n
D<>1: {Rb := Ra*D}
MOV Rb,Rb,LSL #n

2. If C MOD 4 = 1, say C = 2^n*D+1, D odd, n>1:

D=1: ADD Rb,Ra,Ra,LSL #n
D<>1: {Rb := Ra*D}
ADD Rb,Ra,Rb,LSL #n

3. If C MOD 4 = 3, say C = 2^n*D-1, D odd, n>1:

D=1: RSB Rb,Ra,Ra,LSL #n
D<>1: {Rb := Ra*D}
RSB Rb,Ra,Rb,LSL #n

This is not quite optimal, but close. An example of its non-optimality is multiply by 45 which is done by:

RSB Rb,Ra,Ra,LSL#2 ; Multiply by 3
RSB Rb,Ra,Rb,LSL#2 ; Multiply by 4*3-1 = 11
ADD Rb,Ra,Rb,LSL# 2 ; Multiply by 4*11+1 = 45

rather than by:

ADD Rb,Ra,Ra,LSL#3 ; Multiply by 9
ADD Rb,Rb,Rb,LSL#2 ; Multiply by 5*9 = 45

KS32C50100 RISC MICROCONTROLLER ARM INSTRUCTION SET

3-61

LOADING A WORD FROM AN UNKNOWN ALIGNMENT

; Enter with address in Ra (32 bits) uses
; Rb, Rc result in Rd. Note d must be less than c e.g. 0,1

BIC Rb,Ra,#3 ; Get word aligned address
LDMIA Rb,{Rd,Rc} ; Get 64 bits containing answer
AND Rb,Ra,#3 ; Correction factor in bytes
MOVS Rb,Rb,LSL#3 ; ...now in bits and test if aligned
MOVNE Rd,Rd,LSR Rb ; Produce bottom of result word (if not aligned)
RSBNE Rb,Rb,#32 ; Get other shift amount
ORRNE Rd,Rd,Rc,LSL Rb ; Combine two halves to get result

ARM INSTRUCTION SET KS32C50100 RISC MICROCONTROLER

3-62

KS32C50100 RISC MICROCONTROLLER THUMB INSTRUCTION SET

3-63

THUMB INSTRUCTION SET FORMAT

The thumb instruction sets are 16-bit versions of ARM instruction sets (32-bit format). The ARM instructions are
reduced to 16-bit versions, Thumb instructions, at the cost of versatile functions of the ARM instruction sets. The
thumb instructions are decompressed to the ARM instructions by the Thumb decompressor inside the ARM7TDMI
core.

As the Thumb instructions are compressed ARM instructions, the Thumb instructions have the 16-bit format
instructions and have some restrictions. The restrictions by 16-bit format is fully notified for using the Thumb
instructions.

FORMAT SUMMARY

The THUMB instruction set formats are shown in the following figure.

Figure 3-29. THUMB Instruction Set Formats

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 0 0 0 Op Offset5 Rs Rd Move shifted register

2 0 0 0 1 1 I Op Rn/offset3 Rs Rd Add/subtract

3 0 0 1 Op Rd Offset8 Move/compare/add
/subtract immediate

4 0 1 0 0 0 0 Op Rs Rd ALU operations

5 0 1 0 0 0 1 Op H1 H2 Rs/Hs Rd/Hd Hi register operations
/branch exchange

6 0 1 0 0 1 Rd Word8 PC-relative load

7 0 1 0 1 L B 0 Ro Rb Rd Load/store with register
offset

8 0 1 0 1 H S 1 Ro Rb Rd Load/store sign-extended
byte/halfword

9 0 1 1 B L Offset5 Rb Rd Load/store with immediate
offset

10 1 0 0 0 L Offset5 Rb Rd Load/store halfword

11 1 0 0 1 L Rd Word8 SP-relative load/store

12 1 0 1 0 SP Rd Word8 Load address

13 1 0 1 1 0 0 0 0 S SWord7 Add offset to stack pointer

14 1 0 1 1 L 1 0 R Rlist Push/pop registers

15 1 1 0 0 L Rb Rlist Multiple load/store

16 1 1 0 1 Cond Soffset8 Conditional branch

17 1 1 0 1 1 1 1 1 Value8 Software Interrupt

18 1 1 1 0 0 Offset11 Unconditional branch

19 1 1 1 1 H Offset Long branch with link

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

THUMB INSTRUCTION SET KS32C50100 RISC MICROCONTROLER

3-64

OPCODE SUMMARY

The following table summarizes the THUMB instruction set. For further information about a particular instruction
please refer to the sections listed in the right-most column.

Table 3-7. THUMB Instruction Set Opcodes

Mnemonic Instruction Lo-Register
Operand

Hi-Register
Operand

Condition
Codes Set

ADC Add with Carry V – V

ADD Add V V V(1)

AND AND V – V

ASR Arithmetic Shift
Right

V – V

B Unconditional
branch

V – –

Bxx Conditional branch V – –

BIC Bit Clear V – V

BL Branch and Link – – –

BX Branch and
Exchange

V V –

CMN Compare Negative V – V

CMP Compare V V V

EOR EOR V – V

LDMIA Load multiple V – –

LDR Load word V – –

LDRB Load byte V – –

LDRH Load halfword V – –

LSL Logical Shift Left V – V

LDSB Load sign-extended
byte

V – –

LDSH Load sign-extended
halfword

V – –

LSR Logical Shift Right V – V

MOV Move register V V V(2)

MUL Multiply V – V

MVN Move Negative
register

V – V

NEG Negate V – V

ORR OR V – V

KS32C50100 RISC MICROCONTROLLER THUMB INSTRUCTION SET

3-65

NOTES
1. The condition codes are unaffected by the format 5, 12 and 13 versions of this instruction.
2. The condition codes are unaffected by the format 5 version of this instruction.

POP Pop registers V – –

PUSH Push registers V – –

ROR Rotate Right V – V

SBC Subtract with Carry V – V

STMIA Store Multiple V – –

STR Store word V – –

STRB Store byte V – –

STRH Store halfword V – –

SWI Software Interrupt – – –

SUB Subtract V – V

TST Test bits V – V

Table 3-7. THUMB Instruction Set Opcodes (Continued)

Mnemonic Instruction Lo-Register
Operand

Hi-Register
Operand

Condition
Codes Set

THUMB INSTRUCTION SET KS32C50100 RISC MICROCONTROLER

3-66

FORMAT 1: MOVE SHIFTED REGISTER

OPERATION

These instructions move a shifted value between Lo registers. The THUMB assembler syntax is shown in
Table 3-8.

NOTE

All instructions in this group set the CPSR condition codes.

Figure 3-30. Format 1

Table 3-8. Summary of Format 1 Instructions

OP THUMB assembler ARM equivalent Action

00 LSL Rd, Rs, #Offset5 MOVS Rd, Rs, LSL
#Offset5

Shift Rs left by a 5-bit immediate
value and store the result in Rd.

01 LSR Rd, Rs, #Offset5 MOVS Rd, Rs, LSR
#Offset5

Perform logical shift right on Rs by a
5-bit immediate value and store the
result in Rd.

10 ASR Rd, Rs, #Offset5 MOVS Rd, Rs, ASR
#Offset5

Perform arithmetic shift right on Rs
by a 5-bit immediate value and store
the result in Rd.

15 14 13 12 11 10 6 5 3 2 0

[2:0] Destination register

[5:3] Source register

[10:6] Immediate value

[12:11] Opcode
0 = LSL
1 = LSR
2 = ASR

Offset50 0 0 Op Rs Rd

KS32C50100 RISC MICROCONTROLLER THUMB INSTRUCTION SET

3-67

INSTRUCTION CYCLE TIMES

All instructions in this format have an equivalent ARM instruction as shown in Table 3-8. The instruction cycle times
for the THUMB instruction are identical to that of the equivalent ARM instruction.

EXAMPLES

LSR R2, R5, #27 ; Logical shift right the contents
; of R5 by 27 and store the result in R2.
; Set condition codes on the result.

THUMB INSTRUCTION SET KS32C50100 RISC MICROCONTROLER

3-68

FORMAT 2: ADD/SUBTRACT

OPERATION

These instructions allow the contents of a Lo register or a 3-bit immediate value to be added to or subtracted from
a Lo register. The THUMB assembler syntax is shown in Table 3-9.

NOTE

All instructions in this group set the CPSR condition codes.

Figure 3-31. Format 2

Table 3-9. Summary of Format 2 Instructions

Op I THUMB assembler ARM equivalent Action

0 0 ADD Rd, Rs, Rn ADDS Rd, Rs, Rn Add contents of Rn to contents of Rs.
Place result in Rd.

0 1 ADD Rd, Rs, #Offset3 ADDS Rd, Rs,
#Offset3

Add 3-bit immediate value to contents of
Rs. Place result in Rd.

1 0 SUB Rd, Rs, Rn SUBS Rd, Rs, Rn Subtract contents of Rn from contents of
Rs. Place result in Rd.

1 1 SUB Rd, Rs, #Offset3 SUBS Rd, Rs,
#Offset3

Subtract 3-bit immediate value from
contents of Rs. Place result in Rd.

15 14 13 12 11 10 9 8 6 5 3 2 0

[2:0] Destination register

[5:3] Source register

[8:6] Register/Immediate value

[9] Opcode
0 = Add
1 = SUB

[10] Immediate flag
0 = Register operand
1 = Immediate operand

Rn/Offset30 0 0 Op1 1 I Rs Rd

KS32C50100 RISC MICROCONTROLLER THUMB INSTRUCTION SET

3-69

INSTRUCTION CYCLE TIMES

All instructions in this format have an equivalent ARM instruction as shown in Table 3-9. The instruction cycle times
for the THUMB instruction are identical to that of the equivalent ARM instruction.

EXAMPLES

ADD R0, R3, R4 ; R0 := R3 + R4 and set condition codes on the result.
SUB R6, R2, #6 ; R6 := R2 – 6 and set condition codes.

THUMB INSTRUCTION SET KS32C50100 RISC MICROCONTROLER

3-70

FORMAT 3: MOVE/COMPARE/ADD/SUBTRACT IMMEDIATE

OPERATIONS

The instructions in this group perform operations between a Lo register and an 8-bit immediate value. The THUMB
assembler syntax is shown in Table 3-10.

NOTE

All instructions in this group set the CPSR condition codes.

Figure 3-32. Format 3

Table 3-10. Summary of Format 3 Instructions

Op THUMB assembler ARM equivalent Action

00 MOV Rd, #Offset8 MOVS Rd, #Offset8 Move 8-bit immediate value into Rd.

01 CMP Rd, #Offset8 CMP Rd, #Offset8 Compare contents of Rd with 8-bit
immediate value.

10 ADD Rd, #Offset8 ADDS Rd, Rd,
#Offset8

Add 8-bit immediate value to contents of
Rd and place the result in Rd.

11 SUB Rd, #Offset8 SUBS Rd, Rd,
#Offset8

Subtract 8-bit immediate value from
contents of Rd and place the result in
Rd.

15 14 13 12 11 10 8 0

[7:0] Immediate value

[10:8] Source/Destination register

[12:11] Opcode
0 = MOV
1 = CMP
2 = ADD
3 = SUB

0 0 1 Op Offset8Rd

7

KS32C50100 RISC MICROCONTROLLER THUMB INSTRUCTION SET

3-71

INSTRUCTION CYCLE TIMES

All instructions in this format have an equivalent ARM instruction as shown in Table 3-10. The instruction cycle
times for the THUMB instruction are identical to that of the equivalent ARM instruction.

EXAMPLES

MOV R0, #128 ; R0 := 128 and set condition codes
CMP R2, #62 ; Set condition codes on R2 – 62
ADD R1, #255 ; R1 := R1 + 255 and set condition codes
SUB R6, #145 ; R6 := R6 – 145 and set condition codes

THUMB INSTRUCTION SET KS32C50100 RISC MICROCONTROLER

3-72

FORMAT 4: ALU OPERATIONS

OPERATION

The following instructions perform ALU operations on a Lo register pair.

NOTE

All instructions in this group set the CPSR condition codes.

Figure 3-33. Format 4

Table 3-11. Summary of Format 4 Instructions

OP THUMB assembler ARM equivalent Action

0000 AND Rd, Rs ANDS Rd, Rd, Rs Rd:= Rd AND Rs

0001 EOR Rd, Rs EORS Rd, Rd, Rs Rd:= Rd EOR Rs

0010 LSL Rd, Rs MOVS Rd, Rd, LSL Rs Rd := Rd << Rs

0011 LSR Rd, Rs MOVS Rd, Rd, LSR Rs Rd := Rd >> Rs

0100 ASR Rd, Rs MOVS Rd, Rd, ASR Rs Rd := Rd ASR Rs

0101 ADC Rd, Rs ADCS Rd, Rd, Rs Rd := Rd + Rs + C-bit

0110 SBC Rd, Rs SBCS Rd, Rd, Rs Rd := Rd – Rs – NOT C-bit

0111 ROR Rd, Rs MOVS Rd, Rd, ROR Rs Rd := Rd ROR Rs

1000 TST Rd, Rs TST Rd, Rs Set condition codes on Rd AND Rs

1001 NEG Rd, Rs RSBS Rd, Rs, #0 Rd = – Rs

1010 CMP Rd, Rs CMP Rd, Rs Set condition codes on Rd – Rs

1011 CMN Rd, Rs CMN Rd, Rs Set condition codes on Rd + Rs

1100 ORR Rd, Rs ORRS Rd, Rd, Rs Rd := Rd OR Rs

1101 MUL Rd, Rs MULS Rd, Rs, Rd Rd := Rs * Rd

1110 BIC Rd, Rs BICS Rd, Rd, Rs Rd := Rd AND NOT Rs

1111 MVN Rd, Rs MVNS Rd, Rs Rd := NOT Rs

15 14 13 12 11 10 9 6 5 3 2 0

[2:0] Source/Destination register

[5:3] Source register 2

[9:6] Opcode

0 1 0 Op0 0 0 Rs Rd

KS32C50100 RISC MICROCONTROLLER THUMB INSTRUCTION SET

3-73

INSTRUCTION CYCLE TIMES

All instructions in this format have an equivalent ARM instruction as shown in Table 3-11. The instruction cycle
times for the THUMB instruction are identical to that of the equivalent ARM instruction.

EXAMPLES

EOR R3, R4 ; R3 := R3 EOR R4 and set condition codes
ROR R1, R0 ; Rotate Right R1 by the value in R0, store

; the result in R1 and set condition codes
NEG R5, R3 ; Subtract the contents of R3 from zero,

; store the result in R5. Set condition codes ie R5 = – R3
CMP R2, R6 ; Set the condition codes on the result of R2 – R6
MUL R0, R7 ; R0 := R7 * R0 and set condition codes

THUMB INSTRUCTION SET KS32C50100 RISC MICROCONTROLER

3-74

FORMAT 5: HI-REGISTER OPERATIONS/BRANCH EXCHANGE

OPERATION

There are four sets of instructions in this group. The first three allow ADD, CMP and MOV operations to be
performed between Lo and Hi registers, or a pair of Hi registers. The fourth, BX, allows a Branch to be performed
which may also be used to switch processor state. The THUMB assembler syntax is shown in Table 3-12.

NOTE

In this group only CMP (Op = 01) sets the CPSR condition codes.

The action of H1= 0, H2 = 0 for Op = 00 (ADD), Op =01 (CMP) and Op = 10 (MOV) is undefined, and should not be
used.

Figure 3-34. Format 5

Table 3-12. Summary of Format 5 Instructions

Op H1 H2 THUMB assembler ARM equivalent Action

00 0 1 ADD Rd, Hs ADD Rd, Rd, Hs Add a register in the range 8-15 to a
register in the range 0-7.

00 1 0 ADD Hd, Rs ADD Hd, Hd, Rs Add a register in the range 0-7 to a
register in the range 8-15.

00 1 1 ADD Hd, Hs ADD Hd, Hd, Hs Add two registers in the range 8-15

01 0 1 CMP Rd, Hs CMP Rd, Hs Compare a register in the range 0-7
with a register in the range 8-15. Set
the condition code flags on the
result.

01 1 0 CMP Hd, Rs CMP Hd, Rs Compare a register in the range 8-
15 with a register in the range 0-7.
Set the condition code flags on the
result.

15 14 13 12 11 10 9 8 6 5 3 2 0

[2:0] Destination register

[5:3] Source register

[6] Hi operand flag 2

[7] Hi operand flag 1

[9:8] Opcode

0 1 0 Op0 0 1 Rs/Hs Rd/Hd

7

H1 H2

KS32C50100 RISC MICROCONTROLLER THUMB INSTRUCTION SET

3-75

INSTRUCTION CYCLE TIMES

All instructions in this format have an equivalent ARM instruction as shown in Table 3-12. The instruction cycle
times for the THUMB instruction are identical to that of the equivalent ARM instruction.

THE BX INSTRUCTION

BX performs a Branch to a routine whose start address is specified in a Lo or Hi register.

Bit 0 of the address determines the processor state on entry to the routine:

Bit 0 = 0 Causes the processor to enter ARM state.
Bit 0 = 1 Causes the processor to enter THUMB state.

NOTE

The action of H1 = 1 for this instruction is undefined, and should not be used.

01 1 1 CMP Hd, Hs CMP Hd, Hs Compare two registers in the range
8-15. Set the condition code flags on
the result.

10 0 1 MOV Rd, Hs MOV Rd, Hs Move a value from a register in the
range 8-15 to a register in the range
0-7.

10 1 0 MOV Hd, Rs MOV Hd, Rs Move a value from a register in the
range 0-7 to a register in the range
8-15.

10 1 1 MOV Hd, Hs MOV Hd, Hs Move a value between two registers
in the range 8-15.

11 0 0 BX Rs BX Rs Perform branch (plus optional state
change) to address in a register in
the range 0-7.

11 0 1 BX Hs BX Hs Perform branch (plus optional state
change) to address in a register in
the range 8-15.

Table 3-12. Summary of Format 5 Instructions (Continued)

Op H1 H2 THUMB assembler ARM equivalent Action

THUMB INSTRUCTION SET KS32C50100 RISC MICROCONTROLER

3-76

EXAMPLES

Hi-Register Operations

ADD PC, R5 ; PC := PC + R5 but don't set the condition codes.
CMP R4, R12 ; Set the condition codes on the result of R4 - R12.
MOV R15, R14 ; Move R14 (LR) into R15 (PC)

; but don't set the condition codes,
; eg. return from subroutine.

Branch and Exchange

; Switch from THUMB to ARM state.
ADR R1,outofTHUMB ; Load address of outofTHUMB into R1.
MOV R11,R1
BX R11 ; Transfer the contents of R11 into the PC.

; Bit 0 of R11 determines whether
; ARM or THUMB state is entered, ie. ARM state here.

 ...
ALIGN
CODE32
outofTHUMB

; Now processing ARM instructions...

USING R15 AS AN OPERAND

If R15 is used as an operand, the value will be the address of the instruction + 4 with bit 0 cleared. Executing a BX
PC in THUMB state from a non-word aligned address will result in unpredictable execution.

KS32C50100 RISC MICROCONTROLLER THUMB INSTRUCTION SET

3-77

FORMAT 6: PC-RELATIVE LOAD

OPERATION

This instruction loads a word from an address specified as a 10-bit immediate offset from the PC. The THUMB
assembler syntax is shown below.

NOTE: The value specified by #Imm is a full 10-bit address, but must always be word-aligned (ie with bits 1:0 set to 0),
since the assembler places #Imm >> 2 in field Word 8. The value of the PC will be 4 bytes greater than
the address of this instruction, but bit 1 of the PC is forced to 0 to ensure it is word aligned.

Figure 3-35. Format 6

Table 3-13. Summary of PC-Relative Load Instruction

THUMB assembler ARM equivalent Action

LDR Rd, [PC, #Imm] LDR Rd, [R15, #Imm] Add unsigned offset (255
words, 1020 bytes) in Imm to
the current value of the PC.
Load the word from the resulting
address into Rd.

15 14 13 12 11 10 8 0

[7:0] Immediate value

[10:8] Destination register

0 1 0 Rd0 1 Word8

7

THUMB INSTRUCTION SET KS32C50100 RISC MICROCONTROLER

3-78

INSTRUCTION CYCLE TIMES

All instructions in this format have an equivalent ARM instruction. The instruction cycle times for the THUMB
instruction are identical to that of the equivalent ARM instruction.

EXAMPLES

LDR R3,[PC,#844] ; Load into R3 the word found at the
; address formed by adding 844 to PC.
; bit[1] of PC is forced to zero.
; Note that the THUMB opcode will contain
; 211 as the Word8 value.

KS32C50100 RISC MICROCONTROLLER THUMB INSTRUCTION SET

3-79

FORMAT 7: LOAD/STORE WITH REGISTER OFFSET

OPERATION

These instructions transfer byte or word values between registers and memory. Memory addresses are pre-
indexed using an offset register in the range 0-7. The THUMB assembler syntax is shown in Table 3-14.

Figure 3-36. Format 7

Table 3-14. Summary of Format 7 Instructions

L B THUMB assembler ARM equivalent Action

0 0 STR Rd, [Rb, Ro] STR Rd, [Rb, Ro] Pre-indexed word store:
Calculate the target address by
adding together the value in Rb
and the value in Ro. Store the
contents of Rd at the address.

0 1 STRB Rd, [Rb, Ro] STRB Rd, [Rb, Ro] Pre-indexed byte store:
Calculate the target address by
adding together the value in Rb
and the value in Ro. Store the
byte value in Rd at the resulting
address.

1 0 LDR Rd, [Rb, Ro] LDR Rd, [Rb, Ro] Pre-indexed word load:
Calculate the source address by
adding together the value in Rb
and the value in Ro. Load the
contents of the address into Rd.

15 14 13 12 11 10 9 8 6 5 3 2 0

[2:0] Source/Destination register

[5:3] Base register

[8:6] Offset register

[10] Byte/Word flag
0 = Transfer word quantity
1 = Transfer byte quantity

[11] Load/Store flag
0 = Store to memory
1 = Load from memory

Ro0 1 0 01 L B Rb Rd

THUMB INSTRUCTION SET KS32C50100 RISC MICROCONTROLER

3-80

INSTRUCTION CYCLE TIMES

All instructions in this format have an equivalent ARM instruction as shown in Table 3-14. The instruction cycle
times for the THUMB instruction are identical to that of the equivalent ARM instruction.

EXAMPLES

STR R3, [R2,R6] ; Store word in R3 at the address
; formed by adding R6 to R2.

LDRB R2, [R0,R7] ; Load into R2 the byte found at
; the address formed by adding R7 to R0.

1 1 LDRB Rd, [Rb, Ro] LDRB Rd, [Rb, Ro] Pre-indexed byte load:
Calculate the source address by
adding together the value in Rb
and the value in Ro. Load the
byte value at the resulting
address.

Table 3-14. Summary of Format 7 Instructions (Continued)

L B THUMB assembler ARM equivalent Action

KS32C50100 RISC MICROCONTROLLER THUMB INSTRUCTION SET

3-81

FORMAT 8: LOAD/STORE SIGN-EXTENDED BYTE/HALFWORD

OPERATION

These instructions load optionally sign-extended bytes or halfwords, and store halfwords. The THUMB assembler
syntax is shown below.

Figure 3-37. Format 8

Table 3-15. Summary of format 8 instructions

S H THUMB assembler ARM equivalent Action

0 0 STRH Rd, [Rb, Ro] STRH Rd, [Rb, Ro] Store halfword:
Add Ro to base address in Rb. Store
bits 0-15 of Rd at the resulting address.

0 1 LDRH Rd, [Rb, Ro] LDRH Rd, [Rb, Ro] Load halfword:
Add Ro to base address in Rb. Load bits
0-15 of Rd from the resulting address,
and set bits 16-31 of Rd to 0.

1 0 LDSB Rd, [Rb, Ro] LDRSB Rd, [Rb, Ro] Load sign-extended byte:
Add Ro to base address in Rb. Load bits
0-7 of Rd from the resulting address,
and set bits 8-31 of Rd to bit 7.

1 1 LDSH Rd, [Rb, Ro] LDRSH Rd, [Rb, Ro] Load sign-extended halfword:
Add Ro to base address in Rb. Load bits
0-15 of Rd from the resulting address,
and set bits 16-31 of Rd to bit 15.

15 14 13 12 11 10 9 8 6 5 3 2 0

[2:0] Destination register

[5:3] Base register

[8:6] Offset register

[10] Sign-extended flag
0 = Operand not sign-extended
1 = Operand sign-extended

[11] H flag

Ro0 1 0 11 H S Rb Rd

THUMB INSTRUCTION SET KS32C50100 RISC MICROCONTROLER

3-82

INSTRUCTION CYCLE TIMES

All instructions in this format have an equivalent ARM instruction as shown in Table 3-15. The instruction cycle
times for the THUMB instruction are identical to that of the equivalent ARM instruction.

EXAMPLES

STRH R4, [R3, R0] ; Store the lower 16 bits of R4 at the
; address formed by adding R0 to R3.

LDSB R2, [R7, R1] ; Load into R2 the sign extended byte
; found at the address formed by adding R1 to R7.

LDSH R3, [R4, R2] ; Load into R3 the sign extended halfword
; found at the address formed by adding R2 to R4.

KS32C50100 RISC MICROCONTROLLER THUMB INSTRUCTION SET

3-83

FORMAT 9: LOAD/STORE WITH IMMEDIATE OFFSET

Figure 3-38. Format 9

15 14 13 12 11 10 6 5 3 2 0

[2:0] Source/Destination register

[5:3] Base register

[10:6] Offset value

[11] Load/Store flag
0 = Store to memory
1 = Load from momory

[12] Byte/Word flag
0 = Transfer word quantity
1 = Transfer byte quantity

Offset50 1 1 B L Rb Rd

THUMB INSTRUCTION SET KS32C50100 RISC MICROCONTROLER

3-84

OPERATION

These instructions transfer byte or word values between registers and memory using an immediate 5 or 7-bit offset. The THUMB
assembler syntax is shown in Table 3-16.

NOTE: For word accesses (B = 0), the value specified by #Imm is a full 7-bit address, but must be word-aligned
(ie with bits 1:0 set to 0), since the assembler places #Imm >> 2 in the Offset5 field.

INSTRUCTION CYCLE TIMES

All instructions in this format have an equivalent ARM instruction as shown in Table 3-16. The instruction cycle
times for the THUMB instruction are identical to that of the equivalent ARM instruction.

EXAMPLES

LDR R2, [R5,#116] ; Load into R2 the word found at the
; address formed by adding 116 to R5.
; Note that the THUMB opcode will
; contain 29 as the Offset5 value.

STRB R1, [R0,#13] ; Store the lower 8 bits of R1 at the
; address formed by adding 13 to R0.
; Note that the THUMB opcode will
; contain 13 as the Offset5 value.

Table 3-16. Summary of Format 9 Instructions

L B THUMB assembler ARM equivalent Action

0 0 STR Rd, [Rb, #Imm] STR Rd, [Rb, #Imm] Calculate the target address by
adding together the value in Rb
and Imm. Store the contents of
Rd at the address.

1 0 LDR Rd, [Rb, #Imm] LDR Rd, [Rb, #Imm] Calculate the source address by
adding together the value in Rb
and Imm. Load Rd from the
address.

0 1 STRB Rd, [Rb, #Imm] STRB Rd, [Rb, #Imm] Calculate the target address by
adding together the value in Rb
and Imm. Store the byte value
in Rd at the address.

1 1 LDRB Rd, [Rb, #Imm] LDRB Rd, [Rb, #Imm] Calculate source address by
adding together the value in Rb
and Imm. Load the byte value at
the address into Rd.

KS32C50100 RISC MICROCONTROLLER THUMB INSTRUCTION SET

3-85

FORMAT 10: LOAD/STORE HALFWORD

OPERATION

These instructions transfer halfword values between a Lo register and memory. Addresses are pre-indexed, using
a 6-bit immediate value. The THUMB assembler syntax is shown in Table 3-17.

NOTE: #Imm is a full 6-bit address but must be halfword-aligned (ie with bit 0 set to 0)
since the assembler places #Imm >> 1 in the Offset5 field.

Figure 3-39. Format 10

Table 3-17. Halfword Data Transfer Instructions

L THUMB assembler ARM equivalent Action

0 STRH Rd, [Rb, #Imm] STRH Rd, [Rb, #Imm] Add #Imm to base address in Rb and
store bits 0–15 of Rd at the resulting
address.

1 LDRH Rd, [Rb, #Imm] LDRH Rd, [Rb, #Imm] Add #Imm to base address in Rb. Load
bits 0-15 from the resulting address into
Rd and set bits 16-31 to zero.

15 14 13 12 11 10 6 5 3 2 0

[2:0] Source/Destination register

[5:3] Base register

[10:6] Immediate value

[11] Load/Store bit
0 = Store to memory
1 = Load from momory

Offset51 0 0 0 L Rb Rd

THUMB INSTRUCTION SET KS32C50100 RISC MICROCONTROLER

3-86

INSTRUCTION CYCLE TIMES

All instructions in this format have an equivalent ARM instruction as shown in Table 3-17. The instruction cycle
times for the THUMB instruction are identical to that of the equivalent ARM instruction.

EXAMPLES

STRH R6, [R1, #56] ; Store the lower 16 bits of R4 at the address formed by
; adding 56 R1. Note that the THUMB opcode will contain
; 28 as the Offset5 value.

LDRH R4, [R7, #4] ; Load into R4 the halfword found at the address formed by
; adding 4 to R7. Note that the THUMB opcode will contain
; 2 as the Offset5 value.

KS32C50100 RISC MICROCONTROLLER THUMB INSTRUCTION SET

3-87

FORMAT 11: SP-RELATIVE LOAD/STORE

OPERATION

The instructions in this group perform an SP-relative load or store.The THUMB assembler syntax is shown in the
following table.

NOTE: The offset supplied in #Imm is a full 10-bit address, but must always be word-aligned (ie bits 1:0 set to 0),
since the assembler places #Imm >> 2 in the Word8 field.

Figure 3-40. Format 11

Table 3-18. SP-Relative Load/Store Instructions

L THUMB assembler ARM equivalent Action

0 STR Rd, [SP, #Imm] STR Rd, [R13 #Imm] Add unsigned offset (255 words, 1020
bytes) in Imm to the current value of the
SP (R7). Store the contents of Rd at the
resulting address.

1 LDR Rd, [SP, #Imm] LDR Rd, [R13 #Imm] Add unsigned offset (255 words, 1020
bytes) in Imm to the current value of the
SP (R7). Load the word from the
resulting address into Rd.

15 14 13 12 11 10 8 0

[7:0] Immediate value

[10:8] Destination register

[11] Load/Store bit
0 = Store to memory
1 = Load from memory

1 0 0 Rd1 L Word8

7

THUMB INSTRUCTION SET KS32C50100 RISC MICROCONTROLER

3-88

INSTRUCTION CYCLE TIMES

All instructions in this format have an equivalent ARM instruction as shown in Table 3-18. The instruction cycle
times for the THUMB instruction are identical to that of the equivalent ARM instruction.

EXAMPLES

STR R4, [SP,#492] ; Store the contents of R4 at the address
; formed by adding 492 to SP (R13).
; Note that the THUMB opcode will contain
; 123 as the Word8 value.

KS32C50100 RISC MICROCONTROLLER THUMB INSTRUCTION SET

3-89

FORMAT 12: LOAD ADDRESS

OPERATION

These instructions calculate an address by adding an 10-bit constant to either the PC or the SP, and load the
resulting address into a register. The THUMB assembler syntax is shown in the following table.

NOTE: The value specified by #Imm is a full 10-bit value, but this must be word-aligned (ie with bits 1:0 set to 0)
since the assembler places #Imm >> 2 in field Word 8.

Where the PC is used as the source register (SP = 0), bit 1 of the PC is always read as 0. The value of the PC will
be 4 bytes greater than the address of the instruction before bit 1 is forced to 0.

The CPSR condition codes are unaffected by these instructions.

Figure 3-41. Format 12

Table 3-19. Load Address

SP THUMB assembler ARM equivalent Action

0 ADD Rd, PC, #Imm ADD Rd, R15, #Imm Add #Imm to the current value
of the program counter (PC)
and load the result into Rd.

1 ADD Rd, SP, #Imm ADD Rd, R13, #Imm Add #Imm to the current value
of the stack pointer (SP) and
load the result into Rd.

15 14 13 12 11 10 8 0

[7:0] 8-bit unsigned constant

[10:8] Destination register

[11] Source
0 = PC
1 = SP

1 0 1 Rd0 SP Word8

7

THUMB INSTRUCTION SET KS32C50100 RISC MICROCONTROLER

3-90

INSTRUCTION CYCLE TIMES

All instructions in this format have an equivalent ARM instruction as shown in Table 3-19. The instruction cycle
times for the THUMB instruction are identical to that of the equivalent ARM instruction.

EXAMPLES

ADD R2, PC, #572 ; R2 := PC + 572, but don't set the
; condition codes. bit[1] of PC is forced to zero.
; Note that the THUMB opcode will
; contain 143 as the Word8 value.

ADD R6, SP, #212 ; R6 := SP (R13) + 212, but don't
; set the condition codes.
; Note that the THUMB opcode will
; contain 53 as the Word 8 value.

KS32C50100 RISC MICROCONTROLLER THUMB INSTRUCTION SET

3-91

FORMAT 13: ADD OFFSET TO STACK POINTER

OPERATION

This instruction adds a 9-bit signed constant to the stack pointer. The following table shows the THUMB assembler
syntax.

NOTE: The offset specified by #Imm can be up to -/+ 508, but must be word-aligned (ie with bits 1:0 set to 0)
since the assembler converts #Imm to an 8-bit sign + magnitude number before placing it in field SWord7.
The condition codes are not set by this instruction.

Figure 3-42. Format 13

Table 3-20. The ADD SP Instruction

S THUMB assembler ARM equivalent Action

0 ADD SP, #Imm ADD R13, R13, #Imm Add #Imm to the stack pointer (SP).

1 ADD SP, #-Imm SUB R13, R13, #Imm Add #-Imm to the stack pointer (SP).

15 14 13 12 11 10 6 0

[6:0] 7-bit immediate value

[7] Sign flag
0 = Offset is positive
1 = Offset is negative

1 0 1 1 0 SWord7

9 8 7

0 0 0 S

THUMB INSTRUCTION SET KS32C50100 RISC MICROCONTROLER

3-92

INSTRUCTION CYCLE TIMES

All instructions in this format have an equivalent ARM instruction as shown in Table 3-20. The instruction cycle
times for the THUMB instruction are identical to that of the equivalent ARM instruction.

EXAMPLES

ADD SP, #268 ; SP (R13) := SP + 268, but don't set the condition codes.
; Note that the THUMB opcode will
; contain 67 as the Word7 value and S=0.

ADD SP, #-104 ; SP (R13) := SP - 104, but don't set the condition codes.
; Note that the THUMB opcode will contain
; 26 as the Word7 value and S=1.

KS32C50100 RISC MICROCONTROLLER THUMB INSTRUCTION SET

3-93

FORMAT 14: PUSH/POP REGISTERS

OPERATION

The instructions in this group allow registers 0-7 and optionally LR to be pushed onto the stack, and registers 0-7
and optionally PC to be popped off the stack. The THUMB assembler syntax is shown in Table 3-21.

NOTE

The stack is always assumed to be Full Descending.

Figure 3-43. Format 14

Table 3-21. PUSH and POP Instructions

L R THUMB assembler ARM equivalent Action

0 0 PUSH { Rlist } STMDB R13!, { Rlist } Push the registers specified by
Rlist onto the stack. Update the
stack pointer.

0 1 PUSH { Rlist, LR } STMDB R13!, { Rlist, R14 } Push the Link Register and the
registers specified by Rlist (if
any) onto the stack. Update the
stack pointer.

1 0 POP { Rlist } LDMIA R13!, { Rlist } Pop values off the stack into the
registers specified by Rlist.
Update the stack pointer.

1 1 POP { Rlist, PC } LDMIA R13!, {Rlist, R15} Pop values off the stack and
load into the registers specified
by Rlist. Pop the PC off the
stack. Update the stack pointer.

15 14 13 12 11 10 0

[7:0] Register list

[8] PC/LR bit
0 = Do not store LR/Load PC
1 = Store LR/Load PC

[11] Load/Store bit
0 = Store to memory
1 = Load from memory

1 0 1 1 L Rlist

9 8 7

1 0 R

THUMB INSTRUCTION SET KS32C50100 RISC MICROCONTROLER

3-94

INSTRUCTION CYCLE TIMES

All instructions in this format have an equivalent ARM instruction as shown in Table 3-21. The instruction cycle
times for the THUMB instruction are identical to that of the equivalent ARM instruction.

EXAMPLES

PUSH {R0-R4,LR} ; Store R0,R1,R2,R3,R4 and R14 (LR) at
; the stack pointed to by R13 (SP) and update R13.
; Useful at start of a sub-routine to
; save workspace and return address.

POP {R2,R6,PC} ; Load R2,R6 and R15 (PC) from the stack
; pointed to by R13 (SP) and update R13.
; Useful to restore workspace and return from sub-routine.

KS32C50100 RISC MICROCONTROLLER THUMB INSTRUCTION SET

3-95

FORMAT 15: MULTIPLE LOAD/STORE

OPERATION

These instructions allow multiple loading and storing of Lo registers. The THUMB assembler syntax is shown in the
following table.

INSTRUCTION CYCLE TIMES

All instructions in this format have an equivalent ARM instruction as shown in Table 3-22. The instruction cycle
times for the THUMB instruction are identical to that of the equivalent ARM instruction.

EXAMPLES

STMIA R0!, {R3-R7} ; Store the contents of registers R3-R7
; starting at the address specified in
; R0, incrementing the addresses for each word.
; Write back the updated value of R0.

Figure 3-44. Format 15

Table 3-22. The Multiple Load/Store Instructions

L THUMB assembler ARM equivalent Action

0 STMIA Rb!, { Rlist } STMIA Rb!, { Rlist } Store the registers specified by
Rlist, starting at the base
address in Rb. Write back the
new base address.

1 LDMIA Rb!, { Rlist } LDMIA Rb!, { Rlist } Load the registers specified by
Rlist, starting at the base
address in Rb. Write back the
new base address.

15 14 13 12 11 10 8 0

[7:0] Register list

[10:8] Base register

[11] Load/Store bit
0 = Store to memory
1 = Load from memory

1 1 0 Rb0 L Rlist

7

THUMB INSTRUCTION SET KS32C50100 RISC MICROCONTROLER

3-96

FORMAT 16: CONDITIONAL BRANCH

OPERATION

The instructions in this group all perform a conditional Branch depending on the state of the CPSR condition codes.
The branch offset must take account of the prefetch operation, which causes the PC to be 1 word (4 bytes) ahead
of the current instruction.

The THUMB assembler syntax is shown in the following table.

Figure 3-45. Format 16

Table 3-23. The Conditional Branch Instructions

Cond THUMB assembler ARM equivalent Action

0000 BEQ label BEQ label Branch if Z set (equal)

0001 BNE label BNE label Branch if Z clear (not equal)

0010 BCS label BCS label Branch if C set (unsigned higher
or same)

0011 BCC label BCC label Branch if C clear (unsigned
lower)

0100 BMI label BMI label Branch if N set (negative)

0101 BPL label BPL label Branch if N clear (positive or
zero)

0110 BVS label BVS label Branch if V set (overflow)

0111 BVC label BVC label Branch if V clear (no overflow)

1000 BHI label BHI label Branch if C set and Z clear
(unsigned higher)

1001 BLS label BLS label Branch if C clear or Z set
(unsigned lower or same)

1010 BGE label BGE label Branch if N set and V set, or N
clear and V clear (greater or
equal)

15 14 13 12 11 8 0

[7:0] 8-bit signed immediate

[11:8] Condition

1 1 0 Cond1 SOffset8

7

KS32C50100 RISC MICROCONTROLLER THUMB INSTRUCTION SET

3-97

NOTES
1. While label specifies a full 9-bit two’s complement address, this must always be halfword-aligned (ie with bit 0 set to 0)

since the assembler actually places label >> 1 in field SOffset8.
2. Cond = 1110 is undefined, and should not be used.

Cond = 1111 creates the SWI instruction: see .

INSTRUCTION CYCLE TIMES

All instructions in this format have an equivalent ARM instruction as shown in Table 3-23. The instruction cycle
times for the THUMB instruction are identical to that of the equivalent ARM instruction.

EXAMPLES

CMP R0, #45 ; Branch to ’over’ if R0 > 45.
BGT over ; Note that the THUMB opcode will contain
... ; the number of halfwords to offset.
...

over ... ; Must be halfword aligned.
...

1011 BLT label BLT label Branch if N set and V clear, or N
clear and V set (less than)

1100 BGT label BGT label Branch if Z clear, and either N
set and V set or N clear and V
clear (greater than)

1101 BLE label BLE label Branch if Z set, or N set and V
clear, or N clear and V set (less
than or equal)

Table 3-23. The Conditional Branch Instructions (Continued)

Cond THUMB assembler ARM equivalent Action

THUMB INSTRUCTION SET KS32C50100 RISC MICROCONTROLER

3-98

FORMAT 17: SOFTWARE INTERRUPT

OPERATION

The SWI instruction performs a software interrupt. On taking the SWI, the processor switches into ARM state and
enters Supervisor (SVC) mode.

The THUMB assembler syntax for this instruction is shown below.

NOTE: Value8 is used solely by the SWI handler; it is ignored by the processor.

INSTRUCTION CYCLE TIMES

All instructions in this format have an equivalent ARM instruction as shown in Table 3-24. The instruction cycle
times for the THUMB instruction are identical to that of the equivalent ARM instruction.

EXAMPLES

SWI 18 ; Take the software interrupt exception.
; Enter Supervisor mode with 18 as the
; requested SWI number.

Figure 3-46. Format 17

Table 3-24. The SWI Instruction

THUMB Assembler ARM Equivalent Action

SWI Value 8 SWI Value 8 Perform Software Interrupt:
Move the address of the next instruction
into LR, move CPSR to SPSR, load the
SWI vector address (0x8) into the PC.
Switch to ARM state and enter SVC
mode.

[7:0] Comment field

15 14 13 12 11 10 0

1 1 0 1 1 Value8

9 8 7

1 1 1

KS32C50100 RISC MICROCONTROLLER THUMB INSTRUCTION SET

3-99

FORMAT 18: UNCONDITIONAL BRANCH

OPERATION

This instruction performs a PC-relative Branch. The THUMB assembler syntax is shown below. The branch offset
must take account of the prefetch operation, which causes the PC to be 1 word (4 bytes) ahead of the current
instruction.

NOTE: The address specified by label is a full 12-bit two’s complement address,
but must always be halfword aligned (ie bit 0 set to 0), since the assembler places label >> 1 in the Offset11 field.

EXAMPLES

here B here ; Branch onto itself. Assembles to 0xE7FE.
; (Note effect of PC offset).

B jimmy ; Branch to 'jimmy'.
 ... ; Note that the THUMB opcode will contain the number of

; halfwords to offset.
jimmy ... ; Must be halfword aligned.

Figure 3-47. Format 18

Table 3-25. Summary of Branch Instruction

THUMB Assembler ARM Equivalent Action

B label BAL label (halfword
offset)

Branch PC relative +/- Offset11 << 1,
where label is PC +/- 2048 bytes.

[10:0] Immediate value

15 14 13 12 11 10 0

1 1 1 0 0 Offset11

THUMB INSTRUCTION SET KS32C50100 RISC MICROCONTROLER

3-100

FORMAT 19: LONG BRANCH WITH LINK

OPERATION

This format specifies a long branch with link.

The assembler splits the 23-bit two’s complement half-word offset specifed by the label into two 11-bit halves,
ignoring bit 0 (which must be 0), and creates two THUMB instructions.

Instruction 1 (H = 0)

In the first instruction the Offset field contains the upper 11 bits of the target address. This is shifted left by 12 bits
and added to the current PC address. The resulting address is placed in LR.

Instruction 2 (H =1)

In the second instruction the Offset field contains an 11-bit representation lower half of the target address. This is
shifted left by 1 bit and added to LR. LR, which now contains the full 23-bit address, is placed in PC, the address of
the instruction following the BL is placed in LR and bit 0 of LR is set.

The branch offset must take account of the prefetch operation, which causes the PC to be 1 word (4 bytes) ahead
of the current instruction

Figure 3-48. Format 19

15 14 13 12 11 10 0

[10:0] Long branch and link offset high/low

[11] Low/High offset bit
0 = Offset high
1 = Offset low

1 1 1 1 H Offset

KS32C50100 RISC MICROCONTROLLER THUMB INSTRUCTION SET

3-101

INSTRUCTION CYCLE TIMES

This instruction format does not have an equivalent ARM instruction.

EXAMPLES

BL faraway ; Unconditionally Branch to 'faraway'
next ... ; and place following instruction

; address, ie ’next’, in R14,the Link
; register and set bit 0 of LR high.
; Note that the THUMB opcodes will
; contain the number of halfwords to offset.

faraway ... ; Must be Half-word aligned.

Table 3-26. The BL Instruction

H THUMB assembler ARM equivalent Action

0 BL label none LR := PC + OffsetHigh << 12

1 temp := next instruction address
PC := LR + OffsetLow << 1
LR := temp | 1

THUMB INSTRUCTION SET KS32C50100 RISC MICROCONTROLER

3-102

INSTRUCTION SET EXAMPLES

The following examples show ways in which the THUMB instructions may be used to generate small and efficient
code. Each example also shows the ARM equivalent so these may be compared.

MULTIPLICATION BY A CONSTANT USING SHIFTS AND ADDS

The following shows code to multiply by various constants using 1, 2 or 3 Thumb instructions alongside the ARM
equivalents. For other constants it is generally better to use the built-in MUL instruction rather than using a
sequence of 4 or more instructions.

Thumb ARM

1. Multiplication by 2^n (1,2,4,8,...)

LSL Ra, Rb, LSL #n ;MOV Ra, Rb, LSL #n

2. Multiplication by 2^n+1 (3,5,9,17,...)

LSL Rt, Rb, #n ; ADD Ra, Rb, Rb, LSL #n
ADD Ra, Rt, Rb

3. Multiplication by 2^n-1 (3,7,15,...)

LSL Rt, Rb, #n ; RSB Ra, Rb, Rb, LSL #n
SUB Ra, Rt, Rb

4. Multiplication by -2^n (-2, -4, -8, ...)

LSL Ra, Rb, #n ; MOV Ra, Rb, LSL #n
MVN Ra, Ra ; RSB Ra, Ra, #0

5. Multiplication by -2^n-1 (-3, -7, -15, ...)

LSL Rt, Rb, #n ; SUB Ra, Rb, Rb, LSL #n
SUB Ra, Rb, Rt

Multiplication by any C = {2^n+1, 2^n-1, -2^n or -2^n-1} * 2^n
Effectively this is any of the multiplications in 2 to 5 followed by a final shift. This allows the following additional
constants to be multiplied. 6, 10, 12, 14, 18, 20, 24, 28, 30, 34, 36, 40, 48, 56, 60, 62

(2..5) ; (2..5)
LSL Ra, Ra, #n ; MOV Ra, Ra, LSL #n

KS32C50100 RISC MICROCONTROLLER THUMB INSTRUCTION SET

3-103

GENERAL PURPOSE SIGNED DIVIDE

This example shows a general purpose signed divide and remainder routine in both Thumb and ARM code.

Thumb code

;signed_divide ; Signed divide of R1 by R0: returns quotient in R0,
; remainder in R1

;Get abs value of R0 into R3
ASR R2, R0, #31 ; Get 0 or -1 in R2 depending on sign of R0
EOR R0, R2 ; EOR with -1 (0xFFFFFFFF) if negative
SUB R3, R0, R2 ; and ADD 1 (SUB -1) to get abs value

;SUB always sets flag so go & report division by 0 if necessary
BEQ divide_by_zero

;Get abs value of R1 by xoring with 0xFFFFFFFF and adding 1 if negative
ASR R0, R1, #31 ; Get 0 or -1 in R3 depending on sign of R1
EOR R1, R0 ; EOR with -1 (0xFFFFFFFF) if negative
SUB R1, R0 ; and ADD 1 (SUB -1) to get abs value

;Save signs (0 or -1 in R0 & R2) for later use in determining ; sign of quotient & remainder.
PUSH {R0, R2}

;Justification, shift 1 bit at a time until divisor (R0 value) ; is just <= than dividend (R1 value). To do this shift
dividend ; right by 1 and stop as soon as shifted value becomes >.

LSR R0, R1, #1
MOV R2, R3
B %FT0

just_l LSL R2, #1
0 CMP R2, R0

BLS just_l

MOV R0, #0 ; Set accumulator to 0
B %FT0 ; Branch into division loop

div_l LSR R2, #1
0 CMP R1, R2 ; Test subtract

BCC %FT0
SUB R1, R2 ; If successful do a real subtract

0 ADC R0, R0 ; Shift result and add 1 if subtract succeeded

CMP R2, R3 ; Terminate when R2 == R3 (ie we have just
BNE div_l ; tested subtracting the 'ones' value).

THUMB INSTRUCTION SET KS32C50100 RISC MICROCONTROLER

3-104

;Now fixup the signs of the quotient (R0) and remainder (R1)
POP {R2, R3} ; Get dividend/divisor signs back
EOR R3, R2 ; Result sign
EOR R0, R3 ; Negate if result sign = – 1
SUB R0, R3
EOR R1, R2 ; Negate remainder if dividend sign = – 1
SUB R1, R2
MOV pc, lr

ARM Code

signed_divide ; Effectively zero a4 as top bit will be shifted out later
ANDS a4, a1, #&80000000
RSBMI a1, a1, #0
EORS ip, a4, a2, ASR #32

;ip bit 31 = sign of result
;ip bit 30 = sign of a2

RSBCS a2, a2, #0

;Central part is identical code to udiv (without MOV a4, #0 which comes for free as part of signed entry sequence)
MOVS a3, a1
BEQ divide_by_zero

just_l ; Justification stage shifts 1 bit at a time
CMP a3, a2, LSR #1
MOVLS a3, a3, LSL #1 ; NB: LSL #1 is always OK if LS succeeds
BLO s_loop

div_l
CMP a2, a3
ADC a4, a4, a4
SUBCS a2, a2, a3
TEQ a3, a1
MOVNE a3, a3, LSR #1
BNE s_loop2
MOV a1, a4
MOVS ip, ip, ASL #1
RSBCS a1, a1, #0
RSBMI a2, a2, #0
MOV pc, lr

KS32C50100 RISC MICROCONTROLLER THUMB INSTRUCTION SET

3-105

DIVISION BY A CONSTANT

Division by a constant can often be performed by a short fixed sequence of shifts, adds and subtracts.

Here is an example of a divide by 10 routine based on the algorithm in the ARM Cookbook in both Thumb and ARM
code.

Thumb Code

udiv10 ; Take argument in a1 returns quotient in a1,
; remainder in a2

MOV a2, a1
LSR a3, a1, #2
SUB a1, a3
LSR a3, a1, #4
ADD a1, a3
LSR a3, a1, #8
ADD a1, a3
LSR a3, a1, #16
ADD a1, a3
LSR a1, #3
ASL a3, a1, #2
ADD a3, a1
ASL a3, #1
SUB a2, a3
CMP a2, #10
BLT %FT0
ADD a1, #1
SUB a2, #10

0
MOV pc, lr

ARM Code

udiv10 ; Take argument in a1 returns quotient in a1,
; remainder in a2

SUB a2, a1, #10
SUB a1, a1, a1, lsr #2
ADD a1, a1, a1, lsr #4
ADD a1, a1, a1, lsr #8
ADD a1, a1, a1, lsr #16
MOV a1, a1, lsr #3
ADD a3, a1, a1, asl #2
SUBS a2, a2, a3, asl #1
ADDPL a1, a1, #1
ADDMI a2, a2, #10
MOV pc, lr

ARM INSTRUCTION SET KS32C50100 RISC MICROCONTROLER

3-106

NOTES

KS32C50100 RISC MICROCONTROLLER SYSTEM MANAGER

4-1

4 SYSTEM MANAGER

OVERVIEW

The KS32C50100 microcontroller’s System Manager has the following functions.

• To arbitrate system bus access requests from several master blocks, based on fixed priorities.

• To provide the required memory control signals for external memory accesses. For example, if a master block
such as the DMA controller or the CPU generates an address which corresponds to a DRAM bank, the System
Manager's DRAM controller generates the required normal/EDO or SDRAM access signals. The interface
signals for normal/EDO or SDRAM can be switched by SYSCFG[31].

• To provide the required signals for bus traffic between the KS32C50100 and ROM/SRAM and the external I/O
banks.

• To compensate for differences in bus width for data flowing between the external memory bus and the internal
data bus.

• KS32C50100 supports both little and big endian for external memory or I/O devices. Internal registers,
however, operate under big-endian mode.

NOTE

By generating an external bus request, an external device can access the KS32C50100's external
memory interface pins. In addition, the KS32C50100 can access slow external devices using a
Wait signal. The Wait signal, which is generated by the external device, extends the duration of the
CPU’s memory access cycle beyond its programmable value.

SYSTEM MANAGER KS32C50100 RISC MICROCONTROLLER

4-2

SYSTEM MANAGER REGISTERS

To control external memory operations, the System Manager uses a dedicated set of special registers (see Table 4-
1). By programming the values in the System Manager special registers, you can specify such things as

• Memory type

• External bus width access cycle

• Control signal timing (RAS and CAS, for example)

• Memory bank locations

• The sizes of memory banks to be used for arbitrary address spacing

The System Manager uses special register settings to control the generation and processing of the control signals,
addresses, and data that are required by external devices in a standard system configuration. Special registers are
also used to control access to ROM/SRAM/Flash banks, up to four DRAM banks and four external I/O banks, and a
special register mapping area.

The address resolution for each memory bank base pointer is 64 Kbytes (16 bits). The base address pointer is 10
bits. This gives a total addressable memory bank space of 16 M words.

NOTE

When writing a value to a memory bank control register from ROMCON0 to REFEXTCON
(locations 0x3014 to 0x303C), as shown in Table 4-1, you must always set the register using a
single STM (Store Multiple) instruction. Additionally, the address spaces for successive memory
banks must not overlap in the system memory map.

KS32C50100 RISC MICROCONTROLLER SYSTEM MANAGER

4-3

Figure 4-1. KS32C50100 System Memory Map

NOTE: You can define banks anywhere within the 64-Mbyte address space.

Continuous 16 K word space
for 4 external I/O banks

4 K words
(Fixed for all I/O banks)

Special Register bank

Internal SRAM

External I/O bank 3

DRAM/SDRAM bank 3
16 M words

(16 M x 32 bits)
SA[25:0]

Reserved

External I/O bank 2

External I/O bank 1

External I/O bank 0

DRAM/SDRAM bank 2

DRAM/SDRAM bank 1

DRAM/SDRAM bank 0

ROM/SRAM/Flash bank 5

ROM/SRAM/Flash bank 4

ROM/SRAM/Flash bank 3

ROM/SRAM/Flash bank 2

ROM/SRAM/Flash bank 1

ROM/SRAM/Flash bank 0

0, 4, or 8 K bytes (Fixed)

16 K words (Fixed)

16 K words − 4 M words (32 bits)
ADDR [21:0]

0x3FFFFFF

0x0000000

SYSTEM MANAGER KS32C50100 RISC MICROCONTROLLER

4-4

SYSTEM MEMORY MAP

Following are several important features to note about the KS32C50100 system memory map:

• The size and location of each memory bank is determined by the register settings for "current bank base
pointer" and "current bank end pointer". You can use this base/next bank pointer concept to set up a
consecutive memory map. To do this, you set the base pointer of the "next bank" to the same address as the
next pointer of the "current bank". Please note that when setting the bank control registers, the address
boundaries of consecutive banks must not overlap. This can be applied even if one or more banks are
disabled.

• Four external I/O banks are defined in a continouous address space. A programmer can only set the base
pointer for external I/O bank 0. The start address of external I/O bank 1 is then calculated as the external I/O
bank 0 start address +16 K. Similarly, the start address for external I/O bank 2 is the external I/O bank 0 start
address + 32 K, and the start address for external I/O bank 3 is the external I/O bank 0 start address + 48 K.
Therefore, the total consecutive addressable space of the four external banks is defined as the start address of
external I/O bank 0 + 64 K bytes.

• Within the addressable space, the start address of each I/O bank is not fixed. You can use bank control
registers to assign a specific bank start address by setting the bank’s base pointer. The address resolution is
64 K bytes. The bank’s start address is defined as "base pointer << 16" and the bank’s end address (except for
external I/O banks) is "next pointer << 16 - 1".

After a power-on or system reset, all bank address pointer registers are initialized to their default values. In this
case, all bank pointers except for the next pointer of ROM bank 0 are set to zero. This means that, except for ROM
bank 0, all banks are undefined following a system startup.

The reset values for the next pointer and base pointer of ROM bank 0 are 0x200 and 0x000, respectively. This
means that a system reset automatically defines ROM bank 0 as a 32-Mbyte space with a start address of zero.
This initial definition of ROM bank 0 lets the system power-on or reset operation pass control to the user-supplied
boot code that is stored in external ROM. (This code is located at address 0 in the system memory map.) When the
boot code (i.e. ROM program) executes, it performs various system initialization tasks and reconfigures the system
memory map according to the application’s actual external memory and device configuration.

The initial system memory map following system startup is shown in Figure 4-2.

KS32C50100 RISC MICROCONTROLLER SYSTEM MANAGER

4-5

Figure 4-2 Initial System Memory Map (After Reset)

Table 4-1. System Manager Registers

Registers Offset R/W Description Reset Value

SYSCFG 0x0000 R/W System configuration register 0x7FFFF91

CLKCON 0x3000 R/W Clock control register 0x00000000

EXTACON0 0x3008 R/W External I/O timing register 1 0x00000000

EXTACON1 0x300C R/W External I/O timing register 2 0x00000000

EXTDBWTH 0x3010 R/W Data bus width of each bank 0x00000000

ROMCON0 0x3014 R/W ROM/SRAM/Flash bank 0 control register 0x20000060

ROMCON1 0x3018 R/W ROM/SRAM/Flash bank 1 control register 0x00000060

ROMCON2 0x301C R/W ROM/SRAM/Flash bank 2 control register 0x00000060

ROMCON3 0x3020 R/W ROM/SRAM/Flash bank 3 control register 0x00000060

ROMCON4 0x3024 R/W ROM/SRAM/Flash bank 4 control register 0x00000060

ROMCON5 0x3028 R/W ROM/SRAM/Flash bank 5 control register 0x00000060

DRAMCON0 0x302C R/W DRAM bank 0 control register 0x00000000

DRAMCON1 0x3030 R/W DRAM bank 1 control register 0x00000000

DRAMCON2 0x3034 R/W DRAM bank 2 control register 0x00000000

DRAMCON3 0x3038 R/W DRAM bank 3 control register 0x00000000

REFEXTCON 0x303C R/W Refresh and external I/O control register 0x83FD0000

Special Function
Registers

ROM/SRAM/FLASH
Bank 0 Area

(Non-accessible)

64 M Bytes
SA[25:0]

Undefined Area

0x3FF0000

0x2000000

0x0000000

ROM/SRAM/FLASH
Bank 0 Area
(Accessible)

4 M Address [21:0]

32 M

0x3FFFFFF

SYSTEM MANAGER KS32C50100 RISC MICROCONTROLLER

4-6

EXTERNAL ADDRESS TRANSLATION METHOD DEPEND ON THE WIDTH OF EXTERNAL MEMORY

The KS32C50100 address bus is, in some respects, different than the bus used in other standard CPUs. Based on
the required data bus width of each memory bank, the internal system address bus is shifted out to an external
address bus, ADDR[21:0]. This means that memory control signals such as nRAS[3:0], nCAS[3:0], nECS[3:0],
nRCS[5:0], and nWBE[3:0] are generated by the system manager according to a pre-configured external memory
scheme (see Table 4-2). This is applied to SDRAM signals as same method.

Table 4-2 Address Bus Generation Guidelines

Data Bus Width External Address Pins, ADDR[21:0] Accessible Memory Size

8-bit A21-A0 (internal) 4 M bytes

16-bit A22-A1 (internal) 4 M half-words

32-bit A23-A2 (internal) 4 M words

Figure 4-3 External Address Bus Diagram

External Address Pins
ADDR[21:0]

Data Bus Width Configuration
(8-bit/16-bit/32-bit)

8-bit

32-bit

22-bit

16-bit

SA[21:0]
22-bit

SA[23:2]
22-bit

SA[22:1]
22-bit

System Address Bus: SA[25:0]
External Internal

KS32C50100 RISC MICROCONTROLLER SYSTEM MANAGER

4-7

CONNECTION OF EXTERNAL MEMORY WITH VARIOUS DATA WIDTH

As another example, let us see how the KS32C50100 maps CPU address spaces to physical addresses in external
memory:

When the CPU issues an arbitrary address to access an external memory device, the KS32C50100 compares the
upper 10 bits of the issued address with the address pointers of all memory banks. It does this by consecutively
subtracting each address pointer value from the CPU address. There are two reasons why this subtraction method
is used:

• To check the polarities of the subtraction result so as to identify which bank corresponds to the address issused
by the CPU.

• To derive the offset address for the corresponding bank.

When the bank is identified and the offset has been derived, the corresponding bank selection signal (nRCS[5:0],
or nECS[3:0]) is generated, and the derived offset is driven to address external memory through the KS32C50100
physical address bus.

The KS32C50100 can be configured as big-endian or little-endian mode by external little/big selection pin(LITTLE,
49).

In Big Endian mode, the most significant byte of the external memory data is stored at the lowest numbered byte
and the least significant byte at the highest numbered byte.

Eg.) In case of the external word memory system, Byte 0 of the memory is connected to data lines 31 through 24,
D[31:24].

In Little Endian mode, vice versa.(See Figure 4-4 External Memory Interface)

SYSTEM MANAGER KS32C50100 RISC MICROCONTROLLER

4-8

DATA BUS CONNECTION WITH EXTERNAL MEMORY

Figure 4-4 External Memory Interface according to Data Bus width and Endianism

ARM Core Register

Memory Controller

External Data Bus

Little-Endian

Big-Endian

D31

External Memory

Little-Endian

Big-Endian

D0

D31-D24 D23-D18 D15-D8 D7-D0

Byte0 Byte1 Byte2 Byte3

Byte3 Byte2 Byte1 Byte0

Byte2 Byte3

Byte3 Byte2

Byte0 Byte1

Byte1 Byte0

Byte0

Byte1

Byte2

Byte3 Address 3

D31 D0

D0D7

Address 2

Address 1

Address 0

Address 2

Address 0

Address 2

Address 0

Address 0

Address 0

D15 D0

Routing and Duplication

KS32C50100 RISC MICROCONTROLLER SYSTEM MANAGER

4-9

BUS ARBITRATION

In the KS32C50100 microcontroller, the term "system bus" refers to the separate system address and data buses
inside the chip. The KS32C50100's internal function blocks, or external devices, can request mastership of the
system bus and then hold the system bus in order to perform data transfers. Because the design of KS32C50100
bus allows only one bus master at a time, a bus controller is required to arbitrate when two or more internal units or
external devices simultaneously request bus mastership.

When bus mastership is granted to an internal function block or an external device, other pending requests are not
acknowledged until the previous bus master has released the bus.

To facilitate bus arbitration, priorities are assigned to each internal KS32C50100 function block. The bus controller
arbitratation requests for the bus mastership according to these fixed priorities. In the event of contention,
mastership is granted to the function block with the highest assigned priority. These priorities are listed in Table 4-3.

NOTE

An external bus master can also be granted bus mastership and hold the KS32C50100 system
bus. In Table 4-3, you will note that all external devices are assigned the identical priority.
Therefore, in systems made up of several external devices which can become the bus master,
external circuitry must be implemented to assign additional bus arbitration priorities to all potential
external bus masters.

NOTE:Internal function blocks are divided into two groups, Group A and Group B. Within each group, the bus arbitration
priorities are fixed according to the assigned level. The relative priority of Group A and Group B is determined more or less in an
alternating manner.

Table 4-3 Bus Priorities for Arbitration

Function Block Bus Priority (Group)

External bus master A-1 (Highest priority in Group A)

DRAM memory refresh controller A-2

General DMA (GDMA) 1 A-3

General DMA (GDMA) 0 A-4

High level data link controller (HDLC) B A-5

High level data link controller (HDLC) A A-6

MAC buffered DMA (BDMA) A-7 (Lowest priority in Group A)

Write buffer B-1 (Highest priority in Group B)

Bus router B-2 (Lowest priority in Group B)

SYSTEM MANAGER KS32C50100 RISC MICROCONTROLLER

4-10

EXTERNAL BUS MASTERSHIP

The KS32C50100 can receive and acknowledge bus request signals (ExtMREQs) that are generated by an
external bus master. When the CPU asserts an external bus acknowledge signal (ExtMACK), mastership is granted
to the external bus master, assuming the external bus request is still active.

When the external bus acknowledge signal is active, the KS32C50100’s memory interface signals go to high-
impedance state so that the external bus master can drive the required external memory interface signals.

The KS32C50100 does not perform DRAM refreshes when it is not the bus master. When an external bus master is
in control of the external bus, and if it retains control for a long period of time, it must assume the responsibility of
performing the necessary DRAM refresh operations.

Figure 4-5 External Bus Request Timing

MCLKO

Address, Data,
nOE, nWBE, nDWE,
nRCS, nCAS, nRAS

ExtMREQ

ExtMACK

tEMRs

tEMAftEMAr

tEMRh

tEMZ

KS32C50100 RISC MICROCONTROLLER SYSTEM MANAGER

4-11

CONTROL REGISTERS

SYSTEM CONFIGURATION REGISTER(SYSCFG)

The System Manager has one system configuration register, SYSCFG. The SYSCFG register determines the start
address of the System Manager’s special registers and the start address of internal SRAM. (The total special
register space in the system memory map is fixed at 64 K bytes.)

You also use SYSCFG settings to control write buffer enable, cache enable, and stall enable operations.

All DRAM banks can be configured to SDRAM banks by set the Synchronous DRAM mode (SYSCFG[31]).

NOTE

If you write a "10" into the cache mode field, SYSCFG[5:4], the cache enable bit is cleared
automatically (see Figure 4-6).

Table 4-4 SYSCFG Register

Register Offset Address R/W Description Reset Value

SYSCFG 0x0000 R/W System configuration register 0x7FFFF91

SYSTEM MANAGER KS32C50100 RISC MICROCONTROLLER

4-12

Figure 4-6 System Configuration Register (SYSCFG)

31 30 29 28 27 26 25 16 15 6 5 4 3 2 1 0

S
D
M

PD_ID
Special Register Bank

Base Pointer
Internal SRAM
Base Pointer CM 0

W
E

C
E

S
E

[0] Stall enable (SE)
Must be set to zero.

[1] Cache enable (CE)
When set to “1”, cache operations are enabled.

[2] Write buffer enable (WE)
When set to “1”, write buffer operations are
enabled.

[5:4] Cache mode (CM)
This 2-bit value determines how internal memory is
to be divided into cache and SRAM.
00 = 4-Kbyte SRAM, 4-Kbyte cache
01 = 0-Kbyte SRAM, 8-Kbyte cache
10 = 8-Kbyte SRAM, 0-Kbyte cache

NOTE: When you write 10 to this field, the cache
enable bit is cleared automatically.

[15:6] Internal SRAM base pointer
This 10-bit address becomes the upper address
of SRAM. A25 through A16, the remaining SRAM
addresses, and A15 through A0, are filled with zeros.

[25:16] Special register bank base pointer
The resolution of this value is 64 K. Therefore, to
place the start address at 1800000H (24 M), use this
formula:

Setting value = (1800000H / 64 K) << 16.

[29:26] Product Identifier (PD_ID)
0000 = KS32C5000
0001 = KS32C50100

[31] Sync. DRAM Mode
0 = Normal/EDO DRAM interface for 4 DRAM banks
1 = Sync. DRAM interface for 4 DRAM banks

0

KS32C50100 RISC MICROCONTROLLER SYSTEM MANAGER

4-13

Start Address Setting

The start address of the System Manager special register area is initialized to 3FFFF91H. (You can also set the
start address to an arbitrary value by writing the address, 3FF0000H.) When you have set the start address of the
special register area, the register addresses are automatically defined as the start address plus the register’s
offset.

Assume for example, that a reset initializes the start address to 3FF0000H. The offset address of the ROMCON
register is 3014H. Therefore, the physical address for ROMCON is 3FF0000H + 3014h = 3FF3014H. If you then
modified the start address of the special register area to 3000000H, the new address for the ROMCON register
would be 3003014H.

Cache Disable/Enable

To enable or disable the cache, you set the cache enable (CE) bit of the SYSCFG register to "1" or "0", respectively
Because cache memory does not have an auto-flush feature, you must be careful to verify the coherency of data
whenever you re-enable the cache. You must also carefully check any changes that the DMA controller may make
to data stored in memory. (Usually, the memory area that is allocated to DMA access operations must be non-
cachable.)

The internal 8-Kbyte SRAM can be used as a cache area. To configure this area, you use the cache mode bits,
SYSCFG[5:4]. If you do not need to use the entire 8-Kbyte area as cache, you can use the remaining area as
internal SRAM. This area is accessed using the address of the base pointer in the internal SRAM field.

Write Buffer Disable/Enable

The KS32C50100 has four programmable write buffer registers that are used to improve the speed of memory write
operations. When you enable a write buffer, the CPU writes data into the write buffer, instead of an external
memory location. This saves the cycle that would normally be required to complete the external memory write
operation. The four write buffers also enhance the performance of the ARM7TDMI core’s store operations.

To maintain data coherency between the cache and external memory, the KS32C50100 uses a write-through
policy. An internal 4-level write buffer compensates for performance degradation caused by write-throughs.
(For more information, read Chapter 5.)

SYSTEM MANAGER KS32C50100 RISC MICROCONTROLLER

4-14

SYSTEM CLOCK AND MUX BUS CONTROL REGISTER

CLOCK CONTROL REGISTER (CLKCON)

There is a clock control register in the System Manager. This control register is used to divide internal system
clock, so the more slow clock than system clock can be made by clock dividing value. In this register, ROM bank 5
address/data Mux. enable control function is included.

Table 4-5 CLKCON Register

Register Offset Address R/W Description Reset Value

CLKCON 0x3000 R/W Clock control register 0x00000000

Table 4-6 CLKCON Register Description

Bit Number Bit Name Description

[15:0]] Clock dividing value KS32C50100 System Clock source. If CLKSEL is Low, PLL output
clock is used as the KS32C50100 internal system clock. If CLKSEL
is High, XCLK is used as the KS32C50100 internal system clock.
The internal system clock is divided by this value. The clock divided
is used to drive the CPU and system peripherals. Only one bit can be
set in CLKCON[15:0], that is, the clock deviding value is defined as
1, 2, 4, 8, 16,... If all bits are zero, a non-divided clock is used.

[16] ROM bank 5 wait enable Wait cycle will check the next cycle after a chip selection signal is
activated.

[17] ROM bank 5 address/data
Mux. enable

Using multiplex bus at ROM bank 5, this bit must be set to 1.

[19:18] Mux Bus address cycle When address phase of multiplexed bus is not enough long for
external device to receive, address phase can be extended by
setting this bit.
00 = 1 MCLK
01 = 2 MCLK
10 = 3 MCLK

[31] Test bit This bit is for factory use only. During the normal operation, it must
always be 0.

KS32C50100 RISC MICROCONTROLLER SYSTEM MANAGER

4-15

Figure 4-7 Clock Control Register (CLKCON)

31 16 15 0

Clock Divided Value

[15:0] Clock dividing value
If all bits are 0, a non-divided clock is used. Only one bit
can be set in CLKCON[15:0]. That is, the clock dividing
value is defined as 1, 2, 4, 8,16,
Internal system clock, f MCLK = f ICLK / (CLKCON+1)

[16] ROM bank 5 wait enable
0 = Disable ROM bank 5 wait.
1 = Enable ROM bank 5 wait.

[17] ROM bank 5 address/data bus Mux enable
0 = Normal operation
1 = Enable bus multiplexing

[19:18] Mux bus Address Cycle (tAC)
00 = 1 MCLK
01 = 2 MCLK
10 = 3 MCLK

[31] Test bit
This bit should be always 0.

17

CLKCON

19 18

SYSTEM MANAGER KS32C50100 RISC MICROCONTROLLER

4-16

SYSTEM CLOCK

The external clock input, XCLK, can be used to the internal system clock by assign VDD to CLKSEL pin. Using PLL
for the internal system clock, Vss has to be assigned to CLKSEL pin. In this case, the internal system clock is
XCLK × MF. To get 50MHz of system clock, a 10 MHz external clock must be used.

For the purpose of power save, Clock Control Register (CLKCON) can be programed at low frequency. When the
internal system clock is divided by CLKCON, it's duty-cycle is changed.

If CLKCON is programed to zero, the internal system clock remains the same as the internal clock, ICLK. In other
cases, the duty cycle of internal system clock is no longer 50%.

Figure 4-9 shows the internal system clock, MCLK waveform according to the clock dividing value.

Figure 4-8 System Clock Circuit

Figure 4-9 Divided System Clocks Timing Diagram

MUX

0

1

PLL
0: MF = 5.0
1: MF = 6.6

CLKSEL

XCLK Clock Divider for
Low Power Control

(CLKCON)

Internal
System
Clock
MCLK

MCLKO

CLKOEN

NOTES:
1. If CLKSEL is 1, the PLL block became to the state of power down.
2. MF means Multiplication Factor

TMOD

pdown(1)

MF
(2)

ICLK

ICLK

CLKCON = 0

CLKCON = 1

CLKCON = 2

MCLK

MCLK

MCLK

KS32C50100 RISC MICROCONTROLLER SYSTEM MANAGER

4-17

EXTERNAL I/O ACCESS CONTROL REGISTERS(EXTACON0/1)

The System Manager has four external I/O access control registers. These registers correspond to the up to four
external I/O banks that are supported by KS32C50100. Table 4-7 describes the two registers that are used to
control the timing of external I/O bank accesses.

You can control external I/O access cycles using either a specified value or an external wait signal, nEWAIT. To
obtain access cycles that are longer than those possible with a specified value, you can delay the active time of
nOE or nWBE by tCOS value setting. After nOE or nWBE active, nEWAIT should be active previously at the first
MCLK rising edge. In case of ROM bank 5, nRCS and nOE/nWBE signals are activated simultaneously, that is,
there is no control parameter as like tCOS. As a result, nEWAIT should be valid previously at the second MCLK
rising edge after nRCS active for the ROM bank 5.

EXTACON0 is used to set the access timings for external I/O banks 0 and 1. EXTACON1 is used to set the external
access timings for I/O banks 2 and 3.

NOTE

The base pointer for external I/O bank 0 is set in the REFEXTCON register(REFEXTCON register
is in DRAM control registers part).

Table 4-7 External I/O Access Control Register Description

Register Offset Address R/W Description Reset Value

EXTACON0 0x3008 R/W External I/O access timing register 0 0x00000000

EXTACON1 0x300C R/W External I/O access timing register 1 0x00000000

SYSTEM MANAGER KS32C50100 RISC MICROCONTROLLER

4-18

Figure 4-10 External I/O Access Control Registers (EXTACON0, EXTACON1)

31 30 29 28 27 25 24 22 19 16 15 14 13 12 11 9 8 6 5 3 2 01821

0 0 0 0 tACC1 tCOH1 tACS1 tCOS1 0 0 0 0 tACC0 tCOH0 tACS0 tCOS0

0 0 0 0 tACC3 tCOH3 tACS3 tCOS3 0 0 0 0 tACC2 tCOH2 tACS2 tCOS2

[2:0] Chip selection set-up time on nOE (tCOS0, tCOS2)
[18:16] tCOS1, tCOS3
000 = 0 cycle 100 = 4 cycles
001 = 1 cycles 101 = 5 cycles
010 = 2 cycle 110 = 6 cycles
011 = 3 cycles 111 = 7 cycles

[5:3] Address set-up time before nECS (tACS0, tACS2)
[21:19] tACS1, tACS3
000 = 0 cycle 100 = 4 cycles
001 = 1 cycles 101 = 5 cycles
010 = 2 cycle 110 = 6 cycles
011 = 3 cycles 111 = 7 cycles

[8:6] Chip selection hold time on nOE (tCOH0, tCOH2)
[24:22] tCOH1, tCOH3
000 = 0 cycle 100 = 4 cycles
001 = 1 cycles 101 = 5 cycles
010 = 2 cycle 110 = 6 cycles
011 = 3 cycles 111 = 7 cycles

[11:9] Access cycles (nOE Low time) (tACC0, tACC2)
[27:25] tACC1, tACC3
000 = 0 cycle 100 = 4 cycles
001 = 1 cycles 101 = 5 cycles
010 = 2 cycle 110 = 6 cycles
011 = 3 cycles 111 = 7 cycles

EXTACON0

EXTACON1

KS32C50100 RISC MICROCONTROLLER SYSTEM MANAGER

4-19

NOTE

When nEWAIT is asserted for external I/O banks, the tCOS and tCOH should not be zero. When ROM banks,
except ROM bank 5, are selected, the nEWAIT can not be asserted.

The nEWAIT should be valid at the first MCLKO falling edge after nOE active. In this case, tCOS and tCOH need to
have a minimum of one cycle, and by the setting of tCOS value slower device can be supported. Naimly, nEWAIT
valid time depends on tCOS value. Deassertion timing depends on the applied Ext. I/O devices.

Figure 4-11 External I/O Read Timing with nEWAIT (tCOH = 1, tACC = 5, tCOS = 1, tACS = 1)

nWBE

tCOH = 0

tCOH = 1
Data Fetch

nEWAIT

MCLKO

nECS

tACS tNECS tNECS

Address

nOE

tACC

tNROE

Data(R)

tWH

tCOS

tRDh

tADDRd

tCOH

tNROE

tWS

tADDRh

SYSTEM MANAGER KS32C50100 RISC MICROCONTROLLER

4-20

Figure 4-12 External I/O Write Timing with nEWAIT (tCOH = 1, tACC = 4, tCOS = 1, tACS = 1)

tCOH = 0

tCOH = 1
Data Fetch

MCLKO

nECS

nWBE

tNWBEtNWBE

nEWAIT

tWH

Address

tADDRh tADDRd

tACS tNECS

Data(W)

tWDh

tNECS tCOH

tWS

KS32C50100 RISC MICROCONTROLLER SYSTEM MANAGER

4-21

DATA BUS WIDTH REGISTER (EXTDBWTH)

The KS32C50100 has interfaces for 8/16/32-bit external ROMs, SRAMs, flash memories, DRAMs, SDRAMs, and
external I/O ports. Using data bus width register, you can set the data bus width that is required for specific external
memory and external I/O banks.

NOTE

In Figure 4-13, the term "Disable" means that the KS32C50100 does not generate the access signal for the
corresponding external I/O bank.

Table 4-8 EXTDBWTH Register Description

Register Offset Address R/W Description Reset Value

EXTDBWTH 0x3010 R/W Data bus width of each bank 0x00000000

SYSTEM MANAGER KS32C50100 RISC MICROCONTROLLER

4-22

Figure 4-13 Data Bus Width Register (EXTDBWTH)

31 30 29 28 27 26 25 16 15 6 5 4 3 2 1 0

0 0 0 0

D
S
X
3

24 23 22 21 20 19 18 17 8 714 13 12 11 10 9

D
S
X
2

D
S
X
1

D
S
X
0

D
S
D
3

D
S
D
2

D
S
D
1

D
S
D
0

D
S
R
5

D
S
R
4

D
S
R
3

D
S
R
2

D
S
R
1

D
S
R
0

NOTE: When you select Disable, the assigned external I/O bank access signal
is not generated.

[1:0] Data bus width for ROM/SRAM/FLASH bank 0 (DSR0)
DSR0 is read-only data at the B0SIZE [1:0] pins. DSR0 is read-only because
ROM/SRAM/FLASH bank 0 is used to boot the ROM while the data bus width
for ROM/SRAM/FLASH bank 0 is set using B0SIZE [1:0].

00 = Not permitted
01 = Byte (8 bits)
10 = Half-word (16 bits)
11 = Word (32 bits)

[3:2] Data bus width for ROM/SRAM/FLASH bank 1 (DSR1)
[5:4] DSR2, [7:6] DSR3, [9:8] DSR4, [11:10] DSR5
00 = Disable
01 = Byte (8 bits)
10 = Half-word (16 bits)
11 = Word (32 bits)

[13:12] Data bus width for DRAM bank 0 (DSD0)
[15:14] DSD1, [17:16] DSD2, [19:18] DSD3
00 = Disable
01 = Byte (8 bits)
10 = Half-word (16 bits)
11 = Word (32 bits)

[21:20] Data bus width for external I/O bank 0 (DSX0)
[23:22] DSX1, [25:24] DSX2, [27:26] DSX3
00 = Disable
01 = Byte (8 bits)
10 = Half-word (16 bits)
11 = Word (32 bits)

EXTDBWTH

KS32C50100 RISC MICROCONTROLLER SYSTEM MANAGER

4-23

ROM/SRAM/FLASH CONTROL REGISTERS(ROMCON)

The System Manager has six control registers for ROM, SRAM, and flash memory (see Table 4-9). These registers
correspond to the up to six ROM/SRAM/Flash banks that are supported by KS32C50100.

For ROM/SRAM/Flash bank 0, the external data bus width is determined by the signal at the B0SIZE[1:0] pins:

• When B0SIZE[1:0] = "01", the external bus width for ROM/SRAM/Flash bank 0 is 8 bits.

• When B0SIZE[1:0] = "10", the external bus width for ROM/SRAM/Flash bank 0 is 16 bits.

• When B0SIZE[1:0] = "11", the external bus width for ROM/SRAM/Flash bank 0 is 32 bits.

You can determine the start address of a special register's bank by the value of the corresponding "special register
bank base pointer". The control register’s physical address is always the sum of the register’s bank base pointer
plus the register’s offset address.

NOTE

If you attach SRAM to a ROM/SRAM/Flash bank, you must set the page mode configuration bits,
ROMCONn[1:0], in the corrresponding control register to "00" (normal ROM).

Table 4-9 ROM/SRAM/Flash Control Register Description

Register Offset Address R/W Description Reset Value

ROMCON0 0x3014 R/W ROM/SRAM/Flash bank 0 control register 0x20000060

ROMCON1 0x3018 R/W ROM/SRAM/Flash bank 1 control register 0x00000060

ROMCON2 0x301C R/W ROM/SRAM/Flash bank 2 control register 0x00000060

ROMCON3 0x3020 R/W ROM/SRAM/Flash bank 3 control register 0x00000060

ROMCON4 0x3024 R/W ROM/SRAM/Flash bank 4 control register 0x00000060

ROMCON5 0x3028 R/W ROM/SRAM/Flash bank 5 control register 0x00000060

SYSTEM MANAGER KS32C50100 RISC MICROCONTROLLER

4-24

Figure 4-14 ROM/SRAM/FLASH Control Registers (ROMCON0–ROMCON5)

31 0

ROM/SRAM/Flash Bank #
Next Pointer

20 19 910

0 0 0 0 0 tACC tPA

128 7 46 3

ROM/SRAM/Flash Bank #
Base Pointer

PMC

[1:0] Page mode configuration (PMC)
00 = Normal ROM 01 = 4-word page
10 = 8-word page 11 = 16-word page

[3:2] Page address access time (tPA)
00 = 5 cycles 01 = 2 cycles
10 = 3 cycles 11 = 4 cycles

[6:4] Programmable access cycle (tACC)
000 = Disable bank 001 = 2 cycles
010 = 3 cycles 011 = 4 cycles
100 = 5 cycles 101 = 6 cycles
110 = 7 cycles 111 = Reserved

[19:10] ROM/SRAM/Flash bank # base pointer
This value is the start address of the ROM/SRAM/Flash bank #.
The start address is calculated as ROM/SRAM/FLASH bank # base
pointer << 16

[29:20] ROM/SRAM/FLASH bank # next pointer
This value is the current bank end address << 16 + 1

KS32C50100 RISC MICROCONTROLLER SYSTEM MANAGER

4-25

Figure 4-15 ROM/SRAM/Flash Read Access Timing

Figure 4-16 ROM/Flash Page Read Access Timing

MCLKO

Address

nRCS

nOE

tACC

Data(R)

tADDRh

tNRCS tNRCS

tNROE tNROE

tRDh

tADDRd

Address

tACC tPA tPA tPA

MCLKO

nRCS

nOE

Data

tADDRh tADDRd

tNRCS tNRCS

tNROE

tRDhtRDh

tNROE

SYSTEM MANAGER KS32C50100 RISC MICROCONTROLLER

4-26

Figure 4-17 ROM/SRAM/Flash Write Access Timing

Address

MCLKO

Data(W)

tADDRd

nRCS tACC

tNRCS tNRCS

nWBE

tNWBE

tWDhtWDd

tADDRh

tNWBE

KS32C50100 RISC MICROCONTROLLER SYSTEM MANAGER

4-27

ROM BANK 5 ADDRESS/DATA MULTIPLEXED BUS

Overview

The KS32C50100 has separate address and data bus. KS32C50100 supports multiplexed address/data bus for
low cost chips which require multiplexed bus. To support this feature, the KS32C50100 has one special bank (ROM
bank 5) which can support address/data multiplexed bus and 4-data burst access by GDMA. For this feature, you
should set the MUX enable bit and wait enable bit of CLKCON register.

You can also use ROM bank 5 as normal ROM bank by clearing MUX enable bit of CLKCON register.

When you set the wait enable bit in the CLKCON register, wait cycle can be added by nEWAIT pin for ROM bank 5.
Other ROM banks except ROM bank 5 has no effects. nEWAIT pin also can be used to add wait cycle for EXT I/O
bank regardless of the wait enable bit.

Random Access by CPU

At the first cycle of ROM bank 5, address comes out from data bus. Therefore, any device which is connected to
the ROM bank 5 can get address. The rest cycle is for data. As the KS32C50100 has not a dedicated address
strobe signal for address phase in the data bust, you should generate address strobe signal in the application
device.

Four-data Burst Access by GDMA

When you set FB (4-data burst enable) bit in the GDMACON register, the GDMA requests 4-data burst access.
When you access ROM bank 5 by 4-data burst mode, the multiplexed ROM bank 5 bus has only one address
phase. Therefore, you should internally calculate the address at the data phase. To notify the 4-data burst mode to
ROM bank 5 device, the ADDR[21] remains "1" during address phase.

SYSTEM MANAGER KS32C50100 RISC MICROCONTROLLER

4-28

Figure 4-18 ROM/SRAM/FLASH Bank 5 random Write Access Timing

Figure 4-19 ROM/SRAM/FLASH Bank 5 Read Access Timing

MCLKO

nRCS[5]

nOE

tacc

Address Addr

tADDRh

DataAddrData

nEWAIT
No wait

nWBE
tNWBE

tAC

tNRCS tNRCS

MCLKO

nRCS[5]

nOE

tacc

Address

tNRCS

DataData

nEWAIT

1 wait

nWBE
tNROE

tNRCS

tAC

Addr

Addr

tADDRh

KS32C50100 RISC MICROCONTROLLER SYSTEM MANAGER

4-29

Figure 4-20 Four-data Burst Mode Write Timing When GDMA Requests

Figure 4-21 Four-data Burst Mode Read Timing When GDMA Requests

MCLKO

nRCS[5]

tNRCS

nWBE

Address Addr

tADDRh

Data + 0AddrData

nEWAIT

Addr + 1 Addr + 2 Addr +3

Data + 1 Data + 2 Data + 3

tAC

nOE

tNRCS

MCLKO

nRCS[5]

nWBE

Address Addr

Data + 0AddrData

nEWAIT

Addr + 1 Addr + 2 Addr +3

Data + 1 Data + 2 Data + 3

tAC

nOE

tNRCS tNRCS

tADDRh

SYSTEM MANAGER KS32C50100 RISC MICROCONTROLLER

4-30

DRAM CONTROL REGISTERS

The System Manager has four DRAM control registers, DRAMCON0–DRAMCON3. These registers correspond to
the up to four DRAM banks that are supported by KS32C50100. A fifth register, REFEXTCON, is used to set the
base pointer for external I/O bank 0.

KS32C50100 supports EDO, normal, Synchronous DRAM(SDRAM). SDRAM mode can be selected by setting
SYSCFG[31]. If this bit is set to '1', all DRAM banks are selected SDRAM. Otherwise, EDO/FP DRAM banks are
selected.

Table 4-10 DRAM and External I/O Control Register Description

Register Offset Address R/W Description Reset Value

DRAMCON0 0x302C R/W DRAM bank 0 control register 0x00000000

DRAMCON1 0x3030 R/W DRAM bank 1 control register 0x00000000

DRAMCON2 0x3034 R/W DRAM bank 2 control register 0x00000000

DRAMCON3 0x3038 R/W DRAM bank 3 control register 0x00000000

REFEXTCON 0x303C R/W Refresh and external I/O control register 0x00000000

KS32C50100 RISC MICROCONTROLLER SYSTEM MANAGER

4-31

Figure 4-22 DRAM Control Registers (DRAMCON0–DRAMCON3)

31 30 29 6 4 3 2 1 0

CAN DRAM Bank # Next Point Reserv

20 19 9 810 7

tRP
t
R
C

DRAM Bank # Base Point
t
C
P

E
D
O

t
C
S

[0] EDO mode (EDO) (note)

0 = Normal DRAM (Fast page mode DRAM)
1 = EDO DRAM

[2:1] CAS strobe time (tCS)
00 = 1 cycle 01 = 2 cycles
10 = 3 cycles 11 = 4 cycles

[3:3] CAS pre-charge time (tCP) (note)

0 = 1 cycle 1 = 2 cycles

[6:4] Reserved
These bits default value is 000. But, you must set to 001.

[7] RAS to CAS delay (tRC or tRCD)
0 = 1 cycle 1 = 2 cycles

[9:8] RAS pre-charge time (tRP)
00 = 1 cycle 01 = 2 cycles
10 = 3 cycles 11 = 4 cycles

[19:10] DRAM bank # base pointer
This value indicates the start address of DRAM bank #. The start address is
calculated as RAM bank # base pointer << 16

[29:20] DRAM bank # Next pointer
This value is the current bank end address << 16 + 1

[31:30] Number of column address bits in DRAM bank # (CAN)
00 = 8 bits 01 = 9 bits
10 = 10 bits 11 = 11 bits

NOTE: In SDRAM mode, this bit affect SDRAM cycle.
 tCS value [1] : 0 = 1 cycle
 1 = 2 cycle

DRAMCON#

SYSTEM MANAGER KS32C50100 RISC MICROCONTROLLER

4-32

Figure 4-23 EDO/FP DRAM Bank Read Timing (Page Mode)

MCLKO

nRAS

tRP

nOE

tNDOEtNDOE

nCAS

Address Row Address Column Address Column Address

Data(R) EDO

Fetch time
(normal DRAM)

Fetch time
(EDO DRAM)

tRC tCS tCP tCS

tNRASf tNRASr

tNCASf tNCASr tNCASr

tADDRh

tWDDh

tADDRd

KS32C50100 RISC MICROCONTROLLER SYSTEM MANAGER

4-33

Figure 4-24 EDO/FP DRAM Bank Write Timing (Page Mode)

MCLKO

nRAS

tRP

nDWE

nCAS

Address Row Address Column Address Column Address

Data(W)

tRC tCS tCP tCS

tNRASf tNRASr

tNCASwf tNCASwr tNCASwr

tADDRhtNDWE tNDWE

tWDDd tWDDh

tADDRd

SYSTEM MANAGER KS32C50100 RISC MICROCONTROLLER

4-34

Figure 4-25 SDRAM Power-up Sequence

Mode
Register Set

(MRS)

nSDCAS

BA

MCLKO

CKE

nSDRAS

High level is necessary

Key

nSDCS

A10/AP

nDWE

DQM

RFU

A9

0

TM CAS Latency BT Burst Length

A8 A7 A6 A5 A4 A3 A2 A1 A0

0 0 0 1 0 0 0 0 0

Precharge
(all banks)

Auto
Refresh

Auto
Refresh

ADDR

// // // //

200us

KS32C50100 RISC MICROCONTROLLER SYSTEM MANAGER

4-35

Figure 4-26 Non-burst, Read-Write-Read Cycles @CAS Latency = 2, Burst Length = 1

nSDCAS

tRP

MCLKO

CKE

nSDRAS

nSDCS

nDWE

DATA

Precharge
(all banks)

Read Fetch

1 2 3 4 5 6 7 8 9 10 11 12 13

tRCD

ADDR Row Col0 Col1 Col2

Rd Wd Rd

Write Read FetchROW
active

Note 1

Note 2 Note 3nWBE/
DQM

Note 1 : There is minimum 1 cycle gap between data-in and data-out of
 SDRAM to prevent bus confliction.
Note 2 : All DQM signals go to zero.
Note 3 : Only valid signals go to zero.

SYSTEM MANAGER KS32C50100 RISC MICROCONTROLLER

4-36

DRAM INTERFACE FEATURES

The KS32C50100 provides a fully programmable external DRAM interface. You can easily modify the
characteristics of this interface by manipulating the corresponding DRAM control registers. Programmable features
include

• External data bus width

• Control fast page or EDO mode by DRAMCON[0]

• Select fast page/EDO mode or SDRAM mode by SYSCFG

• Number of access cycles for each DRAM bank, and

• CAS strobe time, CAS precharge time, RAS to CAS delay, RAS pre-charge time

The refresh and external I/O control register, REFEXTCON, controls DRAM refresh operations and external I/O
bank accesses. The KS32C50100 eliminates the need for an external refresh signal by automatically issuing an
internal CAS-before-RAS refresh or auto-refresh control signal.

The KS32C50100 generates row and column addresses for DRAM accesses with 23-bit internal address bus. It
also supports symmetric or asymmetric DRAM addressing by changing the number of coulumn address lines from
8 to 11.

EDO Mode DRAM Accesses

The timing for accessing a DRAM in EDO mode is comparable to DRAM accesses in normal fast page mode.
However, in EDO mode, the KS32C50100 CPU fetches data (when read) one-half clock later than in normal fast
page mode. This is possible because EDO mode can validate the data even if CAS goes High when RAS is Low. In
this way, gives the CPU sufficient time to access and latch the data so that the overall memory access cycle time
can be reduced.

Synchronous DRAM Accesses

Synchronous DRAM interface features are as follows:

• MRS cycle with address key program
— CAS latency (2 cycles)
— Burst length (1)
— Burst type (Sequential)

• Auto refresh

• SDRAM interface signal: CKE, SDCLK, nSDCS[3:0], nSDCAS, nSDRAS, DQM[3:0], ADDR[10]/AP

The address bits except row and column address among the 23-bit internal address bus can be assigned to Bank
select address(BA) for SDRAM.

See the SDRAM interface example, Figure 4-27.

KS32C50100 RISC MICROCONTROLLER SYSTEM MANAGER

4-37

Available Samsung SDRAM Components for KS32C50100

Components

KS32C50100 can support below SDRAM configuration for 1 bank.

• 2MBytes to 1 bank → 1 × (2Mx32 with 4banks)

• 4MBytes to 1 bank → 2 × (1Mx16 with 2banks)

• 8MBytes to 1 bank → 4 × (2Mx8 with 2banks)

• 16MBytes to 1bank → 2 × (4Mx16 with 2/4banks)

• 32MBytes to 1bank → 4 × (8Mx8 with 2/4banks)

You can select any combination among them.
SDRAM components which are available is as follow.
x4 SDRAM whose capacity is larger than 16M SDRAM is not supported at KS32C50100.

• 16M bit SDRAM
— 4Mx4 with 2banks (Supported) RA0 ~RA10, CA0 ~ CA9
— 2Mx8 with 2banks (Supported) RA0 ~ RA10, CA0 ~ CA8
— 1Mx16 with 2banks (Supported) RA0 ~ RA10, CA0 ~ CA7

• 64M bit 2Banks SDRAM
— 16Mx4 with 2banks(not supported) RA0 ~ RA12, CA0 ~ CA9
— 8Mx8 with 2banks (supported) RA0 ~ RA12, CA0 ~ CA8
— 4Mx16 with 2banks(supported) RA0 ~ RA12, CA0 ~ CA7

• 64M bit 4Banks SDRAM
— 16Mx4 with 4banks (not supported) RA0 ~ RA11, CA0 ~ CA9
— 8Mx8 with 4banks (supported) RA0 ~ RA11, CA0 ~ CA8
— 4Mx16 with 4banks (supported) RA0 ~ RA11, CA0 ~ CA7

• 2Mx32 (64M bit) SDRAM
— 2Mx32 with 4banks(supported) RA0 ~ RA10, CA0 ~ CA7

100 Pin DIMM Module SDRAM

• KMM330S104CT
— 1Mx32 based on 2 1Mx16 2banks componentsRA0 ~ RA10, CA0 ~ CA7

• KMM330S204CT
— 2Mx32 based on 4 1Mx16 2banks componentsRA0 ~ RA10, CA0 ~ CA7

• KMM330S2424CT
— 4Mx32 based on 2 4Mx16 4banks componets RA0 ~ RA11, CA0 ~ CA7

• KMM330S824CT
— 8Mx32 based on 4 4Mx16 4banks componets RA0 ~ RA11, CA0 ~ CA7

SYSTEM MANAGER KS32C50100 RISC MICROCONTROLLER

4-38

Relationship Between CAN (Column Address Number) and Address MUX Output for SDRAM

Note1: A22 to A0 depends on external bus width. In case of x32 memory, A[22:0] is word address.

Note2: A[22:0] consists of: Bank Address + Valid Row Address + Valid Column Address

DRAM BANK SPACE

The KS32C50100 DRAM interface supports four DRAM banks. Each bank can have a different configuration. You
use the DRAM control registers, DRAMCON0-DRAMCON3, to program the DRAM access cycles and memory
bank locations.

Each DRAM control register has two 10-bit address pointers, one base pointer and one next pointer, to denote the
start and end address of each DRAM bank. The 10-bit pointer values are mapped to the address [25:16]. This gives
each bank address an offset value of 64 K bytes (16 bits). The next pointer value will be the DRAM bank's end
address + 1.

System Initialization Values

When the system is initialized, the four DRAM control registers are initialized to 00000000H, disabling all external
DRAMs.

Table 4-11 CAN and Address MUX Output

CAN
Output
timing

External Address Pins (ADDR)
[21:15] 14 13 12 11 10 9 8 7 - 0

00

Column
address

x A22 A21 A20 A19
A10/
AP

A9 A8 A7 - A0

Row
address

x A22 A21 A20 A19 A18 A17 A16 A15 - A8

01

Column
address

x 0 A22 A21 A20
A10/
AP

A9 A8 A7 - A0

Row
address

x 0 A22 A21 A20 A19 A18 A17 A16 - A9

10

Column
address

x 0 0 A22 A21
A10/
AP

A9 A8 A7 - A0

Row
address

x 0 0 A22 A21 A20 A19 A18 A17 - A10

KS32C50100 RISC MICROCONTROLLER SYSTEM MANAGER

4-39

Figure 4-27 SDRAM Application Example
(4 components have the following features : 1M ×× 8bit ×× 2Banks 9bit column, 11bit-row address)

CLK D3
CS
CKE
RAS
CAS
WE
Addr
DQM
DQ0-7

CLK D2
CS
CKE
RAS
CAS
WE

Addr
DQM
DQ0-7

CLK D1
CS
CKE
RAS
CAS
WE
Addr
DQM
DQ0-7

CLK D0
CS
CKE
RAS
CAS
WE
Addr
DQM
DQ0-7

KS32C50100

MCLKO/SDCLK

nRAS/nSDCS0,1, 2,3

nCAS0/nSDRAS
nCAS1/nSDCAS
nDWE

ADDR[10:0]

nWBE[3:0]/DQM[3:0]

XDATA[31:0]

ADDR [11]
 BA0 All

SDRAMs’
BA pin

nCAS2/CKE

<3>

<2>

<1>

<0>

SYSTEM MANAGER KS32C50100 RISC MICROCONTROLLER

4-40

DRAM REFRESH AND EXTERNAL I/O CONTROL REGISTER

The KS32C50100 DRAM interface supports the CAS-before-RAS (CBR) refresh mode for EDO/FP DRAM and
auto-refresh for SDRAM. Settings in the DRAM refresh and external I/O control register, REFEXTCON, control
DRAM refresh mode, refresh timings, and refresh intervals. REFEXTCON also contains the 10-bit base pointer
value for the external I/O bank 0.

NOTE

Whenever the KS32C50100 CPU writes one of system manager registers, the validity of special
register field (that is, the VSF bit) is automatically cleared and the external bus is disabled. To
reactivate external bus, you must set the VSF bit to "1" using a STMIA instruction. It is
recommended that programmers always use STMIA instructions to write the 10 system manager
special registers. The instruction used to set the VSF bit should always be the last instruction in the
register write sequence.

KS32C50100 RISC MICROCONTROLLER SYSTEM MANAGER

4-41

Figure 4-28 DRAM Refresh and External I/O Control Register (REFEXTCON)

[9:0] External I/O bank 0 base pointer (base address)
This value is the start address of external I/O bank 0. Start address is defined as
External I/O bank 0 base pointer << 16. The end address of external I/O bank 0 is
defined as External I/O bank 0 base pointer >> 16 + 16 K bytes - 1.

NOTE: All external I/O banks are located in the continuous address space which
begins at the start address of external I/O bank 0. The size of each external I/O
bank is fixed at 16 K bytes. The start and end addresses of the other three external
I/O banks can be derived from the external I/O bank 0 base pointer value.

[15] Validity of special register field (VSF)
0 = Not accessible to memory bank
1 = Accessible to memory bank

[16] Refresh enable (REN)
0 = Disable DRAM refresh
1 = Enable DRAM refresh

[19:17] CAS hold time (tCHR)
 ROW Cycle Time (tRC) (note1)

000 = 1 cycle 001 = 2 cycles
010 = 3 cycles 011 = 4 cycles
100 = 5 cycles 101 = Not used (6 cycles)
110 = Not used 111 = Not used

[20] CAS setup time (tCSR) (note2)

0 = 1 cycle
1 = 2 cycles

[31:21] Refresh count value (duration)
The refresh period is calculated as (2 11 - Value + 1) / f MCLK

31 020 19 910

t
C
S
R

t
C
H
R

R
E
N

21 18 17 16 15 14 13 12 11

Refresh Count Value
V
S
F

External I/O Bank 0
Base Pointer

0 0 0 0 0REFEXTCON

NOTES:
1. In EDO/normal DRAM mode, CAS hold time can be programmed upto 5 cycles.

 But in SDRAM mode, this bit fields function are defined as ROW Cycle

 Time (tRC) and can be programmed upto 6 cycles.

2. In SDRAM mode, this bit field is reserved.

SYSTEM MANAGER KS32C50100 RISC MICROCONTROLLER

4-42

Figure 4-29 External I/O Bank Address Map

External I/O Bank 3

External I/O Bank 2

External I/O Bank 1

External I/O Bank 0 4 K words (Fixed for all I/O banks)

Continuous 16 K word address
space for 4 external I/O banks

End address of
external I/O bank 0

Start address of
external I/O bank 0

Start address of external I/O bank n =
(External I/O bank 0 base pointer << 16) + 16 K bytes * n

End address of external I/O bank n =
(External I/O bank 0 base pointer << 16) + 16 K bytes * (n+1) - 1

where, n is an external I/O bank number (= 0, 1, 2, 3)

KS32C50100 RISC MICROCONTROLLER SYSTEM MANAGER

4-43

Figure 4-30 EDO/FP DRAM Refresh Timing

MCLKO

nRAS

nCAS

Address

nDWE/
nOE

Data

tCSR tCHR

SYSTEM MANAGER KS32C50100 RISC MICROCONTROLLER

4-44

NOTE : At auto-refresh cycle, DRAM bank0's tRP bit field is used as RAS precharge time parameter.

Figure 4-31 Auto Refresh Cycle of SDRAM

nSDCAS

tRP

MCLKO

CKE

nSDRAS

nSDCS

nDWE

Precharge
(All banks)

Auto
Refresh

tRC

New
Command

High level is necessary

KS32C50100 RISC MICROCONTROLLER UNIFIED INSTRUCTION/DATA CACHE

5-1

5 UNIFIED INSTRUCTION/DATA CACHE

The KS32C50100 CPU has a unified internal 8-Kbyte instruction/data cache. Using cache control register settings,
you can use part or all of this cache as internal SRAM. To raise the cache hit ratio, the cache is configured using
two-way, set-associative addressing. The replacement algorithm is pseudo-LRU (Least Recently Used).

The cache line size is four words (16 bytes). When a miss occurs, four words must be fetched consecutively from
external memory. Typically, RISC processors take advantage of unified instruction/data caches to improve
performance. Without an instruction cache, bottlenecks that occur during instruction fetches from external memory
may seriously degrade performance.

CACHE CONFIGURATION

The KS32C50100’s 4-Kbyte, two-way set-associative instruction/data cache uses a 15-bit tag address for each set.
The CS bits (a 2-bit value) in tag memory stores information for cache replacement. When a reset occurs, the CS
value is "00", indicating that the contents of cache set 0 and cache set 1 are invalid. When the first cache fill
operation occurs while exiting from the reset operation, the CS value becomes "01" at the specified line to indicate
that only set 0 is valid. When the subsequent cache fill occurs, the CS value becomes "11" at the specified line,
indicating that the contents of both set 0 and set 1 are valid.

UNIFIED INSTRUCTION/DATA CACHE KS32C50100 RISC MICROCONTROLLER

5-2

Figure 5-1 Memory Configuration for 4-Kbyte (or 8-Kbyte) Cache

31 25 10 9 4 3 2 1 0

Tag Address (15-bit)

......
......

Instr3 Instr2 Instr1 Instr0

32-bit

Set ICache 1 = 4 instruction/data (128-bit)

......
......

Instr3 Instr2 Instr1 Instr0

32-bit

Set ICache 0 = 4 instruction/data (128-bit)

7 (8)-bits 2-bits

7 (8)-bits

Height = 128
(256)

32

3232

(Set 0 Hit)
(Set 1 Hit)

2

7(8)

2

30 29 28 27 26

100: Set 0 direct access
101: Set 1 direct access
110: TAG direct access

Switch

CS Set 1 Tag Set 0 Tag

......
......

15 (14) 15 (14)

15 (14)

Tag RAM (32-bit)

Height = 128 (256)
2

Decoder

Enable non-cacheable control

KS32C50100 RISC MICROCONTROLLER UNIFIED INSTRUCTION/DATA CACHE

5-3

CACHE REPLACE OPERATIONS

When the contents of two sets are valid and when the content of the cache must be replaced due to a cache miss,
the CS value becomes "10" at specified line. This indicates that the content of set 0 (S0) was replaced. When CS is
"10" and when another replacement is required due to a cache miss, the content of set 1 (S1) is replaced by
changing the CS value to "01".

To summarize, at its normal steady state, the CS value is changed from "01" or "10" to "10" or "01". This
modification provides the information necessary to implement a 2-bit pseudo-LRU (Least Recently Used) cache
replacement policy.

Figure 5-2 Cache Replace Algorithm State Diagram

Miss

NVALID: 00

Reset(/)

Miss
Miss or hit 1

Miss or hit 0 Hit 0

AV-S0D : 10AV-S1D: 11

Hit 1

S0 only: 01

Hit

; Set 0, set 1 all invalid

; Cache miss occurs

; Set 0 = valid, set 1 = invalid
 Status does not change on hit

; Read miss

; AV_S1D = All valid and set 1 is dirty.
 Dirty means to access just before;

status does not change on hit.

; AV_S0D = All valid and set 0 is dirty.

UNIFIED INSTRUCTION/DATA CACHE KS32C50100 RISC MICROCONTROLLER

5-4

CACHE DISABLE/ENABLE

To disable the cache disable entirely following a system reset, you must set SYSCFG[1] to "0". By setting the cache
mode bits, SYSCFG[5:4], you can specify a cache size of 0, 4, or 8 K bytes. If you do not need the entire 8-Kbyte
area for cache, you can use the remaining area as normal internal SRAM. The start address of the internal SRAM
area is defined by writing an appropriate value to SYSCFG[15:6].

CACHE FLUSH OPERATION

To flush cache lines, you must write a zero to Tag memory bits 31 and 30, respectively.

The 4-Kbyte set 0 RAM area, 4-Kbyte set 1 RAM area, and the 1-Kbyte Tag RAM area (total 256 words) can be
accessed from locations 0x10000000H, 0x10800000H, and 0x11000000H, respectively. You can do this
independently of the current cache mode bit and cache enable bit settings.

Tag RAM is normally cleared by hardware following a power-on reset. However, if you change the cache or
memory bank configuration when the cache is being enabled, you will have to clear the Tag RAM area using
application software.

NON-CACHEABLE AREA CONTROL BIT

Although the cache affects the entire system memory, it is sometimes necessary to define non-cacheable areas
when the consistency of data stored in memory and the cache must be ensured. To support this, the KS32C50100
provides a non-cacheable area control bit in the address field, ADDR[26].

If ADDR[26] in the ROM/SRAM, flash memory, DRAM, or external I/O bank's access address is "0", then the
accessed data is cacheable. If the ADDR[26] value is "1", the accessed data is non-cacheable.

NOTE

A SWAP command must be used within a non-casheable area.

Figure 5-3 Non-Cacheable Area Control

Cacheable area
000_0000

000_FFFF

002_0000

Non-cacheable
 area

401_FFFF

Non-cacheable area

401_0000

NOTE: The non-cacheable area has the same space in memory as the
 cacheable area. To access the non-cacheable area, you can
 change the address of the space in memory using non-cacheable
 control bit.

Cacheable area

Cacheable area

400_0000000_0000

7FF_FFFF
3FF_FFFF

16 M word

3FF_FFFF

KS32C50100 RISC MICROCONTROLLER I2C BUS CONTROLLER

6-1

6 I2C BUS CONTROLLER

The KS32C50100’s internal IC bus (I2C-bus) controller has the following important features:

• It requires only two bus lines, a serial data line (SDA) and a serial clock line (SCL). When the I2C-bus is free,
both lines are High level.

• Each device that is connected to the bus is software-addressable by a single master using a unique address.
Slave relationships on the bus are constant. The bus master can be either a master-transmitter or a master-
receiver. The I2C bus controller supports only single master mode.

• It supports 8-bit, bi-directional, serial data transfers.

• The number of ICs that you can connect to the same I2C-bus is limited only by the maximum bus capacitance
of 400 pF.

Figure 6-1 shows a block diagram of the KS32C50100 I2C-bus controller.

Figure 6-1 I2C-Bus Block Diagram

SDA

SCL SYSTEM CLOCK (f MCLK)

PRESCALER REGISTER (IICPS)

CONTROL STATUS REGISTER (IICCON)

0 BUSY
CON
D1

CON
D0

ACK LRB IEN BF

DATA
CONTROL

SHIFT BUFFER REGISTER (IICBUF)

SCL
CONTROL

SERIAL
CLOCK

PRESCALER

16

I2C BUS CONTROLLER KS32C50100 RISC MICROCONTROLLER

6-2

FUNCTIONAL DESCRIPTION

The KS32C50100 I2C bus controller is the master of the serial I2C-bus. Using a prescaler register, you can program
the serial clock frequency that is supplied to the I2C bus controller. The serial clock frequency is calculated as
follows:

MCLK / (16 × (prescaler register value + 1) + 3).

To initialize the serial I2C-bus, the programmer sends a Start code by writing "01" to bits [5:4]of the control status
register, IICCON. The bus controller then sends the 7-bit slave address and a read/write control bit through shift
buffer register. The receiver sends an acknowledge by pulling the SDA line from High to Low during a master SCL
pulse.

To continue the data write operation, you must set the BF bit in the control status register and then write the data to
the Shift buffer register. Whenever the shift buffer register is read or written, the BF bit is cleared automatically. For
the consecutive read/write operations, you must set the ACK bit in the control status register.

For read operations, you can read the data after you have set the BF bit in the control status register. To signal the
end of the read operation, you can reset the ACK bit to inform the receiver/transmitter when the last byte is to be
written/read.

Following a read/write operation, you set IICCON[5:4] to "10" to generate a Stop code. If you want to complete
another data transfer before issuing the Stop code, you can send the Start code using the Repeat Start command
(with IICCON[5:4] = "11"). When the slave address and read/write control bit have been sent, and when the receive
acknowledge has been issued to control SCL timing, the data transfer is initiated.

KS32C50100 RISC MICROCONTROLLER I2C BUS CONTROLLER

6-3

I2C-BUS CONCEPTS

Basic Operation

The I2C-bus has two wires, a serial data line (SDL) and a serial clock line (SCL), to carry information between the
ICs connected to the bus. Each IC is recognized by a unique address and can operate as either a transmitter or
receiver, depending on the function of the specific ICs.

The I2C-bus is a multi-master bus. This means that more than one IC which is capable of controlling the bus can be
connected to it. Data transfers proceed as follows:

Case 1: A master IC wants to send data to another IC (slave):

1. Master addresses slave

2. Master sends data to the slave (master is transmitter, slave is receiver)

3. Master terminates the data transfer

Case 2: A master IC wants to receive information from another IC (slave):

1. Master addresses slave

2. Master receives data from the slave (master is receiver, slave is transmitter)

3. Master terminates the data transfer

Even in Case 2, the master IC must generate the timing signals and terminate the data transfer.

If two or more masters try to put information simultaneously onto the bus, the first master to issue a "1" when the
other issues a "0" will lose the bus arbitration. The clock signals used for arbitration are a synchronized
combination of the clocks generated by the bus masters using the wired-AND connection to the SCL line.

The master IC is always responsible for generating the clock signals on the I2C-bus. Bus clock signals from a
master can only be altered by 1) a slow slave IC which "stretches" the signal by temporarily holding the clock line
Low, or 2) by another master IC during arbitration.

General Characteristics

Both SDA and SCL are bi-directional lines which are connected to a positive supply voltage through a pull-up
resistor.

When the I2C-bus is free, the SDA and SCL lines are both High level. The output stages of I2C interfaces
connected to the bus have an open-drain or open-collector to perform the wired-AND function. Data on the I2C-bus
can be transferred at a rate up to 100 Kbits/s. The number of interfaces that can be connected to the bus is solely
dependent on the limiting bus capacitance of 400 pF.

Bit Transfers

Due to the variety of different ICs (CMOS, NMOS, and I2L, for example) which can be connected to the I2C-bus,
the levels of logic zero (Low) and logic one (High) are not fixed and depend on the associated level of VDD. One
clock pulse is generated for each data bit that is transferred.

I2C BUS CONTROLLER KS32C50100 RISC MICROCONTROLLER

6-4

Data Validity

The data on the SDA line must be stable during the High period of the clock. The High or Low state of the data line
can only change when clock signal on the SCL line is Low.

Start and Stop Conditions

Start and Stop conditions are always generated by the master. The bus is considered to be busy after the Start
condition is generated. The bus is considered to be free again when a brief time interval has elapsed following the
Stop condition.

• Start condition: a High-to-Low transition of the SDA line while SCL is High.

• Stop condition: a Low-to-High transition of the SDA line while SCL is High.

Figure 6-2 Start and Stop Conditions

SCL

SDA

Start
Condition

Address R/W ACK DATA ACK DATA ACK Stop
Condition

S P

1−7 8 9 1−7 8 9 1−7 8 9

KS32C50100 RISC MICROCONTROLLER I2C BUS CONTROLLER

6-5

DATA TRANSFER OPERATIONS

Data Byte Format

Every data byte that is put on the SDA line must be 8 bits long. The number of bytes that can be transmitted per
transfer is unlimited. Each byte must be followed by an acknowledge bit. Data is transferred MSB-first.

If the receiver cannot receive another complete byte of data until it has performed some other function (such as
servicing an internal interrupt), it can hold the clock line SCL Low to force the transmitter into a wait state. The data
transfer then continues when the receiver is ready for another byte of data and releases the SCL line.

Acknowledge Procedure

Data transfer with acknowledge is obligatory. The acknowledge-related clock pulses must be generated by the bus
master. The transmitter releases the SDA line (High) during the acknowledge clock pulse.

The receiver must pull down the SDA line during the acknowledge pulse so that it remains stable Low during the
High period of this clock pulse.

Usually, a receiver which has been addressed is obliged to generate an acknowledge after each byte is received.
When a slave receiver does not acknowledge from the slave address, the slave must leave the data line High. The
master can then generate a Stop condition to abort the transfer.

If a slave receiver acknowledges the slave address, but later in the transfer cannot receive any more data bytes,
the master must again abort the transfer. This is indicated by the slave not generating the acknowledge on the first
byte to follow. The slave leaves the data line High and the master generates the Stop condition.

If a master receiver is involved in a transfer, it must signal the end of data to the slave transmitter by not generating
an acknowledge on the last byte that was clocked out of the slave. The slave transmitter must then release the data
line to let the master generate the Stop condition.

I2C BUS CONTROLLER KS32C50100 RISC MICROCONTROLLER

6-6

Data Transfer Format

Data transfers uses the format shown in Figure 6-3. After the Start condition has been generated, a 7-bit slave
address is sent. The eighth bit is a data direction bit (R/W). A "0" direction bit indicates a transmission (Write) and a
"1" indicates a request for data (Read).

A data transfer is always terminated by a Stop condition which is generated by the master. However, if a master still
wishes to communicate on the bus, it can generate another Start condition and address another slave without first
generating a Stop condition. This feature supports the use of various combinations of read/write formats for data
transfers.

Figure 6-3 Data Transfer Format

Multiple Byte Slave Receiver Format:

S SLAVE ADDRESS W DATA 1 (8 bits) DATA 2 DATA M PA A A A

Multiple Byte Slave Transmitter Format

S SLAVE ADDRESS R DATA 1 (8 bits) DATA 2 DATA M PA A A A

NOTE: S (Start)
W (Write; bit value is 0)
R (Read; bit value is 1)
P (Stop),
A (Acknowledge; The ACK is first sent to the slave. Afterwards, the direction
depends on the data transfer direction. In other words, if the master reads the
data, it sends the ACK.)

KS32C50100 RISC MICROCONTROLLER I2C BUS CONTROLLER

6-7

I2C-BUS ADDRESSING

The addressing procedure for the I2C-bus is such that the first byte after the Start condition determines which slave
the master will select. Usually, this first byte immediately follows the Start procedure.

An exception is the "general call" address which can address all ICs simultaneously. When this address is used, all
ICs should, in theory, respond with an acknowledge. However, ICs can also be made to ignore this address. The
second byte of the general call address then defines the action to be taken.

Definition of Bits in the First Data Byte

The first seven bits of the first data byte make up the slave address. The eighth bit is the LSB, or direction bit, which
determines the direction (R/W) of the message.

When an address is sent, each IC on the bus compares the first 7 bits received following Start condition with its
own address. If the addresses match, the IC considers itself addressed by the master as a slave receiver or a slave
transmitter.

General Call Address

The general call address can be used to address every IC that connected to the I2C-bus. However, if an IC does
not need any of the data supplied within the general call structure, it can ignore this address by not acknowledging
it.

If an IC does require data from a general call address, it can then acknowledge this address and behave as a slave
receiver. The second and following bytes will be acknowledged by every slave receiver capable of handling this
data. A slave which cannot process one of these bytes must ignore it by not acknowledging. The meaning of the
general call address is always specified in the second byte.

Start Byte

Every data transfer is preceded by a start procedure:

• A Start condition, S

• A start byte, "00000001"

• An acknowledge (ACK) clock pulse, and

• A repeated Start condition, Sr

After the Start condition (S) has been transmitted by a master which requires bus access, the start byte
("00000001") is transmitted. Another IC can therefore sample the SDA line at a low sampling rate until one of the
seven zeros in the start byte is detected. After it detects this Low level on the SDA line, the IC can switch to a
higher sampling rate to find the repeated Start condition (Sr) which is then used for synchronization. (A hardware
receiver will reset upon receipt of the repeated Start condition (Sr) and will therefore ignore the start byte.)

An acknowledge-related clock pulse is generated after the start byte. This is done only to conform with the byte
handling format used on the bus. No IC is allowed to acknowledge the Start byte.

I2C BUS CONTROLLER KS32C50100 RISC MICROCONTROLLER

6-8

I2C BUS SPECIAL REGISTERS

The I2C-bus controller has three special registers: a control status register (IICCON), a prescaler register (IICPS),
and a shift buffer register (IICBUF).

Control Status Register (IICCON)

The control status register for the I2C-bus, IICCON, is described in Table 6-2.

Table 6-1 Control Statur Register (IICCON)

Register Offset
Address

R/W Description Reset
Value

IICCON 0xf000 R/W Control status register 0x00000000

Table 6-2 IICCON Register Description

Bit Number Bit Name Description

[0] Buffer flag (BF) The BF bit is set when the buffer is empty in transmit mode or when
the buffer is full in receive mode. To clear the buffer, you write a "0"
to this bit. The BF bit is cleared automatically whenever the IICBUF
register is written or read. If you set BF bit to one, the I2C -bus is
stopped. To activate I2C-bus, you should clear the BF bit to zero.

[1] Interrupt enable (IEN) Setting the interrupt enable bit to "1" enables the I2C-bus interrupt.

[2] Last received bit (LRB) The LRB bit is read only. It holds the value of the last received bit

over the I2C-bus. Normally, this bit will be the value of the slave
acknowledgement. To check for slave acknowledgement, you test
the LRB.

[3] Acknowledge enable
(ACK)

The ACK bit is normally set to "1". This causes the I2C-bus
controller to send an acknowledge automatically after each byte.

This bit must be "0" when the I2C-bus controller is operating in
receiver mode and requires no further data to be received from the

slave transmitter. This causes a negative acknowledge on the I2C-
bus, which halts further reception from the slave device.

[5:4] COND1, COND0 These bits control the generation of the Start, Stop, and repeat Start
conditions: "00" = no effect, "01" = Start, "10" = Stop, and "11" =
repeat Start.

[6] Bus busy (BUSY) This bit is a read-only flag that indicates when the I2C-bus is in use.
A "1" indicates that the bus is busy. This bit is set or cleared by a
Start or Stop condition, respectively.

[7] Reset If "1" is written to the Reset bit, the I2C-bus controller is reset to its
initial state.

[31:8] Reserved Not applicable.

KS32C50100 RISC MICROCONTROLLER I2C BUS CONTROLLER

6-9

 Figure 6-4. I2C Control Status Register

31 6 4 3 2 1 08 7

R
E
S
E
T

RESERVED
B
F

B
U
S
Y

C
O
N
D
1

C
O
N
D
0

A
C
K

L
R
B

I
E
N

5

[0] Buffer Flag (BF)
0 = Automatically cleared when the IICBUF register is written
or read. To manually clear the BF, write 0.
1 = Automatically set when the buffer is empty in transmit
mode or when the buffer is full in receive mode.

[1] Interrupt enable (IEN)
0 = Disable
1 = Enable; an interrupt is generated if the BF bit is 1.

[2] Last received bit (LRB)
Use this read-only status bit to check for ACK signals from the
receiver (slave), or to monitor SDA operation of SDA when
writing 11 to IICCON[5:4] for repeated starts.
0 = The most recent SDA is Low. (ACK is received)
1 = The most recent SDA is High. (ACK not received)

[3] Acknowledge enable (ACK)
Controls generation of an ACK signal in receive mode.
0 = Do not generate an ACK at 9th SCL (No more received
data is required from the slave)
1 = Generate an ACK signal at 9th SCL.

[5:4] COND 1 and COND 0
Generate a bus control condition such as Start or Stop.
00 = No effect.
01 = Generate Start condition.
10 = Generate Stop condition.
11 = SCL will be released to High level to generate repeated
Start conditions.

[6] Bus busy (BUSY)
Data transmission is in progress on the IIC-bus.
0 = Bus is currently not in use. (Not busy)
1 = Bus is in use. (Busy)

[7] Reset
0 = Normal
1 = Reset the IIC-bus controller.

[31:8] Reserved

I2C BUS CONTROLLER KS32C50100 RISC MICROCONTROLLER

6-10

Shift Buffer Register (IICBUF)

The shift buffer register for the I2C-bus is described in Table 6-4.

Prescaler Register (IICPS)

The prescaler register for the I2C-bus is described in Table 6-6.

Table 6-3 IICBUF Register

Register Offset
Address

R/W Description Reset
Value

IICBUF 0xf004 R/W Shift buffer register Undefined

Table 6-4 IICBUF Register Description

Bit Number Bit Name Description

[7:0] Data This data field acts as serial shift register and read buffer for

interfacing to the I2C-bus. All read and write operations to/from the

I2C-bus are done via this register. The IICBUF register is a
combination of a shift register and a data buffer. 8-bit parallel data is
always written to the shift register, and read from the data buffer.

I2C-bus data is always shifted in or out of the shift register.

[31:8] Reserved Not applicable.

Table 6-5 IICPS Register

Register Offset
Register

R/W Description Reset
Value

IICPS 0xf008 R/W Prescaler register 0x00000000

Table 6-6 IICSP Register Description

Bit Number Bit Name Description

[15:0] Prescaler value This prescaler value is used to generate the serial I2C-bus clock.
The system clock is divided by (16 × (prescaler value + 1) + 3) to

make the serial I2C clock. If the prescaler value is zero, the system

clock is then divided by 19 to make the serial I2C clock.

[31:16] Reserved Not applicable.

KS32C50100 RISC MICROCONTROLLER I2C BUS CONTROLLER

6-11

Prescaler Counter Register (IICCNT)

The prescaler counter register for the I2C-bus is described in Table 6-8.

Table 6-7 IICCNT Register

Register Offset
Register

R/W Description Reset
Value

IICCNT 0xf00c R/W Prescaler counter register 0x00000000

Table 6-8 IICCNT Register Description

Bit Number Bit Name Description

[15:0] Counter value This 16-bit value is the value of the prescaler counter. It is read (in
test mode only) to check the counter's current value.

[31:16] Reserved Not applicable.

I2C BUS CONTROLLER KS32C50100 RISC MICROCONTROLLER

6-12

NOTES

KS32C50100 RISC MICROCONTROLLER ETHERNET CONTROLLER

7-1

7 ETHERNET CONTROLLER

The KS32C50100 has an Ethernet controller which operates at either 100-Mbits or 10-Mbits per second in half-
duplex or full-duplex mode. In half-duplex mode, the controller supports the IEEE 802.3 Carrier Sense Multiple
Access with Collision Detection (CSMA/CD) protocol. In full-duplex mode, it supports the IEEE 802.3 MAC Control
Layer, including the Pause operation for flow control.

The Ethernet controller’s MAC layer supports both the Media Independent Interface (MII) and the Buffered DMA
Interface (BDI). The MAC layer itself consists of the receive and the transmit blocks, a flow control block, a Content
Addressable Memory (CAM) for storing network addresses, and a number of command, status, and error counter
registers.

The MII supplies the transmit and receive clocks of 25 MHz for 100-Mbit/s operation or 2.5 MHz at the 10-Mbit/s
speed. The MII conforms to the ISO/IEC 802-3 standards for a media-independent layer which separates physical
layer issues from the MAC layer.

Figure 7-1 Ethernet System Flow Control

BDMA + SBUS I/F

BDMA Rx
Buffer

Controller

BDMA Control
and Status

Register

Bus Arbiter/
Controller

BDMA Tx
Buffer

(64 words)

BDMA Tx
Buffer

Controller

S
Y
S
T
E
M

B
U
S

BDMA Rx
Buffer

(64 words)

CAM
Contents
Memory

(32 words)

MAC Tx
Buffer

(80 bytes)

B
D
I

MAC Rx
Buffer

(16 bytes)

Address
CAM

Interface and
Comparator

MAC Control
and Status
Register

MAC Tx
Buffer

Controller

Preamble
Jam Pad

CRC
Generator

MAC Rx
Buffer

Controller

Flow
Controller

CRC
Checker

M
I
I
/

10
M
b
p
s

7
-

W
i
r
e

MAC PHYSICAL
LAYER

MDI

Station
Manager

32

32

32

32

32

32

8

8

ETHERNET CONTROLLER KS32C50100 RISC MICROCONTROLLER

7-2

FEATURES AND BENEFITS

The most important features and benefits of the KS32C50100 Ethernet controller are as follows:

• Cost-effective connection to an external RIC/Ethernet backbone

• Buffered DMA (BDMA) engine using Burst mode

• BDMA Tx/Rx buffers (256 bytes/256 bytes)

• MAC Tx/Rx FIFOs (80 bytes/16 bytes) to support re-transmit after collision without DMA request and to handle
DMA latency

• Data alignment logic

• Endian translation

• Support for old and new media (compatible with existing 10-Mbit/s networks)

• 100-Mbit/s or 10-Mbits/s operation to increase price/performance options and to support phased conversions

• Full IEEE 802.3 compatibility for existing applications

• Media Independent Interface (MII) or 7-wire interface

• Station Management (STA) signaling for external physical layer configuration and link negotiation

• On-chip CAM (21 addresses)

• Full-duplex mode for doubled bandwidth

• Pause operation hardware support for full-duplex flow control

• Long packet mode for specialized environments

• Short packet mode for fast testing

• PAD generation for ease of processing and reduced processing time

KS32C50100 RISC MICROCONTROLLER ETHERNET CONTROLLER

7-3

MAC FUNCTION BLOCKS

The major function blocks of the Ethernet controller’s MAC layer are described in Table 7-1 and Figure 7-1.

Table 7-1 MAC Function Block Descriptions

Function Block Description

Media Independent
Interface (MII)

The interface between the physical layer and the transmit and receive blocks.

Transmit block Moves the outgoing data from the transmit buffer to the MII. The transmit block
includes circuits for generating the CRC, checking parity, and generating preamble
or jam. The transmit block also has timers for back-off after collision and for the
interframe gap the follows a transmission.

Receive block Accepts incoming data from the MII and stores it in the receive FIFO. The receive
block has logic for computing and checking the CRC value, generating parity for
data from the MII, and checking minimum and maximum packet lengths. The
receive block also has a Content Addressable Memory (CAM) block which provides
for address lookup, and for acceptance or rejection for packets based on their
destination address.

Flow control block Recognizes MAC control packets and supports the Pause operation for full-duplex
links. The flow control block also supports generation of Pause packets, and
provides timers and counters for pause control.

MAC control (command)
and status registers

Controls programmable options, including the enabling or disabling of signals which
notify the system when conditions occur. The status registers hold information for
error handling software, and the error counters accumulate statistical information for
network management software.

Loop-back circuit Provides for MAC-layer testing in isolation from the MII and physical layer.

ETHERNET CONTROLLER KS32C50100 RISC MICROCONTROLLER

7-4

Figure 7-2 MAC Layer Flow Control Function Blocks

Backoff
and

Intergap
Timer

Transmit Block

MAC
Loop-back

Receive Block

TxD [3:0]

Tx_DB [7:0]

Rx_DB [7:0]

Flow Control

CRC and
CAM Filters

MAC Control and
Status Register

10
M
b
/
s

I/F

Parity Check

Pad and CRC
Generator

Preamble and
Jam Generator

MAC
Transmit

FIFO
(80 bytes)

RxD [3:0]

TxD_10

RxD_10

MDC

MDIO

MII Station
Manager

M
I
IParity

Generator

MAC
Receive

FIFO
(16 bytes)

B
D
I

KS32C50100 RISC MICROCONTROLLER ETHERNET CONTROLLER

7-5

MEDIA INDEPENDENT INTERFACE (MII)

Transmit and receive blocks both operate using the MII, which was developed by the IEEE802.3 Task Force on
100-Mbit/s Ethernet. This interface has the following characteristics:

• Media independence

• Multi-vendor points of interoperability

• Supports connection of MAC layer and physical layer entity (PHY) devices

• Capable of supporting both 100-Mbit/s and 10-Mbit/s data rates

• Data and delimiters are synchronous to clock references

• Provides independent 4-bit wide transmit and receive data paths

• Uses TTL signal levels that are compatible with common digital CMOS ASIC processes

• Supports connection of PHY layer and Station Management (STA) devices

• Provides a simple management interface

• Capable of driving a limited length of shielded cable

PHYSICAL LAYER ENTITY (PHY)

The physical layer entity, or PHY, performs all of the decoding/encoding on incoming and outgoing data. The
manner of decoding and encoding (Manchester for 10BASE-T, 4B/5B for 100BASE-X, or 8B/6T for 100BASE-T4)
does not affect the MII. The MII provides the raw data it receives, starting with the preamble and ending with the
CRC. The MII expects raw data for transmission, also starting with the preamble and ending with the CRC. The
MAC layer also generates jam data and transmits it to the PHY.

BUFFERED DMA INTERFACE (BDI)

The Buffered DMA Interface (BDI) supports read and write operations across the system bus. Two eight-bit buses
transfer data with optional parity checking. The system interface initiates data transfers. The MAC-layer controller
responds with a ready signal to accept data for transmission, or to deliver data which has been received. An end-of-
frame signal indicates the boundary between packets.

ETHERNET CONTROLLER KS32C50100 RISC MICROCONTROLLER

7-6

THE MAC TRANSMIT BLOCK

The MAC transmit block is responsible for transmitting data. It complies with the IEEE802.3 Standard for Carrier
Sense Multiple Access with Collision Detection (CSMA/CD) protocol. The MAC transmit block consists of the
following sections:

• Transmit FIFO and controllers

• Preamble and jam generators

• Pad generator

• Parallel CRC generator

• Threshold logic and counters

• Back-off and retransmit timers

• Transmit state machine

Figure 7-3 shows the MAC transmit function blocks in detail.

Figure 7-3 MAC Transmit Function Blocks

TRANSMIT
STATE

MACHINE

PARITY
CHECK

B
D
I

Tx_DB [7:0]
AND PARITY

Tx_EOF

Tx_wr#

Tx_rdy

PREAMBLE AND
JAM GENERATOR

CRC
GENERATOR

PAD
GENERATOR

READ FIFO
CONTROLLER

AND COUNTER

MAC
TRANSMIT

FIFO
(80 x 9)

WRITE FIFO
CONTROLLER
AND COUNTER

BACK OFF AND
RETRANSMIT

TIMERS

THRESHOLD
LOGIC AND
COUNTERS

M
I
I

A
N
D

10

M
B
Y
T
E

I/F

TxD [3:0]

Tx_clk

CrS

Tx_er

Tx_en

Col

9 9 8

Sys_clk DOMAIN Tx_clk DOMAIN

KS32C50100 RISC MICROCONTROLLER ETHERNET CONTROLLER

7-7

Transmit FIFO and Read/Write Controllers

The transmit FIFO has an 80-byte depth. An extra bit is associated with each data byte for parity checking. This
80-byte by 9-bit size allows the first 64 bytes of a data packet to be stored and retransmitted, without further system
involvement, in case of a collision. If no collision occurs and transmission is underway, the additional 16 bytes
handle system latency and avoid FIFO under-run.

When the system interface has set the transmit enable bit in the appropriate control register, the transmit state
machine requests data from the BDI. The system controller then fetches data from the system memory.

The FIFO controller stores data in the transmit FIFO until the threshold for transmit data is satisfied. The FIFO
controller passes a handshaking signal to the transmit state machine, indicating that sufficient data is in the FIFO to
start the transmit operation. If the FIFO is not full, the FIFO controller issues a request to the BDI for more data. The
transmit state machine continues transmitting data until it detects the end-of-frame signal, which signals the last
byte. It then appends the calculated CRC to the end of the data (unless the CRC truncate bit in the transmit control
register is set). The packet transmit bit in the status register is set, generating an interrupt if it is enabled.

The FIFO counters in this block (the Write counter) and the transmit FIFO counter of the transmit state machine
(the Read counter) coordinate their functions based on each other's count value, although they do have different
clock sources.

The FIFO controller stores parity bits with the data in the FIFO. It checks for parity and can halt transmission after
reading the data out of the FIFO and sending it for the CRC calculation. If a parity error occurs, the FIFO controller
sets an error status bit, generating an interrupt if it is enabled.

Preamble and Jam Generator

As soon as the transmit enable bit in the control register is set and there are eight bytes of data in the FIFO, the
transmit state machine starts the transmission by asserting the Tx_en signal and transmitting the preamble and the
start frame delimiter (SFD). In case there is a collision, it transmits a 32-bit string of "1s" after the preamble as a jam
pattern.

PAD Generator

If a short data packet is transmitted, the MAC will normally generate pad bytes to extend the packet to a minimum
of 64 bytes. The pad bytes consist entirely of "0" bits. A control bit is also used to suppress the generation of pad
bytes.

Parallel CRC Generator

The CRC generation of the outgoing data starts from the destination address and continues through the data field.
You can suppress CRC generation by setting the appropriate bit in the transmit control register. This is useful in
testing, for example, to force the transmission of a bad CRC in order to test error detection in the receiver. It can
also be useful in certain bridge or switch applications, where end-to-end CRC checking is desired.

ETHERNET CONTROLLER KS32C50100 RISC MICROCONTROLLER

7-8

Threshold Logic and Counters

The transmit state machine uses a counter and logic to control the threshold of when transmission can begin.
Before it attempts to initiate transmission, the MAC waits until eight bytes or a complete packet has been placed in
the transmit FIFO. This gives the DMA engine some latency without causing an underflow during transmission.

Back-Off and Retransmit Timers

When a collision is detected on the network, the transmitter block stops the transmission and starts a jamming
pattern to ensure that all the nodes detect the collision. After this, the transmitter waits for a minimum of 96 bit times
and then retransmits the data. After 16 attempts, the transmit state machine sets an error bit and generates an
interrupt, if enabled, to signify the failure to transmit a packet due to excessive collisions. It flushes the FIFO, and
the MAC is ready for the next packet.

Transmit Data Parity Checker

Data in the FIFO is odd-parity protected. When data is read for transmission, the transmit state machine checks the
parity. If a parity error is detected, the transmit data parity checker does the following:

• It stops transmission.

• It sets the parity error bit in the transmit status register.

• It generates an interrupt, if enabled.

Transmit State Machine

The transmit state machine is the central control logic for the transmit block. It controls the passing of signals, the
timers, and the posting of errors in the status registers.

KS32C50100 RISC MICROCONTROLLER ETHERNET CONTROLLER

7-9

THE MAC RECEIVE BLOCK

The MAC receive block is responsible for receiving data. It complies with the IEEE802.3 Standard for Carrier Sense
Multiple Access with Collision Detection (CSMA/CD) protocol.

After it receives a packet, the receive block checks for a number of error conditions: CRC errors, alignment errors,
and length errors. Several of these checks can be disabled by setting bits in the appropriate control registers.
Depending on the CAM status, the destination address and the receive block may reject an otherwise acceptable
packet. The MAC receive block consists of the following units:

• Receive FIFO, FIFO controller, and counters

• Receive BDI state machine

• Threshold logic and counters

• CAM block for address recognition

• Parallel CRC checker

• Receive state machine

The main components of the receive block are shown in Figure 7-4.

Figure 7-4 MAC Receive Function Blocks

B
D
I

Rx_DB [7:0]
AND PARITY

CRC
CHECKER

THRESHOLD
LOGIC AND
COUNTERS

M
I
I

A
N
D

10

M
B
Y
T
E

I/F

RxD [3:0]

Rx_clk

Rx_DV

Rx_er

9

Sys_clk DOMAIN Rx_clk DOMAIN

RECEIVE
STATE

MACHINE

SFD
DETECT

PARITY
CHECK

WRITE FIFO
CONTROLLER
AND COUNTER

WRITE FIFO
CONTROLLER
AND COUNTER

RECEIVE
BDI STATE
MACHINE

CAM
CHECKER

MAC
RECEIVE

FIFO
(16 x 10)

Rx_EOF

Rx_rdy

Rx_rd

Rx_keep

Rx_toss

CAM_load

CAM_hit#

READ
ADDRESS

WRITE ADDRESS
/WE

ETHERNET CONTROLLER KS32C50100 RISC MICROCONTROLLER

7-10

Receive FIFO Controller

The receive FIFO controller accepts data one byte at a time. Parity starts with the destination address. The receive
controller updates the counter with the number of bytes received. As the FIFO stores the data, the CAM block
checks the destination address against its stored address. If the CAM recognizes the address, the FIFO continues
receiving the packet. If the CAM block does not recognize the address and rejects the packet, the receive block
discards the packet and flushes the FIFO.

Address CAM and Address Recognition

The CAM block provides direct comparison address recognition. The CAM compares the destination address of the
received packet to stored addresses. If it finds a match, the receive state machine continues to receive the packet.
The CAM is organized to hold six-byte address entries. With its 32-word size, the CAM can store 21 address
entries.

CAM address entries 0, 1, and 18 are used to send the Pause control packet. To send a Pause control packet, you
must write the destination address to CAM0, the source address to CAM1, and length/type, opcode, and operand
to the CAM18 entry. You must them write the MAC transmit control register to set the Send Pause control bit. In
addition, CAM19 and CAM20 can be used to contruct a user-define control frame.

Parallel CRC Checker

The receive block computes a CRC across the data and the transmitted CRC, and then checks that the resulting
syndrome is valid. A parallel CRC checking scheme handles data arriving in 4-bit nibbles at 100 Mbits/s. To support
full-duplex operation, the receive and transmit blocks have independent CRC circuits.

Receive State Machine

In MII mode, the receive block receives data from the MII on the RxD[3:0] lines. This data is synchronized to Rx_clk
at 25 MHz or 2.5 MHz. In 10-Mbit/s mode, and at 10 MHz, data is received on the RxD_10 line only.

After it detects the preamble and SFD, the receive state machine arranges data in byte configurations, generates
parity, and stores the result in the receive FIFO one byte at a time. If the CAM block accepts the destination
address, the receive FIFO stores the rest of the packet. At the end of the reception, the receive block marks the
packet received by setting the appropriate bits in the receive status register. Any error in reception will reset the
FIFO and the state machine will wait for the end of the current packet. It will then idle while it is waiting for the next
preamble and SFD.

BDMA Interface Receive State Machine

The BDMA I/F receive state machine issues the Rx_rdy signal to request that the Receive FIFO have data
whenever data is present in the Receive FIFO. The last byte of the packet is signaled by asserting the Rx_EOF. In
case there are any errors during the reception, or if there is a CRC error at the end, the BDMA I/F receive state
machine asserts the Rx_toss signal to indicate that the received packet should be discarded.

KS32C50100 RISC MICROCONTROLLER ETHERNET CONTROLLER

7-11

FLOW CONTROL BLOCK

The flow control block provides for the following functions:

• Recognition of MAC control frames received by the receive block

• Transmission of MAC control frames, even if transmitter is paused

• Timers and counters for Pause operation

• Command and Status Register (CSR) interface

• Options for passing MAC Control frames through to software drivers

The receive logic in the flow control block recognizes a MAC control frame as follows:

• The length/type field must have the special value specified for MAC control frames. The destination address
must be recognized by the CAM. The frame length must be 64 bytes, including CRC. The CRC must be valid,
and the frame must contain a valid Pause opcode and operation.

• If the length/type field does not have the special value specified for MAC control frames, the MAC takes no
action, and the packet is treated as a normal packet. If the CAM does not recognize the destination address,
the MAC rejects the packet. If the packet length is not 64 bytes, including CRC, the MAC does not perform the
operation. The packet is then marked as a MAC control packet, and is passed forward to the software drivers,
if pass-through is enabled.

You can set control bits in the transmit status register to generate a Full-Duplex Pause Operation or other MAC
control functions, even if the transmitter itself is paused. Two timers and two corresponding CSR registers are used
during a Pause operation. One timer/register pair is used when a received packet causes the transmitter to pause.
The other pair is used to approximate the pause status of the other end of the link, after the transmitter sends a
Pause comand.

The Command and Status Register (CSR) interface provides control and status bits within the transmit and receive
control registers and status registers. These lets you initiate the sending of a MAC control frame, enable and
disable MAC control functions, and read the values of the flow control counters.

Control bits are provided for processing MAC control frames entirely within the controller, or for passing MAC
control frames on to the software drivers. This lets you enable flow control by default even on software drivers
which are not otherwise "flow control aware."

ETHERNET CONTROLLER KS32C50100 RISC MICROCONTROLLER

7-12

BUFFERED DMA INTERFACE

BUFFERED DMA (BDMA) CONTROL BLOCKS

The BDMA engine controls a transmit buffer and a receive buffer. The BDMA transmit buffer holds data and status
information for packets being transmitted. The BDMA receive buffer holds data and status information for packets
being received. Each FIFO has a control block which controls data being placed in, and removed from, the buffers.

Figure 7-5 BDMA Control Blocks

S
Y
S
T
E
M

B
U
S

I/F

WORD-TO-BYTE
CONVERTER

BDMA
Tx

BUFFER
(32 x 64)

Tx
CONTROL
MACHINE

Tx_clk

Tx_wr

Tx_rdy

Half_full

Rx_OVERFLOW

Rx
CONTROL
MACHINE

Rx_clk

Rx_rd

Rx_rdy

Half_empty

BDMA
Rx

BUFFER
(33 x 64)

BYTE-TO-WORD
CONVERTER

Rx BUS
REQUEST

BUS
ARBITER

ADDRESS
GENERATOR

SD [31:0]

nACK

nREQ

SA [25:0]

TARGET
ADDRESS
FOR RX

SOURCE
ADDRESS

FOR TX
Rx_WIDGET

Rx_DB [7:0]

Tx_DB [7:0]

BIG/LITTLE

Tx WIDGET
BIG/LITTLE

Tx_UNDERFLOW

Tx BUS
REQUEST

nREQ_Rx

nREQ_Tx

Half_empty

Half_full

SD [31:0]

B
D
I

B
D
M
A

I/F

(

(

−

−

TAIL Ptr

HEAD Ptr

HEAD Ptr

TAIL Ptr

DATA SWAPPER

KS32C50100 RISC MICROCONTROLLER ETHERNET CONTROLLER

7-13

The Bus Arbiter

The bus arbiter decides which of the BDMA buffer controllers, transmit (Tx) or receive (Rx), has the highest priority
for accessing the system bus. The prioritization is dynamic. The BDMA arbiter outputs a bus request signal (nREQ)
to the system manager when

• A buffer contains more words than the Rx burst size,

• An EOF (End of Frame) was saved to the buffer, or

• A buffer contains more free space than the Tx burst size.

After it receives a bus acknowlege signal (nACK) from the system manager, the BDMA bus arbitor determines the
correct bus access priority. If nREQ_Tx and nREQ_Rx were requested simultaneously, the bus arbitor decodes the
nACK signal using the following method:

switch (Half_empty, Half_full)
 {
 case 2'b01: nACK_Rx ← nACK
 case 2'b10: nACK_Tx ← nACK
 default: //case 2'b00 or 2'b11:
 if (Rx buffsize (Head – Tail) < Tx buffsize) // Rx more urgent
 nACK_Rx ← nACK
 else nACK_Tx ← nACK
 }

ETHERNET CONTROLLER KS32C50100 RISC MICROCONTROLLER

7-14

BDMA Bus Control Logic

The function blocks of the BDMA controller provide logic for controlling bus master read and write operations
across the system bus. This control logic supports the following operations:

• Burst size control, to optimize system bus utilization.

• Transmit threshold control (based on 1/8 of transmit buffer size) to match transmission latency to system bus
latency.

• Little-Endian byte swapping, to support the data transfer of Little-Endian memory usage for frame data.

• A transmit/receive alignment widget to circumvent word alignment restrictions.

In systems with an ATM LAN emulation or an MPOA interface, and in certain other systems as well, the beginning
of a packet should be placed on a byte or half-word boundary. You may not, however misalign the BDMA transfer,
as this would complicate the design of the DMA, and would degrade performance. To avoid this, you can use an
alignment widget between the BDMA buffer (word) and the MAC FIFO (byte).

In the receiver, the BDMA bus control logic inserts a programmable number of bytes (up to three) into the received
data stream while the preamble is being received. This adds some padding to the beginning of the frame. This
padding can then be used to solve alignment problems downstream, without having to use a copy of the buffer.
Because there is never more than three bytes, this feature does not degrade performance. Also, because the data
is inserted prior to the concatenation of bytes into words, it does not misalign the subsequent DMA transfer.

The length of the alignment data is read from a control register. This length value should be set by software
immediately after the MAC module is reset, and it should not be modified.

You can use a corresponding transmit alignment widget to remove data from the buffer. In the simplest
implementation, the widget discards the first "n" bytes (up to three), where "n" is the value read from the transmit
frame descriptor which configures the transmit alignment widget.

KS32C50100 RISC MICROCONTROLLER ETHERNET CONTROLLER

7-15

MEMORY DATA STRUCTURES

The flow control 100-/10-Mbit/s ethernet controller uses three data structures to exchange control information and
data:

• Transmit frame descriptor

• Receive frame descriptor

• Frame data buffer

Each frame descriptor has the following elements:

• Frame start address

• Ownership bit

• Control field for transmitter

• Status field

• Frame length

• Next frame descriptor pointer

Figure 7-6 shows data structures of the transmit and receive frame descriptors.

ETHERNET CONTROLLER KS32C50100 RISC MICROCONTROLLER

7-16

DATA FRAMES

The ownership bit in the MSB of the frame start address controls the owner of the descriptor. When the ownership
bit is "1", the BDMA controller owns the descriptor. When this bit is "0", the CPU owns the descriptor. The owner of
the descriptor always owns the associated data frame. (The descriptor's frame start address field always points to
this frame.)

As it receives the data frame, software sets the maximum frame size register in the BDMA block to the system
frame buffer size (typically, to 1536 or 2048). Software also sets the Rx frame descriptor start address register to
point to a chain of frame descriptors, all of which have their ownership bit set.

The BDMA engine can then be started to set the BDMA receive enable bit in the BDMARXCON register. When a
frame is received, it is copied into memory at the address specified by the Rx frame start address. Please note that
no configurable offset or page boundary calculation is required. The received frame is written into the frame data
buffer until the end of frame is reached, or until the length exceeds the configured maximum frame size.

If the entire frame is received successfully, the status bits in the frame descriptor are set to indicate this. Otherwise,
the status bits are set to indicate that an error occurred. The ownership bit in the frame start address field is cleared
and an interrupt may now be generated. The BDMA controller copies the next frame descriptor register value into
the Rx frame descriptor start address register. If the next frame descriptor address is null (0), the BDMA simply
halts, and all subsequent frames are dropped. Otherwise, the descriptor is read in, and the BDMA controller starts
again with the next frame, as described in the previous paragraph.

If the received frame size exceeds the maximum frame size, the data frame will be overwritten by the last word of
maximum frame. The overflow data is written to the Rx status bit [19] in the receive frame descriptor. When the
BDMA reads a descriptor, if the ownership bit is not set, it has two options:

• Skip to the next frame descriptor, or

• Generate an interrupt and halt the BDMA operation.

Transmit frame descriptors contain the following components:

• A four-byte pointer to the frame data

• Widget alignment control bits [6:5]

• Frame data pointer increment/decrement bit [4]

• Little-Endian control bit [3]

• Interrupt enable after transmit [2]

• No-CRC [1], and

• No-padding [0]

During transmission, the two-byte frame length at the Tx frame descriptor is moved into the BDMA internal Tx
register. After transmission, Tx status is saved in the Tx frame descriptor. The BDMA controller then updates the
next frame descriptor address register for the linked list structure.

When the Tx frame descriptor start address register points to the first frame buffer, transmitter starts transmitting
the frame data into the frame buffer memory.

KS32C50100 RISC MICROCONTROLLER ETHERNET CONTROLLER

7-17

Figure 7-6 Data Structure of Rx Frame Descriptor

31 30 16 15 0

O Frame Data Pointer

Reserved

Rx Status Frame Length

Next Frame Descriptor Pointer

[31] Ownership bit (O)
0 = CPU
1 = BDMA

[30:0] Frame data pointer
Address of the frame data to be saved.

[15:0] Frame length
The size of the received frame.

[31:16] Rx status
The Rx status field of the receive frame is updated
by the MAC after reception is complete.

[31:0] Next frame descriptor pointer
Address of next frame descriptor

ETHERNET CONTROLLER KS32C50100 RISC MICROCONTROLLER

7-18

Figure 7-7 Data Structure of Tx Frame Descriptor

31 30 16 15 7 6 5 4 3 2 1 0

O Frame Data Pointer

Reserved

Tx Status Frame Length

Next Frame Descriptor Pointer

WA A L T C P

[0] No-padding mode (P)
0 = Padding mode 1 = No-padding mode

[1] No-CRC mode (C)
0 = CRC mode 1 = No-CRC mode

[2] MAC transmit interrupt enable after transmission
of this frame (T)
0 = Disable 1 = Enable

[3] Little-Endian mode (L)
0 = Big-endian 1 = Little-endian

[4] Frame data pointer increment/decrement (A)
0 = Decrement 1 = Increment

[6:5] Widget alignment control (WA)
(Non-aligned data must be transmitted without alignment control.)
00 = No invalid bytes 01 = One invalid byte
10 = Two invalid bytes 11 = Three invalid bytes

[31] Ownership bit (O)
0 = CPU 1 = BDMA

[30:0] Frame data pointer
The address of the frame data to be transmitted.

[15:0] Frame length
The size of the transmit frame.

[31:16] Tx status
This Tx frame status field is updated by the MAC after transmission.

[31:0] Next frame descriptor pointer
The address of the next frame descriptor.

KS32C50100 RISC MICROCONTROLLER ETHERNET CONTROLLER

7-19

Figure 7-8 Rx Descriptor Status Bits

31 30 29 28 27 26 25 24 23 22 20 19 1621

R
x
H
a
l
t
e
d

G
o
o
d

R
x
P
a
r

0

L
o
n
g
E
r
r

O
v
e
r
f
l
o
w

C
R
C
E
r
r

A
l
i
g
n
E
r
r

R
x
1
0
S
t
a
t

I
n
t
R
x

C
t
l
R
c
v

0

Rx Status

O
v
M
a
x

0 0 0

18 17

[19] Over maximum size (OvMax)
Set if the received frame data size exceeds the maximum frame size.

[21] Control received (CtlRcv)
Set if the received packet is a MAC control frame.

[22] Interrupt on receive (IntRx)
Set if reception of packet caused an interrupt condition. This includes Good
received, if the Engood bit, MACRXCON [14], is set.

[23] Receive 10 Mb/s status (Rx10Stat)
Set if packet was received over the 10-Mbyte/s interface. Reset if packet was
received over the MII.

[24] Alignment error (AlignErr)
Frame length in bits was not a multiple of eight and the CRC was invalid.

[25] CRC error (CRCErr)
CRC at end of packet did not match the computed value, or else the PHY
asserted Rx_er during packet reception.

[26] Overflow error (Overflow)
The MAC receive FIFO was full when it needed to store a received byte.

[27] Long error (LongErr)
Received a frame longer than 1518 bytes. Not set if the Long enable bit
in the receive control register is set.

[29] Receive parity error (RxPar)
MAC receive FIFO has detected a parity error.

[30] Good received (Good)
Successfully received a packet with no errors. If EnGood = 1, an interrupt
is generated on each packet that is received successfully.

[31] Reception halted (RxHalted)
Reception interrupted by user clearing RxEN or setting Haltlmm in the MAC
control register.

ETHERNET CONTROLLER KS32C50100 RISC MICROCONTROLLER

7-20

Figure 7-9 Tx Descriptor Status Bits

31 30 29 28 27 26 25 24 23 22 20 19 1621

T
x
H
a
l
t
e
d

C
o
m
p

T
x
P
a
r

L
a
t
e
C
o
l
l

S
Q
E
r
r

N
C
a
r
r

D
e
f
e
r

U
n
d
e
r

I
n
t
T
x

P
a
u
s
e
d

T
x
D
e
f
e
r

E
x
C
o
l
l

TxCollCnt

Tx Status

[19:16] Transmit collision count (TxCollCnt)
Count of collisions during transmission of a single packet. After 16 collisions,
TxColl is zero, and ExColl is set.

[20] Excessive collision (ExColl)
16 collisions occured in the same packet.

[21] Transmit deferred (TxDefer)

[22] Paused

[23] Interrupt on transmit (IntTx)
Set if transmission of packet caused an interrupt condition. This includes the
enable completion (EnComp), MACTXCON [14], if enabled.

[24] Underrun (Under)
MAC transmit FIFO becomes empty during transmission.

[25] Deferral (Defer)
MAC defers for max_deferral 0.32768 ms for 100 M bits/s or 3.27680 ms for
10 M bits/s.

[26] No carrier (NCarr)
Carrier sense is not detected during the entire transmission of a packet
(from the SFD to the CRC).

[27] SQE error (SQErr)
After transmit frame, set if the fake collision (COL) signal did not come from
the PHY for 1.6 µs.

[28] Late collision (LateColl)
A collision occurred after 512 bit times (64 byte times).

[29] Transmit parity error (TxPar)
MAC transmit FIFO detected a parity error.

[30] Completion (Comp)
MAC completed a transmit or discard of one packet.

[31] Transmission halted (TxHalted)
Transmission halted by clearing TxEn or setting the Haltlmm in the MAC control
register. Or, an interrupt was generated by an error condition (not completion).

KS32C50100 RISC MICROCONTROLLER ETHERNET CONTROLLER

7-21

Figure 7-10 Data Structure of the Receive Frame Data Buffer

FRAME DATA POINTER #1

STATUS FRAME LENGTH

NEXT FRAME DESCRIPTOR

FRAME DATA POINTER #2

STATUS FRAME LENGTH

NEXT FRAME DESCRIPTOR

FRAME DATA #1

FRAME DATA #2

Unused

Unused

FRAME DATA #N

Memory for frame buffer

FRAME DATA POINTER #N

STATUS FRAME LENGTH

NEXT FRAME DESCRIPTOR

FRAME
DESCRIPTOR

START ADDRESS
REGISTER

(FOR RING TYPE
LINKED LIST)

RECEIVE FRAME
MAXIMUM SIZE

REGISTER
(BDMARXLSZ)

In single linked lists, the last next frame
descriptor is filled with a Null address.

BDMARXLSZ

BDMARXLSZ

ETHERNET CONTROLLER KS32C50100 RISC MICROCONTROLLER

7-22

ETHERNET CONTROLLER SPECIAL REGISTERS

The special registers used by the KS32C50100 ethernet controller are divided into two main groups:

• BDMA control and status registers

• MAC control and status registers

BDMA CONTROL AND STATUS REGISTERS

All registers that contain a memory address must store the address in a word-aligned format.

NOTES:
1. For testing, you can read the BDMA Tx/Rx buffer directly. The BDMA receive buffer has a 64 word by 33 bit size. The

highest bit, [32], indicates the data frame boundary, as shown in the following illustration:

2.You can access the EOF bit by reading the address range, 0x9800–0x98FC (read into LSB bit 0).

Table 7-2 BDMA Control and Status Registers

Registers Offset R/W Description Reset Value

BDMATXCON 0x9000 R/W Buffered DMA transmit control register 0x00000000

BDMARXCON 0x9004 R/W Buffered DMA receive control register 0x00000000

BDMATXPTR 0x9008 R/W Transmit frame descriptor start address 0xFFFFFFFF

BDMARXPTR 0x900C R/W Receive frame descriptor start address 0xFFFFFFFF

BDMARXLSZ 0x9010 R/W Receive frame maximum size Undefined

BDMASTAT 0x9014 R/W Buffered DMA status 0x00000000

CAM 0x9100–
0x917C

W CAM content (32 words) Undefined

BDMATXBUF
(see Notes)

0x9200–
0x92FC

R/W BDMA transmit (Tx) buffer (64 words)
for test mode addressing only

Undefined

BDMARXBUF
(see Notes)

0x9800–
0x98FC

0x9900 –
0x99FC

R/W BDMA receive (Rx) buffer (64 words)
for test mode addressing only

Undefined

Figure 7-11 End of Frame bit

0x9800

0x98FC

0x9900

0x99FC

End of Frame(EOF) : Boundary of frame data

KS32C50100 RISC MICROCONTROLLER ETHERNET CONTROLLER

7-23

Buffered DMA Transmit Control Register

The buffered DMA transmit control register, BDMATXCON, is described in Tables 7-5 and 7-6 below.

Table 7-3 BDMATXCON Register

Register Offset Address R/W Description Reset Value

BDMATXCON 0x9000 R/W Buffered DMA transmit control register 0x00000000

Table 7-4 BDMA Transmit Control Register Description

Bit Number Bit Name Description

[4:0] BDMA Tx burst size (BTxBRST) (Word size + 1) of data bursts requested in BDMA mode.
If the BTxBRST is "0", the burst size is one word.
If the BTxBRST is "31", the burst size is 32 words.

[5] BDMA Tx stop/skip frame by owner
bit (BTxSTSKO)

This bit determines whether the BDMA Tx controller issues
an interrupt, if enabled, or skips the current frame and goes
to the next frame descriptor (assuming BDMA is not the
owner).

[6] Reserved Not applicable.

[7] BDMA Tx complete to send control
packet interrupt enable
(BTxCCPIE)

Setting this bit enables the BDMA Tx complete to send
contol packet interrupt when the MAC has finished sending
the control packet.

[8] BDMA Tx Null list interrupt enable
(BTxNLIE)

This bit enables the BDMA Tx Null list interrupt which
indicates that the transmit frame descriptor start address
pointer, BDMATXPTR, in the BDMA Tx block has a null
(0x00000000) address.

[9] BDMA Tx not owner interrupt
enable (BTxNOIE)

This bit enables the BDMA Tx not owner interrupt when the
ownership bit of the current frame does not belong to the
BDMA controller, and if the BTxSTSKO bit is set.

[10] BDMA Tx buffer empty interrupt
enable (BTxEmpty)

Set this bit is "1" to enable the Tx buffer empty interrupt.

[13:11] BDMA transmit to MAC Tx start
level (BTxMSL)

These bits determine when the new frame data in BDMA Tx
buffer can be moved to the MAC Tx FIFO when a new
frame arrives.
"000" means no wait, "001" means wait to fill 1/8 of the
BDMA Tx buffer, "010" means wait to fill 2/8 of the buffer,
and so on through "111" which means wait to fill 7/8 of the
BDMA Tx buffer.
NOTE: If the last data of the frame arrives in BDMA Tx
buffer, the data transfer from the BDMA Tx buffer to the
MAC Tx FIFO starts immediately, regardless of the level of
these bits.

ETHERNET CONTROLLER KS32C50100 RISC MICROCONTROLLER

7-24

[14] BDMA Tx enable (BTxEn) When the Tx enable bit is set to "1", the BDMA Tx block is
enabled. Even if this bit is disabled, buffer data will be
moved to the MAC Tx FIFO until the BDMA Tx buffer
underflows (as long as the FIFO is not empty and the MAC
Tx is enabled).
This bit is automatically disabled in the following cases: 1) if
the next frame pointer is Null, or 2) if the owner bit is zero,
and the BTxSTSKO bit is set.
NOTE: The frame descriptor start address pointer must be
assigned before the BDMA Tx enable bit is set.

[15] BDMA Tx reset (BTxRS) Set this bit to "1" to reset the BDMA Tx block.

Table 7-4 BDMA Transmit Control Register Description

Bit Number Bit Name Description

KS32C50100 RISC MICROCONTROLLER ETHERNET CONTROLLER

7-25

Figure 7-12 Buffered DMA Transmit Control Register

31 16 15 14 13 12 11 10 9 8 7 6 5 4 0

B
T
x
R
S

RESERVED

B
T
x
E
n

B
T
x
M
S
L

B
T
x
E
m
p
t
y

B
T
x
N
O
I
E

B
T
x
N
L
I
E

B
T
x
S
T
S
K
O

B
T
x
C
C
P
I
E

BTxBRST

[4:0] BDMA Tx burst size (BTxBRST)
(Word size + 1) of data bursts requested in BDMA mode. If BTxBRST is zero, the burst size is
one word. If BtXBRST is 31, the burst size is 32 words.

[5] BDMA Tx stop/skip frame by owner bit (BTxSTSKO)
0 = Skips the current frame and goes to the next frame descriptor
(if BDMA is not the owner of the frame)
1 = BDMA transmitter generates an interrupt (if enabled).

[6] Reserved

[7] BDMA Tx complete to send control packet interrupt enable (BTxCCPIE)
0 = Disable complete to send control packet interrupt.
1 = Enable complete to send control packet interrupt. (The interrupt is generated when the MAC
completes sending the control packet.)

[8] BDMA Tx Null list interrupt enable (BTxNLIE)
0 = Disable transmit Null list interrupt.
1 = Enable Null list interrupt to indicate that BDMATxPTR in the BDMA Tx unit has a Null address
(0x00000000).

[9] BDMA Tx not owner interrupt enable (BTxNOIE)
0 = Disable BDMA Tx not owner interrupt for the current frame.
1 = Enable BDMA Tx not owner interrupt for the current frame (and if the BTxSTSKO bit is set).

[10] BDMA Tx buffer empty interrupt (BTxEmpty)
0 = Disable TX buffer empty interrupt.
1 = Enable TX buffer empty interrupt.

[13:11] BDMA transmit to MAC Tx start level (BTxMSL)
000 = No waiting
001 = Wait to fill 1/8 of the Tx buffer
010 = Wait to fill 2/8 of the Tx buffer
...

111 = Wait to fill 7/8 of the Tx buffer

NOTE : Use this formula to calculate transmit time to the MAC Tx FIFO
 tBtoM = (BTxMSL/8) * Size of the BDMA Tx buffer

[14] BDMA Tx enable (BTxEn)
0 = Disable the BDMA transmitter.
1 = Enable the BDMA transmitter.

[15] BDMA Tx reset (BTxRS)
0 = No effect.
1 = Reset the BDMA Tx block.

BDMATXCON Register

ETHERNET CONTROLLER KS32C50100 RISC MICROCONTROLLER

7-26

Buffered DMA Receive Control Register

The buffered DMA receive control register, BDMARXCON, is described in Tables 7-3 and 7-4 below.

Table 7-5 BDMARXCON Register

Register Offset Address R/W Description Reset Value

BDMARXCON 0x9004 R/W Buffered DMA receive control register 0x00000000

Table 7-6 BDMA Receive Control Register Description

Bit Number Bit Name Description

[4:0] BDMA Rx burst size (BRxBRST) (Word size + 1) of data bursts requested in BDMA mode. If
the BRxBRST is "0", the burst size is one word. If the
BRxBRST is "31", the burst size is 32 words.

[5] BDMA Rx stop/skip frame by owner
bit (BRxSTSKO)

This bit determines whether the BDMA Rx controller issues
an interrupt, if enabled, or skips the current frame and goes
to the next frame descriptor (assuming BDMA is not the
owner).

[6] BDMA Rx memory address inc/dec
(BRxMAINC)

This bit determines whether the address is incremented or
decremented. If this bit is set to "1", the address will be
incremented.

[7] BDMA Rx every received frame
interrupt enable (BRxDIE)

This bit enables the BDMA Rx every received frame
interrupt which is generated by the BDMA controller each
time is moves a complete data frame into memory.

[8] BDMA Rx Null list interrupt enable
(BRxNLIE)

This bit enables the BDMA Rx Null list interrupt which
indicates that the receive frame descriptor start address
pointer, BDMARXPTR, in the BDMA Rx block has a Null
(0x00000000) address.

[9] BDMA Rx not owner interrupt
enable (BRxNOIE)

This bit enables the BDMA Rx not owner interrupt when the
ownership bit of the current frame does not belong to the
BDMA controller, and if the BRxSTSKO bit is set.

[10] BDMA Rx maximum size over
interrupt enable (BRxMSOIE)

This bit enables the BDMA Rx maximum size over interrupt
when the received frame size is larger than the value in
receive frame maximum size register.

[11] BDMA Rx Big/Little Endian
(BRxLittle)

This bit determines whether the data is stored in Little- or
Big-Endian format. If it is set to "1", word swapping will take
place between the receive buffer and the system data bus.

[13:12] BDMA Rx word alignment
(BRxWA)

The Rx word alignment bits determine how many bytes are
invalid in the first word of each data frame. These invalid
bytes are inserted when the word is assembled by the
BDMA controller. "00" = No invalid bytes, "01" = 1 invalid
byte, "10" = 2 invalid bytes, and "11" = 3 invalid bytes.

KS32C50100 RISC MICROCONTROLLER ETHERNET CONTROLLER

7-27

[14] BDMA Rx enable (BRxEn) When the Rx enable bit is set to "1", the BDMA Rx block is
enabled. Even if this bit is disabled, the MAC will receive Rx
data until the MAC Rx FIFO overflows (as long as the FIFO
is not empty and the MAC Rx is enabled). This bit is
automatically disabled in the following cases: 1) if the next
frame pointer is Null, or 2) if the owner bit is zero, and the
BRxSTSKO bit is set.
NOTE: The frame descriptor start address pointer must be
assigned before the BDMA Rx enable bit is set.

[15] BDMA Rx reset (BRxRS) Set this bit to "1" to reset the BDMA Rx block.

[16] BDMA Rx buffer empty interrupt
enable (BRxEmpty)

Set this bit is "1" to enable the Rx buffer empty interrupt.

[17] BDMA Rx early notify interrupt
enable (BRxEarly)

Set this bit to "1" to enable the Rx early notify interrupt. The
function of this interrupt is to note the length of a data frame
that is being received from its frame length field.

Table 7-6 BDMA Receive Control Register Description

Bit Number Bit Name Description

ETHERNET CONTROLLER KS32C50100 RISC MICROCONTROLLER

7-28

Figure 7-13 Buffered DMA Receiver Control Register

31 17 16 15 14 13 12 11 10 9 8 7 6 5 4 018

B
R
x
E
a
r
l
y

B
R
x
R
S

RESERVED

B
R
x
E
m
p
t
y

B
R
x
E
n

B
R
x
W
A

B
R
x
L
i
t
t
l
e

B
R
x
M
S
O
I
E

B
R
x
N
O
I
E

B
R
x
N
L
I
E

B
R
x
M
A
I
N
C

B
R
x
S
T
S
K
O

B
R
x
D
I
E

BRxBRST

BDMARXCON Register

[4:0] BDMA Rx burst size (BRxBRST)
Burst data size = (BRxBRST + 1) word

[5] BDMA Rx stop/skip frame (or interrupt if not owner of the current frame
(BRxSTSKO)
0 = Skips the current frame and goes to the next frame descriptor.
1 = BDMA receiver generates an interrupt (if enabled).

[6] BDMA Rx memory address increment/decrement (DRxMAINC)
0 = Decrement the frame memory address.
1 = Increment the frame memory address.

[7] BDMA Rx every receive frame interrupt enable (BRxDIE)
0 = Disable frame receive done interrupt.
0 = Enable frame receive done interrupt.

[8] BDMA Rx Null list interrupt enable (BRxNLIE)
0 = Disable Null address (0x00000000) receive interrupt.
1 = Enable Null address (0x00000000) receive interrupt.

[9] BDMA Rx not owner interrupt enable (BRxNOIE)
0 = Disable interrupt for BDMA Rx not owner of the current frame.
1 = Enable interrupt for BDMA Rx not owner of the current frame.

[10] BDMA Rx maximum size over interrupt enable (BRxMSOIE)
0 = Disable interrupt for received frame if larger than the maximum frame size.
1 = Enable interrupt for received frame if larger than the maximum frame size.

[11] BDMA Rx Big/Little Endian (BRxLittle)
0 = Big-Endian frame data format.
1 = Little-Endian. (Frame data in BDMA Rx buffer is word-swapped on the system bus.)

[13:12] BDMA Rx word alignment (BRxWA)
00 = Do not insert an invalid byte in the first received frame data.
01 = Insert one invalid byte in the first received frame data.
10 = Insert two invalid bytes in the first received frame data.
11 = Insert three invalid bytes in the first received frame data.

[14] BDMA Rx enable (BRxEn)
0 = Disable the BDMA receiver. (If the MAC Rx FIFO is not empty, move data to the BDMA Rx buffer.)
1 = Enable the BDMA receiver.

[15] BDMA Rx reset (BRxRS)
0 = No effect.
1 = Reset the BDMA receiver.

[16] BDMA Rx buffer empty interrupt (RxEmpty)
0 = Disable the Rx buffer empty interrupt.
1 = Enable the Rx buffer empty interrupt.

[17] BDMA Rx early notify interrupt (BRxEarly)
0 = Disable the Rx early notify interrupt
1 = Enable the interrupt when BDMA captures the length of the received frame type.

KS32C50100 RISC MICROCONTROLLER ETHERNET CONTROLLER

7-29

BDMA Transmit Frame Descriptor Start Address Register

BDMA Receive Frame Descriptor Start Address Register

Table 7-7 BDMATXPTR Register

Register Offset Address R/W Description Reset Value

BDMATXPTR 0x9008 R/W Transmit frame descriptor start address 0xFFFFFFFF

Table 7-8 BDMA Transmit Frame Descriptor Start Address Register Description

Bit Number Bit Name Description

[25:0] BDMA transmit frame descriptor
start address

The BDMA transmit frame descriptor start address register
contains the address of the frame descriptor on the frame
to be sent. During a BDMA operation, this start address
pointer is updated to the next frame address.

Table 7-9 BDMARXPTR Register

Register Offset Address R/W Description Reset Value

BDMARXPTR 0x900C R/W Receive frame descriptor start address 0xFFFFFFFF

Table 7-10 BDMA Receive Frame Descriptor Start Address Register Description

Bit Number Bit Name Description

[25:0] BDMA receive frame descriptor
start address

The BDMA receive frame descriptor start address register
contains the address of the frame descriptor on the frame
to be saved. During a BDMA operation, this start address
pointer is updated to the next frame address.

ETHERNET CONTROLLER KS32C50100 RISC MICROCONTROLLER

7-30

BDMA Receive Frame Maximum Size Register

BDMA Status Register

Table 7-11 BDMATXLSZ Register

Register Offset Address R/W Description Reset Value

BDMARXLSZ 0x9010 R/W Receive frame maximum size Undefined

Table 7-12 BDMA Receive Frame Maximum Size Register Description

Bit Number Bit Name Description

[15:0] BDMA receive frame maximum
size (BRxLSZ)

This register value controls how many bytes per frame can
be saved to memory. If the received frame size exceeds the
value stored in this location, an error condition is reported.

[31:16] BDMA receive frame length
(BRxFSZ), read-only

When an early notification (Early Notify) interrupt occurs,
the frame length/Ethernet type field contains the Frame
size of the frame that is currently being received.
To save space in the frame memory buffer, you can
determine the current frame length by 1) enabling the early
notification interrupt, and 2) reading the BRxFSZ field when
the interrupt occurs.
To calculate the value of the next frame start address
pointer, you add the current frame size value (BRxFSZ) to
the BDMA receive start address register. (For a control
packet, additional space may be needed.)
NOTE: To obtain the next Rx frame address that is to be
saved in the Rx frame start address register, we
recommend that you first halt the BDMA operation.

Table 7-13 BDMASTAT Register

Register Offset Address R/W Description Reset Value

BDMASTAT 0x9014 R/W Buffered DMA status 0x00000000

KS32C50100 RISC MICROCONTROLLER ETHERNET CONTROLLER

7-31

Table 7-14 BDMA Status Register Description

Bit Number Bit Name Description

[0] BDMA Rx done every received
frame (BRxRDF)

This bit is set each time the BDMA receiver moves one
received data frame to memory. This bit must be cleared for
the receiving next frame interrupt generation.

[1] BDMA Rx null list (BRxNL) If this bit is set, the BDMARXPTR has a null address. Even
if BDMA Rx is disabled, data is transferred from the MAC
Rx FIFO to the BDMA Rx buffer until the BDMA Rx buffer
overflows.

[2] BDMA Rx not owner (BRxNO) If this bit is set, BDMA is not the owner of the current data
frame. The BRxSTSKO bit is set and BDMA Rx is stopped.

[3] BDMA Rx maximum size over
(BRxMSO)

If this bit is set, the received frame size is larger than the
value in the Rx frame maximum size register,
BDMARXLSZ.

[4] BDMA Rx buffer empty
(BRxEmpty)

If this bit is set, the BDMA Rx buffer is empty.

[5] Early notification (BRxSEarly) This bit is set when the BDMA receiver has received the
length/Ether-type field of the current frame.

[6] Reserved Not applicable.

[7] One more frame data in BDMA
receive buffer (BRxFRF)

This bit is set whenever an additional data frame is
received in the BDMA receive buffer.

[15:8] Number of frames in BDMA receive
buffer (BRxNFR)

This value indicates the total number of data frames
currently in the BDMA receive buffer.

[16] BDMA Tx complete to send control
packet (BTxCCP)

Bit [16] is set each time the MAC sends a complete control
packet.

[17] BDMA Tx null list (BTxNL) If this bit is set, the BDMATXPTR value is a null address. In
this case, BDMA Tx is disabled but data continues to be
transferred from the BDMA Tx buffer to the MAC Tx FIFO
until the BDMA Tx buffer underflows. This bit is read only.
If you set BDMA Tx reset bit by software, this bit is cleared
automatically. To resume data transfer, you must then set
the new frame descriptor pointer and enable BDMA Tx.

[18] BDMA Tx not owner (BTxNO) If [18] is set, BDMA is not owner of the current frame. In this
case, the BSTSKO bit is set and BDMA Tx is stopped.

[19] Reserved Not applicable.

[20] BDMA Tx buffer empty (BTxEmpty) If this bit is set, the BDMA Tx buffer is empty.

[31:21] Reserved Not applicable.

ETHERNET CONTROLLER KS32C50100 RISC MICROCONTROLLER

7-32

Figure 7-14 BDMA Status Register

31 17 16 15 8 7 6 5 4 018

B
T
x
E
m
p
t
y

B
T
x
N
O

RESERVED x

B
T
x
N
L

B
T
x
C
C
P

x

B
R
x
S
E
a
r
l
y

B
R
x
F
R
F

3 2 121 20 19

BRxNFR

B
R
x
E
m
p
t
y

B
R
x
M
S
O

B
R
x
N
O

B
R
x
N
L

B
R
x
R
D
F

[0] BDMA Rx done every received frame (BRxRDF)
0 = Normal operation.
1 = One frame is received.

[1] BDMA Rx Null list (BRxNL)
0 = Normal operation.
1 = Current frame descriptor has null address (0x00000000).

[2] BDMA Rx not owner (BRxNO)
0 = BDMA is owner of the current frame.
1 = The owner of the current frame is not BDMA. In this case,
BDMA Rx is stopped if the BSTSKO bit is set.

[3] BDMA Rx maximum size over (BRxMSO)
0 = Normal operation.
0 = Received frame exceeds the user defined BDMARXLSZ[15:0] value.

[4] BDMA Rx buffer empty (BRxEmpty)
0 = Not empty.
1 = BDMA Rx buffer empty.

[5] Early notify (BRxSEarly)
0 = Normal operation.
1 = Length of current frame can be accessed by reading the BDMA
receive maximum frame size register, BDMARXLSZ [31:16].

[7] One more frame data in BDMA receive buffer (BRxFRF)
0 = Only one frame data reside in BDMA receive buffer.
1 = One more frame data reside in the BDMA receive buffer.

[15:8] Number of frame data in BDMA receive buffer (BRxNFR)

[16] BDMA Tx complete to send control packet (BTxCCP)
0 = Normal operation.
1 = MAC send the control packet.

[17] BDMA Tx Null list (BTxNL)
0 = Normal operation.
1 = Current frame descriptor address is Null (0x00000000).

[18] BDMA Tx not owner (BTxNO)
0 = BDMA is owner of the current frame.
1 = The owner of the current frame is not BDMA.
In this case BDMA Tx is stopped if the BTxSTSKO bit is set.

[19] Reserved

[20] BDMA Tx buffer empty (BTxEmpty)
0 = Not empty
1 = BDMA Tx buffer empty.

[31:21] Reserved

NOTE: bit 0, 1, 2, 3, 4, 16, 17, 18, and 20 should be cleared for
interrupt generation to the next frame. The method is write a 1 to
the corresponding bit location.

KS32C50100 RISC MICROCONTROLLER ETHERNET CONTROLLER

7-33

Content Address Memory (CAM) Register

There are 21 CAM entries for the destination address and the Pause control packet. For the destination address
CAM value, one destination address consists of 6 bytes. Using the 32-word space (32 × 4 bytes), you can therefore
maintain up to 21 separate destination addresses.

You use CAM entries 0, 1, and 18 to send Pause control packets. To send a Pause control packet, you write the
CAM0 entry with the destination address, the CAM1 entry with the source address, and the CAM 18 entry with
length/type, opcode, and operand. You then set the send pause bit in the MAC transmit control register.

Table 7-15 CAM Register

Register Offset Address R/W Description Reset Value

CAM 0x9100–
0x917C

W CAM content (32 words) Undefined

Table 7-16 Content Address Memory (CAM) Register Description

Bit Number Bit Name Description

[31:0] CAM content (CAM) The CPU uses the CAM content register as a data base for
destination addresss. To activate the CAM function, you
must set the appropriate enable bits in CAM enable
register.

ETHERNET CONTROLLER KS32C50100 RISC MICROCONTROLLER

7-34

MEDIA ACCESS CONTROL (MAC) REGISTERS

This section describes the control and status registers for the flow control 100-/10-Mbit/s Ethernet MAC. These
include a master MAC control register, control registers for transmit and receive, control registers for the CAM, a
counter for network management, and various flow control registers (see Table 7-17).

NOTE:A MAC transmit/receive interrupt is generated whenever the Tx/Rx status field of Tx/Rx frame descriptor is written.

Table 7-17 MAC Control and Status Registers

Registers Offset R/W Description Reset Value

MACON 0xA000 R/W MAC control 0x00000000

CAMCON 0xA004 R/W CAM control 0x00000000

MACTXCON 0xA008 R/W Transmit control 0x00000000

MACTXSTAT 0xA00C R/W Transmit status 0x00000000

MACRXCON 0xA010 R/W Receive control 0x00000000

MACRXSTAT 0xA014 R/W Receive status 0x00000000

STADATA 0xA018 R/W Station management data 0x00000000

STACON 0xA01C R/W Station management control and address 0x00006000

CAMEN 0xA028 R/W CAM enable 0x00000000

EMISSCNT 0xA03C RClr/
W

Missed error count 0x00000000

EPZCNT 0xA040 R Pause count 0x00000000

ERMPZCNT 0xA044 R Remote pause count 0x00000000

ETXSTAT 0x9040 R Transmit control frame status 0x00000000

KS32C50100 RISC MICROCONTROLLER ETHERNET CONTROLLER

7-35

MAC Control Register

The MAC control register provides global control and status information for the MAC. The missed roll/link10 bit is a
status bit. All other bits are MAC control bits.

MAC control register settings affect both transmission and reception. You can also control transmit and receive
operations separately. To select customized operating features, you should write this register during power-up. This
way, you will not need to write or read it again during normal operation.

After a reset is complete, the MAC controller clears the reset bit. Not all PHYs support full-duplex operation.
(Setting the MAC loopback bit overrides the full-duplex bit.) Also, some 10-Mb/s PHYs may interpret the loop10 bit
to control different functions, and manipulate the link10 bit to indicate a different status condition.

Table 7-18 MACON Register

Register Offset Address R/W Description Reset Value

MACON 0xA000 R/W MAC control 0x00000000

ETHERNET CONTROLLER KS32C50100 RISC MICROCONTROLLER

7-36

Table 7-19 MAC Control Register Description

Bit Number Bit Name Description

[0] Halt request (HaltReq) Set this bit to stop data packet transmission and reception
as soon as Tx/Rx of any current packets has been
completed.

[1] Halt immediate (HaltImm) Set this bit to immediately stop all transmission and
reception.

[2] Software reset (Reset) Set this bit to reset all MAC control and status register and
MAC state machines.

[3] Full-duplex (FullDup) Set this bit to start transmission while reception is in
progress.

[4] MAC loopback (MACLoop) Set this bit to cause transmission signals to be presented
as input to the receive circuit without leaving the controller.

[5] Reserved Not applicable

[6] MII-OFF Use this bit to select the connection mode. If this bit is set to
one, 10 M bits/s interface will select the 10 M bits/s endec.
Otherwise, the MII will be selected.

[7] Loop 10 Mb/s (Loop10) If this bit is set, the Loop_10 external signal is asserted to
the 10-Mb/s endec.

[9:8] Reserved. Not applicable.

[10] Missed roll (MissRoll) This bit is automatically set when the missed error counter
rolls over.

[11] Reserved Not applicable.

[12] MDC-OFF Clear this bit to enable the MDC clock generation for power
management. If it is set to one, the MDC clock generation is
disabled.

[13] Enable missed roll (EnMissRoll) Set this bit to generate an interrupt whenever the missed
error counter rolls over.

[14] Reserved Not applicable.

[15] Link status 10 Mb/s (Link10) This bit value is read as a buffered signal on the link 10 pin.

[31:16] Reserved Not applicable.

KS32C50100 RISC MICROCONTROLLER ETHERNET CONTROLLER

7-37

CAM Control Register

The three accept bits in the CAM control register are used to override CAM rejections. To place the MAC in
promiscuous mode, use CAM control register settings to accept packets with all three types of destination
addresses. The three types of destination address packets are as follows:

• Station packets, which has an even first byte. For example, 00-00-00-00-00-00.

• A multicast-group, which has an odd first byte, but which is not FF-FF-FF-FF-FF-FF. For example, 01-00-00-
00-00-00.

• A broadcast, defined as FF-FF-FF-FF-FF-FF.

When you enable CAM compare mode, the CAM memory reads the destination addresses to filter incoming
messages. (You will recall that the CAM memory consists of 6-byte entries.) An alternative way to place the MAC in
promiscuous mode is to set, in turn, to accept the them. To reject all packets, simply clear all of the bits in the
CAMCON register.

MAC Transmit Control Register

To generate an interrupt after each packet, set the enable completion bit and all of the MAC error enable bits. Using
MAC transmit control register settings, you can also selectively enable interrupts for specific conditions.

Table 7-20 CAMCON Register

Register Offset Address R/W Description Reset Value

CAMCON 0xA004 R/W CAM control 0x00000000

Table 7-21 CAM Control Register Description

Bit Number Bit Name Description

[0] Station accept (StationAcc) Set this bit to accept any packet with a "unicast" station
address.

[1] Group accept (GroupAcc) Accept any packet with a multicast-group address.

[2] Broadcast accept (BroadAcc) Accept any packet with a broadcast address.

[3] Negative CAM (NegCAM) When this bit is "0’, packets the CAM recognizes are
accepted and others are rejected. When "1", packets the
CAM recognizes are rejected and others are accepted.

[4] Compare enable (CompEn) Set this bit to enable compare mode.

[31:5] Reserved Not applicable.

Table 7-22 MACTXCON Register

Register Offset Address R/W Description Reset Value

MACTXCON 0xA008 R/W Transmit control 0x0000000

ETHERNET CONTROLLER KS32C50100 RISC MICROCONTROLLER

7-38

Table 7-23 MAC Transmit Control Register Description

Bit Number Bit Name Description

[0] Transmit enable (TxEn) Set this bit to enable transmission. To stop transmission
immediately, clear the transmit enable bit to "0".

[1] Transmit halt request (TxHalt) Set this bit to halt transmission after completing any current
packet.

[2] Suppress padding (NoPad) Set to not generate pad bytes for packets of less than 64
bytes.

[3] Suppress CRC (NoCRC) Set to suppress addition of a CRC at the end of a packet.

[4] Fast back-off (FBack) Set this bit to use faster back-off times for testing.

[5] No defer (NoDef) Set to disable the defer counter. (The defer counter keeps
counting until the carrier sense (CrS) bit is turned off.)

[6] Send Pause (SdPause) Set this bit to send a Pause command or other MAC control
packet. The send Pause bit is automatically cleared when a
complete MAC control packet has been transmitted. Writing
a "0" to this register bit has no effect.

[7] MII 10-Mb/s SQE test mode enable
(SQEn)

Set this bit to enable MII 10-Mb/s SQE test mode.

[8] Enable underrun (EnUnder) Set this bit to generate an interrupt if the MAC transmit
FIFO is empty during a transmission.

[9] Enable deferral (EnDefer) Set this bit to generate an interrupt if the MAC defers for
MAX_DEFERRAL time: "0" = 0.32768 ms at 100 Mb/s; "1"
= 3.2768 ms at 10-Mb/s.

[10] Enable no carrier (EnNCarr) Set this bit to generate an interrupt if a carrier sense is not
detected while an entire packet is transmitted.

[11] Enable excessive collision
(EnExColl)

Set this bit to enable an interrupt if 16 collisions occur in the
same packet.

[12] Enable late collision (EnLateColl) Set this bit to generate an interrupt if a collision occurs after
512 bit times (or 64 byte times).

[13] Enable transmit parity (EnTxPar) Set this bit to generate an interrupt if a parity error is
detected in the MAC transmit FIFO.

[14] Enable completion (EnComp) Set this bit to generate an interrupt whenever the MAC
transmits or discards one packet.

[31:15] Reserved Not applicable.

KS32C50100 RISC MICROCONTROLLER ETHERNET CONTROLLER

7-39

MAC Transmit Status Register

A transmission status flag is set in the transmit status register, MACTXSTAT, whenever the corresponding event
occurs. In addition, an interrupt is generated if the corresponding enable bit in the transmit control register is set.
A MAC transmit FIFO parity error sets TxPar, and also clears TxEn, if the interrupt is enabled.

You can read and mask the five low-order bits as a single collision count. That is, when ExColl is "1", TxColl is "0".
If TxColl is not "0", then ExColl is "0".

Table 7-24 MACTXSTAT Register

Register Offset Address R/W Description Reset Value

MACTXSTAT 0xA00C R/W Transmit status 0x00000000

ETHERNET CONTROLLER KS32C50100 RISC MICROCONTROLLER

7-40

Table 7-25 MAC Transmit Status Register Description

Bit Number Bit Name Description

[3:0] Transmit collision count (TxColl) This 4-bit value is the count of collisions that occurred while
successfully transmitting the packet.

[4] Excessive collision (ExColl) This bit is set if 16 collisions occur while transmitting the
same packet. In this case, packet transmission is aborted.

[5] Transmit deferred (TxDeferred) This bit is set if transmission of a packet was deferred
because of a delay during transmission.

[6] Paused (Paused) This bit is set if transmission of a packet was delayed due
to a Pause being received.

[7] Interrupt on transmit (IntTx) This bit is set if transmission of a packet causes an interrupt
condition.

[8] Underrun (Under) This bit is set if the MAC transmit FIFO becomes empty
during a packet transmission.

[9] Deferral (Defer) This bit is set if the MAC defers a transfer because of
MAX_DEFERRAL at 0.32768 ms for 100 Mb/s or 3.2768
ms for 10Mb/s.

[10] No carrier (NCarr) This bit is set if no carrier sense is detected during the
transmission a packet.

[11] Signal quality error (SQE) According to the IEEE802.3 rule, the SQE signal reports
the status of the PMA (MAU or transceiver) operation to the
MAC layer. After transmission is complete and 1.6 µs has
elapsed, a collision detection signal is issued for 1.5 µs to
the MAC layer. This signal is called the SQE test signal.
The MAC sets the SQE bit in the MACTXSTAT register if
this signal is not reported within the IFG time of 6.4µs.

[12] Late collision (LateColl) This bit is set if a collision occurs after 512 bit times (or 64
byte times).

[13] Transmit parity error (TxPar) This bit is set if a parity error is detected in the MAC
transmit FIFO.

[14] Completion (Comp) This bit is set when the MAC transmits, or discards, one
packet.

[15] Transmission halted (TxHalted) Transmission was halted by clearing the TxEn bit or the halt
immediate (HaltImm) bit.

[31:16] Reserved Not applicable.

KS32C50100 RISC MICROCONTROLLER ETHERNET CONTROLLER

7-41

MAC Receive Control Register

To issue an interrupt after each packet is received, set the enable good bit and all of the error enable bits in the
MACRXCON register. You can also enable interrupts for specific conditions. Standard packet length values do not
include a preamble or a start frame delimiter (SFD).

Table 7-26 MACRXCON Register

Register Offset Address R/W Description Reset Value

MACRXCON 0xA010 R/W Receive control 0x00000000

ETHERNET CONTROLLER KS32C50100 RISC MICROCONTROLLER

7-42

NOTE: The frame lengths given above do not include preamble and start frame delimiter (SFD).

Table 7-27 MAC Receive Control Register Description

Bit Number Bit Name Description

[0] Receive enable (RxEn) Set this bit to "1" to enable MAC receive operation. If "0",
stop reception immediately.

[1] Receive halt request (RxHalt) Set this bit to halt reception after completing the reception
of any current packet.

[2] Long enable (LongEn) Set this bit to receive frames with lengths greater than 1518
bytes.

[3] Short enable (ShortEn) Set this bit to receive frames with lengths less than 64
bytes.

[4] Strip CRC value (StripCRC) Set this bit to check the CRC, and then strip it from the
message.

[5] Pass control packet (PassCtl) Set this bit to enable the passing of control packets to a
MAC client.

[6] Ignore CRC value (IgnoreCRC) Set this bit to disable CRC value checking.

[7] Reserved Not applicable.

[8] Enable alignment (EnAlign) Set this bit to enable the alignment interrupt. An alignment
interrupt occurs when a packet is received whose length (in
bits) is not a multiple of eight, and whose CRC is invalid.

[9] Enable CRC error (EnCRCErr) Set this bit to enable the CRC interrupt. A CRC interrupt
occurs when a packet is received whose CRC is invalid or
if, during its reception, the PHY asserts Rx_er.

[10] Enable overflow (EnOver) Set this bit to enable the overflow interrupt. An overflow
interrupt is generated when a packet is received and the
MAC receive FIFO is full.

[11] Enable long error (EnLongErr) Set this bit to enable the long error interrupt. A long error
interrupt is generated when a frame longer than 1518 bytes
is received (unless the long enable bit is set).

[12] Reserved Not applicable.

[13] Enable receive parity (EnRxPar) Set this bit to enable a receive parity interrupt if the MAC
receive FIFO detects a parity error.

[14] Enable Good (EnGood) Set this bit to enable the good (packet) interrupt upon error-
free reception of a complete data packet.

[31:15] Reserved Not applicable.

KS32C50100 RISC MICROCONTROLLER ETHERNET CONTROLLER

7-43

MAC Receive Status Register

A receive status flag is set in the MAC receive status register, MACRXSTAT, whenever the corresponding event
occurs. When a status flag is set, it remains set until another packet arrives, or until software writes a "1" to the flag
to clear the status bit. If the corresponding interrupt enable bit in the receive control register is set, an interrupt is
generated whenever a status flag is set. A MAC receive parity error sets RxPar, and also clears the RxEn bit (if an
interrupt is enabled).

Table 7-28 MACRXSTAT Register

Register Offset Address R/W Description Reset Value

MACRXSTAT 0xA014 R/W Receive status 0x00000000

ETHERNET CONTROLLER KS32C50100 RISC MICROCONTROLLER

7-44

Table 7-29 MAC Receive Status Register Description

Bit Number Bit Name Description

[4:0] Reserved Not applicable.

[5] Control frame received (CtlRecd) This bit is set if the packet received is a MAC control frame
(type = 8808H), if the CAM recognizes the packet address,
and if the frame length is 64 bytes.

[6] Interrupt on receive (IntRx) This bit is set if the reception of a packet caused an
interrupt to be generated. This includes a good received
interrupt, if the EnGood bit is set.

[7] Receive 10-Mb/s status (Rx10Stat) This bit is set to "1" if a packet was received over the
10-Mb/s interface or to "0" if a packet was received over the
MII.

[8] Alignment error (AlignErr) This bit is set if the frame length in bits was not a multiple of
eight and the CRC was invalid.

[9] CRC error (CRCErr) This bit is set if the CRC at the end of a packet did not
match the computed value, or else the PHY asserted Rx_er
during packet reception.

[10] Overflow error (overflow) This bit is set if the MAC receive FIFO was full when it
needed to store a received byte.

[11] Long error (LongErr) This bit is set if the MAC received a frame longer than 1518
bytes. (It is not set if the long enable bit in the receive
control register, MACRXCON, is set.)

[12] Reserved Not applicable.

[13] Receive parity error (RxPar) This bit is set if a parity error is detected in the MAC receive
FIFO.

[14] Good received (Good) This bit is set if a packet was successfully received with no
errors. If EnGood = "1", an interrupt is also generated.

[15] Reception halted (RxHalted) This bit is set if reception was halted by clearing RxEn or by
setting the HaltImm bit in the MAC control register,
MACON.

[31:16] Reserved Not applicable.

KS32C50100 RISC MICROCONTROLLER ETHERNET CONTROLLER

7-45

MAC Station Management Data Register

Table 7-30 STADATA Register

Register Offset Address R/W Description Reset Value

STADATA 0xA018 R/W Station management data 0x00000000

Table 7-31 MAC Station Management Register Description

Bit Number Bit Name Description

[15:0] Station management data. This register contains a 16-bit data value for the station
management function.

ETHERNET CONTROLLER KS32C50100 RISC MICROCONTROLLER

7-46

MAC Station Management Data Control and Address Register

The MAC controller provides support for reading and writing station management data to the PHY. Setting options
in station management registers does not affect the controller. Some PHYs may not support the option to suppress
preambles after the first operation.

Table 7-32 STACON Register

Register Offset Address R/W Description Reset Value

STACON 0xA01C R/W Station management control and address 0x00008000

Table 7-33 STACON Register Description

Bit Number Bit Name Description

[4:0] PHY register address (Addr) A 5-bit address, contained in the PHY, of the register to be
read or written.

[9:5] PHY address (PHY) The 5-bit address of the PHY device to be read or written.

[10] Write (Wr) To initiate a write operation, set this bit to "1". For a read
operation, clear it to "0".

[11] Busy bit (Busy) To start a read or write operation, set this bit to "1". The
MAC controller clears the Busy bit automatically when the
operation is completed.

[12] Preamble suppress (PreSup) If you set this bit, the preamble is not sent to the PHY. If it is
clear, the preamble is sent.

[15:13] MDC clock rating Control the MDC period.
MD_CA[15:13] MDC period
 000 16 × (1/fMCLK)
 001 18 × (1/fMCLK)
 010 20 × (1/fMCLK)
 . .
 . .

 111 30 × (1/fMCLK)
MDC period = MD_CA[15:13] × 2 + 16
Default MDC_CA[15:13] = 100

[31:16] Reserved Not applicable.

KS32C50100 RISC MICROCONTROLLER ETHERNET CONTROLLER

7-47

CAM Enable Register

The CAM enable register, CAMEN, indicates which CAM entries are valid, using a direct comparison mode. Up to
21 entries, numbered 0 through 20, may be active, depending on the CAM size. If the CAM is smaller than 21
entries, the higher bits are ignored.

Table 7-34 CAMEN Register

Register Offset Address R/W Description Reset Value

CAMEN 0xA028 R/W CAM enable 0x00000000

Table 7-35 CAM Enable Register Description

Bit Number Bit Name Description

[20:0] CAM enable (CAMEn) Set the bits in this 21-bit value to selectively enable CAM
locations 20 through 0. To disable a CAM location, clear the
appropriate bit.

[31:21] Reserved Not applicable.

ETHERNET CONTROLLER KS32C50100 RISC MICROCONTROLLER

7-48

MAC Missed Error Count Register

The value in the missed error count register, EMISSCNT, indicates the number of packets that were discarded due
to various type of errors. Together with status information on packets transmitted and received, the missed error
count register and the two Pause count registers provide the information required for station management.

Reading the missed error counter register clears the register. It is then the responsibility of software to maintain a
global count with more bits of precision.

The counter rolls over from 0x7FFF to 0x8000 and sets the corresponding bit in the MAC control register. It also
generates an interrupt if the corresponding interrupt enable bit is set. If station management software wants more
frequent interrupts, you can set the missed error count register to a value closer to the rollover value of 0x7FFF. For
example, setting a register to 0x7F00 would generate an interrupt when the count value reaches 256 occurrences.

Table 7-36 EMISSCNT Register

Register Offset Address R/W Description Reset Value

EMISSCNT 0xA03C R(Clr)/
W

Missed error count 0x00000000

Table 7-37 Missed Error Count Register Description

Bit Number Bit Name Description

[15:0] Alignment error count (AlignErrCnt) The number of packets received with alignment errors. This
software counter increments at the end of a packet
reception if the Rx_Stat value indicates an alignment error.

CRC error count (CRCErrCnt) The number of packets received with a CRC error. This
software counter increments if the Rx_Stat value indicates
a CRC error. If the Rx_Stat value indicates another type of
error, such as an alignment error, this counter is not
incremented.

Missed error count (MissErrCnt) The number of valid packets rejected by the MAC unit
because of MAC receive FIFO overflows, parity errors, or
because the Rx_En bit was cleared. This count does not
include the number of packets rejected by the CAM.

[31:16] Reserved Not applicable.

KS32C50100 RISC MICROCONTROLLER ETHERNET CONTROLLER

7-49

MAC Received Pause Count Register

The received Pause count register, EPZCNT, stores the current value of the 16-bit received Pause counter.

MAC Remote Pause Count Register

The remote Pause count register, ERMPZCNT, stores the current value of the 16-bit remote Pause counter.

Table 7-38 EPZCNT Register

Register Offset Address R/W Description Reset Value

EPZCNT 0xA040 R Pause count 0x00000000

Table 7-39 Received Pause Count Register Description

Bit Number Bit Name Description

[15:0] Received Pause count (EPZCNT) The count value indicates the number of time slots the
transmitter was paused due to the receipt of control Pause
operation packets from the MAC.

Table 7-40 ERMPZCNT Register

Register Offset Address R/W Description Reset Value

ERMPZCNT 0xA044 R Remote pause count 0x0000000

Table 7-41 Remote Pause Count Register Description

Bit Number Bit Name Description

[15:0] Remote Pause count
(ERMPZCNT)

The count value indicates the number of time slots that a
remote MAC was paused as a result of its sending control
Pause operation packets.

ETHERNET CONTROLLER KS32C50100 RISC MICROCONTROLLER

7-50

MAC Transmit Control Frame Status

The transmit control frame status register, ETXSTAT, is a RAM-based register which provides the status of a MAC
control packet as it is sent to a remote station. This operation is controlled by the SdPause bit in the transmit control
register, MACTXCON.

It is the responsibility of the DMA engine to read this register, and to generate an interrupt to notify the system that
the transmission of a MAC control packet has been completed.

Table 7-42 ETXSTAT Register

Register Offset Address R/W Description Reset Value

ETXSTAT 0x9040 R Transmit control frame status 0x00000000

Table 7-43 Transmit Control Frame Register Description

Bit Number Bit Name Description

[15:0] Tx_Stat value A 16-bit value indicating the status of a MAC control packet
as it is sent to a remote station. Read by the DMA engine.

KS32C50100 RISC MICROCONTROLLER ETHERNET CONTROLLER

7-51

ETHERNET CONTROLLER OPERATIONS

This section contains additional details about the following operations of the KS32C50100 Ethernet controller:

• MAC frame and packet formats

• Transmitting a frame

• Receiving a frame

• Full-duplex Pause operation

• Error signaling and network management

MAC Frame and Packet Formats

The MAC transmits each byte of all fields, except the FCS, least-significant bit first. In this document, the term
"packet" is used to denote all of the bytes that are transmitted and received, while "frame" refers only to the bytes
delivered by the station for transmission, and to the station who is receiving.

Table 7-44 lists the eight fields in a standard data packet (IEEE 802.3/Ethernet frame). See also Figure 7-13.

Table 7-44 MAC Frame and Packet Format Description

Field Name Field Size Description

Preamble 7 bytes The bits in each preamble byte are 10101010, transmitted
from left to right.

Start frame delimiter (SFD) 1 byte The SFD bits are 10101011, transmitted from left to right.

Destination address 6 bytes The destination address can be an individual address or a
multicast (or broadcast) address.

Source address 6 bytes The MAC does not interpret the source address bytes.
However, to qualify as a valid station address, the first bit
transmitted (the LSB of the first byte) must be a "0".

Length or type 2 bytes The MAC treats length fields greater than 1500 bytes as
type fields. Byte values less than or equal to 1500 indicate
the number of logical link control (LLC) data bytes in the
data field. The MAC transmits the high-order byte first.

Logical link control (LLC) data 46 to 1500 bytes Data bytes used for logical link control.

PAD 0 to 46 bytes If the LLC data is less than 46 bytes long, the MAC
transmits pad bytes of all zeros.

Frame check sequence (FCS) 4 bytes The FCS field contains a 16-bit error detection code that is
computed as a function of all fields except the preamble,
the SFD, and the FCS itself. The FCS – 32 polynomial
function is as follows: " X32 + X26 + X23 + X16 + X12 +
X11 + X10 + X8 + X7 + X5 + X4 + X2 + X1 + 1".

ETHERNET CONTROLLER KS32C50100 RISC MICROCONTROLLER

7-52

Options That Affect the Standard MAC Frame

There are a number of factors and options which can affect the standard MAC frame, as described in Table 7-44:

• Some PHYs may deliver a longer or shorter preamble.

• Short packet mode permits LLC data fields with less than 46 bytes. Options are available to suppress padding
and to support the reception of short packets.

• Long packet mode supports LLC data fields with more than 1500 bytes. An option is also available to support to
reception of long packets.

• "No CRC" mode suppresses the appending of a CRC field.

• "Ignore CRC" mode allows the reception of packets without valid CRC fields.

Figure 7-15 Fields of an IEEE802.3/Ethernet Packet (Frame)

PACKET (ENCODED ON THE MEDIUM)

DATA FRAME (SENT BY USER)

DATA FRAME (DELIVERED TO USER)

ADDED BY
TRANSMITTER,
STRIPPED BY

RECEIVER

ADDED BY TRANSMITTER

OPTIONALY STRIPPED
BY RECEIVER

7 BIT 1

PREAMBLE
S
F
D

DESTINATION
ADDRESS

SOURCE
ADDRESS

LENGTH
OR

TYPE
LLC DATA PAD FCS

6 BYTES 6 BYTES 2 BYTES 46-1500 BYTES 0-46 4 BYTES

1 BYTE

DSAP SSAP CTRL

LLC HEADER LLC INFORMATION FIELD

IP/X.25/.....

SNAP

OUI PID IP/X.25/.....

DSAP SSAP CTRL

1 BYTE 1 BYTE 3 BYTES 2 BYTES

OR

DSAP = Destination service access point
CTRL = Control field
OUI = Organizationally unique identifier
SFD = Starting frame delimiter

SSAP = Source service access point
SNAP = Subnetwork access protocol
PID = Protocol identifier
LLC = Logical link control
FCS = Frame check sequence

KS32C50100 RISC MICROCONTROLLER ETHERNET CONTROLLER

7-53

Destination Address Format

Bit 0 of the destination address is an address type designation bit. It identifies the address as either an individual or
a group address. Group addresses are sometimes called "multicast" addresses and individual addresses are called
"unicast" addresses. The broadcast address is a special group address in the special hex format: FF-FF-FF-FF-FF-
FF.

Bit 1 of the destination address distinguishes between locally or globally administered addresses. For globally
administered or universal (U) addresses, the bit value is "0". If an address is to be assigned locally, you must set
this bit to "1". For the broadcast address, this bit must also be set to "1".

Special Flow Control Destination Address

The current specification for full-duplex flow control specifies a special destination address for the Pause operation
packet. In order for the MAC to receive packets which contain this special destination address, the address must be
programmed in one of the CAM entries. This CAM entry must then be enabled, and the CAM activated.

Some CAM entries are also used when generating a flow contol packet using the SdPause bit in the MAC transmit
control register.

Figure 7-16 Destination Address Format

[0] Individual or group flag (I/G)
0 = Individual (= unicast) address.
1 = Group (= multicast) address.

[1] Universal or local address flag (U/L)
0 = Universal address.
1 = Local address.

DESTINATION ADDRESS

BLOCK ID or OUI (3 BYTES)
MAC ADDRESS (3 BYTES)

U/L I/G

ETHERNET CONTROLLER KS32C50100 RISC MICROCONTROLLER

7-54

TRANSMITTING A FRAME

To transmit a frame, the transmit enable bit in the transmit control register must be set and the transmit halt request
bit must be zero. In addition, the halt immediate and halt request bits in the MAC control register must be "0". These
conditions are normally set after any BDMA controller initialization has occurred. The system then uses the Tx_wr#
and Tx_EOF signals to transfer bytes to the transmit data buffer.

The transmit state machine starts transmitting the data in the FIFO, and will retain the first 64 bytes until after this
station has acquired the net. At that time, the transmit block requests more data and transmits it until the system
asserts the Tx_EOF input, signaling the end of data to be transmitted. The transmit block appends the calculated
CRC to the end of the packet, and transmission ends. It then sets the transmit status register bit 0, signaling a
successful transmission. This action may causes an interrupt, if enabled.

A frame transmit operation can be subdivided into two operations, 1) a MII interface operation, and 2) a BDMA/
MAC interface operation.

BDI TRANSMIT OPERATION

The BDI transmit operation is a simple FIFO mechanism. The BDMA engine stores data to be transmitted, and the
transmit state machine empties it when the MAC successfully acquires the net.

Note that the two time domains intersect at the FIFO controller. The writing and reading of data is asynchronous
and on different clocks. Reading is driven by either a 25-MHz or a 2.5-MHz transmit clock. Writing is driven by the
synchronous Sys_clk, which is asynchronous to Tx_clk.

After a reset, the transmit FIFO is empty. The transmit block asserts the Tx_rdy signal, and transmission is
disabled. To enable transmission, the system must set the transmit enable bit in the transmit control register. In
addition, eight bytes of data must be present in the transmit FIFO. The BDMA engine can start stuffing data into the
FIFO, and then enable the transmit bit. (Or it can enable the transmit bit first and then start stuffing data into the
FIFO.) The transmit operation can only start if both of these conditions are met.

KS32C50100 RISC MICROCONTROLLER ETHERNET CONTROLLER

7-55

BDI Transmit Timing

When the transmit block asserts the Tx_rdy signal, the BDMA engine can write data into the transmit FIFO by
asserting the Tx_wr# signal. Figure 7-15 shows timing sequences for back-to-back transfers and transfers with wait
states. This is a synchronous interface, which means that data is latched in at the rising edge of the Sys_clk when
Tx_wr# is asserted. For slower interfaces, the rising edge of Tx_wr# can be delayed.

This is the equivalent of asserting a wait state in a synchronous operation. The transmit FIFO machine checks the
Tx_par and the Tx_EOF bits. If there is a parity error, the transmit block aborts the transmission, resets the FIFO,
and generates an interrupt by setting the TxPar bit in the transmit status register.

The Tx_EOF bit signals the end of one frame to be transmitted. When it detects this bit, the transmit block de-
asserts Tx_rdy until it has transmitted the packet. It then re-asserts Tx_rdy when the BDMA can transfer the next
packet into the MAC FIFO.

Figure 7-17 BDI Transmit Data Timing

~ ~

Sys_clk

Rx_rdy

~ ~

Rx_wr#

~ ~
Rx_DB B1 B2 B3

~ ~
~ ~

Rx_par B1 B2 B3

~ ~
~ ~

Rx_BE# B1 B2 B3

~ ~
~ ~

Rx_EOF

~ ~
~ ~

ETHERNET CONTROLLER KS32C50100 RISC MICROCONTROLLER

7-56

MII TRANSMIT OPERATION

The transmit block consists of three state machines: the gap_ok state machine, the back_off state machine, and
the main transmit state machine.

The gap_ok State Machine

The gap_ok state machine tracks and counts the inter-gap timing between the frames. When not operating in full-
duplex mode, it counts 96 bit times from the deassertion of the carrier sense (CrS) signal. If there is any traffic
within the first 64 bit times, the gap_ok state machine reset itself and starts counting from zero.

If there is any traffic in the last 1/3 of the inter-frame gap, the gap_ok state machine continues counting. Following
a successful transmission, a gap_ok is sent at the end of the next 96 bit times, regardless of the network traffic.

In full-duplex mode, the gap_ok state machine starts counting at the end of the transmission and the gap_ok signal
is sent at the end of the 96 bit times, regardless of the network traffic.

Figure 7-18 CSMA/CD Transmit Operation

Carrier sense == ON?

; To upper level layer

Done. Complete Tx

Assemble MAC frame

Wait for interframe gap
(96-bit time), start Tx
with preamble + SFD

Stop transmission,
send 32-bit jam,
++Attemp_count

Report attempt limit
exceeded error

Wait for back-off time:
(= slot time x r),
k = minimum (n, back-off limit (= 10))
0 <= n < Max_attempt (= 16)
0 <= random integer (r) <= 2 k

Preamble and SFD
transmitted?

Attempt_count >=
Max_attempt?

Continue
transmission

Collision detected?

Yes

Yes

Yes

Yes

KS32C50100 RISC MICROCONTROLLER ETHERNET CONTROLLER

7-57

The back_off State Machine

The back_off state machine implements the back-off and retry algorithm of the 802.3 CSMA/CD. When a collision
is detected, the main transmit state machine starts the back_off state machine’s counters and waits for the back-off
time (including zero) to elapse. This time is a multiple of 512 bit times that elapse before the packet that caused the
collision is re-transmitted.

Each time there is a collision (for one single packet), the back_off state machine increments an internal retry
attempt countner. A 11-bit pseudo random number generator outputs a random number by selecting a subset of the
value of the generator at any time. The subset is incremented by one bit for each subsequent attempt. This
implementation is represented by the following equation:

0 =< random integer(r) < 2K

K = min (n, backoff limit (= 10))

where "r" is the number of slot times the MAC must wait in case of a collision, and "n" is the number of retry
attempts.

For example, after the first collision, "n" is 1 and "r" is a random number between 0 and 1. The pseudo random
generator in this case is one-bit wide and gives a random number of either 0 or 1. After the second attempt, "r" is a
random number between 0 and 3. Therefore, the state machine looks at the two least-significant bits of the random
generator (n = 2), which gives a value between 0 and 3.

The Main Transmit State Machine

The main transmit state machine implements the remaining MAC layer protocols. If there is data to be transferred,
if the inter-frame gap is valid, and if the MII is ready (that is, if there are no collisions and no CRS in full-duplex
mode), the transmit block then transmits the preamble followed by the SFD.

After the SFD and preamble are transmitted, the block transmits 64 bytes of the data, regardless of the packet
length, unless short transmission is enabled. This means that if the packet is less than 64 bytes, it will pad the LLC
data field with zeros. It will also appends the CRC to the end of the packet, if CRC generation is enabled.

If there is any collision during this first 72 bytes (8 bytes of preamble and SFD, and 64 bytes of the frame), the main
transmit state machine stops the transmission and transmits a jam pattern (32 bits of 1’s). It then increments the
collision attempt counter, returns control to the back_off state machine, and re-transmits the packet when the
back-off time has elapsed and the gap time is valid.

If there are no collisions, the transmit block transmits the rest of the packet. At this time (that is, after the first 60
bytes have been transmitted without collisions), the main transmit state machine lets the BDMA engine overwrite
the packet. After it transmits the first 64 bytes, the transmit block transmits the rest of the packet, appending the
CRC to the end. Parity errors, FIFO errors, or more than 16 collisions will cause the transmit state machine to abort
the packet (no retry) and queue up the next packet.

In case of any transmission errors, the transmit block sets the appropriate error bit in the transmit status register. It
may also generate an interrupt, depending on the enable bit settings in the transmit control register.

ETHERNET CONTROLLER KS32C50100 RISC MICROCONTROLLER

7-58

Figure 7-19 Timing for Transmit without Collision

Figure 7-20 Timing for Transmit with Collision in Preamble

TxD [3:0]

~ ~

P R E A M B L E

Tx_en

~ ~

Tx_clk

CrS

~ ~

Col

~ ~
~ ~

~ ~

TxD [3:0]

Tx_en

Tx_clk

CrS

Col

P1 P2 P3 P4 P5 P6 P7 P8 J1 J2 J3 J4

KS32C50100 RISC MICROCONTROLLER ETHERNET CONTROLLER

7-59

RECEIVING A FRAME

The receive block, when enabled, constantly monitors a data stream coming either from the MII or, if in loop-back
mode, from the transmit block. The MII supplies from zero to seven bytes of preamble, followed by the start frame
delimiter (SFD). The receive block checks that the first nibbles received are preamble, and then looks for the SFD
(10101011) in the first eight bytes. If it does not detect the SFD by then, it treats the packet as a fragment and
discards it.

The first nibble of destination address follows the SFD, least-significant bits first. When it has received a byte, the
receive block generates parity, stores the byte with its parity in the receive FIFO, and asserts Rx_rdy. It combines
subsequent nibbles into bytes and stores them in the FIFO.

BDI RECEIVE DATA TIMING

When the system asserts Rx_rd#, the receive block reads the first byte from the FIFO, checks parity, and drives the
byte on Rx_DB, and the byte's parity on Rx_par. If the FIFO is now empty, it drops Rx_rdy. When it drives out the
last byte of a packet, it asserts Rx_EOF.

Figure 7-19 shows the timing sequence for transmitting bytes back-to-back, transmitting with wait states, and
transmitting the last byte.

Figure 7-21 BDI Receive Data Timing

~ ~
Sys_clk

Rx_rd#

~ ~

B1 B2 B3Rx_DB

~ ~
~ ~

BN

~ ~

PAR PAR PARRx_par

~ ~
~ ~

PAR

Rx_rdy

~ ~

Rx_EOF

~ ~

ETHERNET CONTROLLER KS32C50100 RISC MICROCONTROLLER

7-60

RECEIVE FRAME TIMING WITH/WITHOUT ERROR

If, during frame reception, both Rx_DV and Rx_er are asserted, a CRC error is reported for the current packet.

As each nibble of the destination address is received, the CAM block attempts to recognize it. After receving the
last destination address nibble, if the CAM block rejects the packet, the receive block asserts the Rx_toss signal,
and discards any bytes not yet removed from the receive FIFO that came from the current packet. If this operation
leaves the FIFO empty, it drops Rx_rdy.

Figure 7-20 shows the MII receive data timing without error. The RX_DV signal, which entered the MII from the
PCS layer, will be ON when the PCS layer recovers the Rx_clk from the receive bit stream and delivers the nibble
data on RxD[3:0] data line. The RX_DV signal must be ON before the starting frame delimiter(SFD) is received.
When the Rx_DV signal is ON, the preamble and SFD parts of the frame header are delivered to MII, synchronized
with the 25-MHz Rx_clk. (The carrier sense (CrS) signal was turned on during receive frame.)

As its response to the Rx_er signal, the MII immediately inserts an alternative data bit stream into the receive data
stream. As a result, the MAC discards this received error frame using the FCS.

Figure 7-22 Receiving Frame without Error

Figure 7-23 Receiving Frame with Error

RxD [3:0] Preamble

Rx_DV

~ ~

Rx_clk

CrS

Rx_er

~ ~
~ ~

~ ~
~ ~

SFD DA CRC

~ ~

RxD [3:0] Preamble

Rx_DV

~ ~

Rx_clk

CrS

Rx_er

~ ~
~ ~

~ ~
~ ~

SFD DA CRC

~ ~

KS32C50100 RISC MICROCONTROLLER ETHERNET CONTROLLER

7-61

Figure 7-24 CSMA/CD Receive Operation

Carrier sense == ON?

MAC driver software
(software jobs for typical LAN cards)

Carrier sense = ON,
after detecting SFD,
store byte-stream in FIFO

Yes

No
Recognize address?

Discard the frame
report error status

Frame too short ?

Frame too long?

Valid FCS?

Move the byte stream in
the FIFO to the receive
buffer memory

Interrupt to CPU for
handing the frame

Check ethertype or length field

Disassemble frame

Signal to upper layer

ETHERNET CONTROLLER KS32C50100 RISC MICROCONTROLLER

7-62

THE MII STATION MANAGER

The MDIO (management data input/output) signal line is the transmit and receive path for control/status information
for the station management entity, STA. The STA controls and reads the current operating status of the PHY layer.
The speed of transmit and receive operations is determined by the management data clock, MDC.

The frame structure of the STA which writes command to control registers, or which reads the status register of a
PHY device, is shown Table 7-45. The PHY address is defined as the identification (ID) value of the various PHY
devices that may be concected to a single MAC. Register addresses can contain the the ID value for up to 32 types
of PHY registers.

Turn-around bits are used to regulate the turn-around time of the transmit/receive direction between the STA and a
PHY device. So that the STA can read the set value of a PHY device register, it must transmit the frame data, up to
a specific register address, to the PHY device. During the write time (which is an undirected transmission), the STA
transmits a stream of turn-around bits. As a result, by transmitting a write or read message to a PHY device
through the MDIO, the STA can issue a request to set the operation or to read the operation status.

As its response this message, the PHY device resets itself, sets loop-back mode, selects active/nonactive auto-
negotiation process, separates the PHY and MII electrically, and determines whether or not to activate the collision
detection process.

When it receives a read command, the PHY reports the kind of PHY device it is, such as 100Base-T4, FDX
100base-X, HDX 100Base-X, 10-Mb/s FDX, or 10-Mb/s HDX.

Table 7-45 STA Frame Structure Description

Preamble Start of
Frame

Operation
Code

PHY
Address

Register
Address

Turn-
around

Data Idle

Write
(Command)

11111111
(32 bits)

01 01 (write) 5 bits 5 bits 10 (2 bits) 16 bits
(register
value)

Z

Read (Status) 11111111
(32 bits)

01 10 (read) 5 bits 5 bits Z0 16 bits
(register
value)

Z

Direction: STA to PHY Direction: PHY to STA

KS32C50100 RISC MICROCONTROLLER ETHERNET CONTROLLER

7-63

FULL-DUPLEX PAUSE OPERATIONS

Transmit Pause Operation

To enable a full-duplex Pause operation, the special broadcast address for MAC control packets must be
programmed into the CAM, and the corresponding CAM enable bit set. The special broadcast address can be a
CAM location. To optimize the utilization CAM entries, you can specify a preference for specific CAM locations. This
feature is described below.

The MAC receive circuit recognizes a full-duplex Pause operation when the following conditions are met:

• The type/length field has the special value for MAC Control packets, 0x8808.

• The packet is recognized by the CAM.

• The length of the packet is 64 bytes.

• The operation field specifies a Pause operation.

When a full-duplex Pause operation is recognized, the MAC receive circuit loads the operand value into the Pause
count register. It then signals both the MAC and the BDMA engine that the Pause should begin at the end of the
current packet, if any.

The Pause circuit maintains the Pause counter, and decrements it to zero. It does this before it signals the end of
the Pause operation, and before allowing the transmit circuit to resume its operation.

If a second full-duplex Pause operation is recognized while the first operation is in effect, the Pause counter is reset
with the current operand value. Note that a count value of zero may cause pre-mature termination of a Pause
operation that is already in progress.

Remote Pause Operation

To send a remote Pause operation, following these steps:

1. Program CAM location 0 with the destination address.

2. Program CAM location 1 with the source address.

3. Program CAM location 18 with length/type field, opcode, and operand.

4. Program the 2 bytes that follow the operand with 0000H.

5. Program the three double words that follow CAM location 18 with zeros.

6. Write the transmit control register to set the SdPause bit.

The destination address and source address are commonly used as the special broadcast address for MAC control
frames and the local station address, respectively. To support future uses of MAC control frames, these values are
fully programmable in the flow control 100-/10-Mbit/s Ethernet MAC.

When the remote Pause operation is completion, the transmit status is written to the transmit control frame status
register. The BDMA engine is responsible for providing an interrupt enable control.

ETHERNET CONTROLLER KS32C50100 RISC MICROCONTROLLER

7-64

Error Signaling

The error/abnormal operation flags asserted by the MAC are arranged into transmit and receive groups. These flag
groups are located either in the transmit status register (Tx_stat) or the receive status register (Rx_stat). A missed
packet error counter is included for system network management purposes.

Normally, software does not have enough direct control to examine the status registers directly. Therefore, the
BDMA engine must store the values in system memory so that they can be examined there by software.

Reporting of Transmission Errors

A transmit operation terminates when the entire packet (preamble, SFD, data, and CRC) has been successfully
transmitted through the MII without a collision. In addition, the transmit block detects and reports both internal and
network errors.

Under the following conditions, the transmit operation will be aborted (in most cases).

Parity error The 8 bits of data coming in through the BDII has an optional parity bit. A parity bit
also protects each byte in the MAC transmit FIFO. If a parity error occurs, it is
reported to the transmit state machine, and the transmission is aborted. A detected
parity error sets the TxPar bit in the transmit status register.

Transmit FIFO underrun The 80-byte transmit FIFO can handle a system latency of 6.4 ß¡ (640 bit times). An
underrun of the transmit FIFO during transmission indicates a system problem
(namely, that the system cannot keep up with the demands of the MAC), and the
transmission is aborted.

No CRS The carrier sense signal (CrS) is monitored from the begining of the start of frame
delimiter (SFD) to the last byte transmitted. A "No CrS" indicates that CrS was never
present during transmission (a possible network problem), but the transmission will
NOT be aborted. Note that during loop-back mode, the MAC is disconnected from the
network, and a "No CRC" will not be detected.

Excessive collision error Whenever the MAC encounters a collision during transmit, it will back off, update the
"attempt counter," and retry the transmission later on. When the attempt counter
reaches 16 (16 attempts that all resulted in a collision), the transmission is aborted.
This indicates a network problem.

Late collision error (Transmit out of window collision)
Normally, the MAC would detect a collision (if one occurs) within the first 64 bytes of
data that are transmitted, including the preamble and SFD. If a collision occurs after
this time frame, a possible network problem is indicated. The error is reported to the
transmit state machine, but the transmission is NOT aborted. Instead, it performs a
back-off, as usual.

Excessive deferral error During its first attempt to send a packet, the MAC may have to defer the transmission
because the network is busy. If this deferral time is longer than 32 K bit times, the
transmission is aborted. Excessive deferral errors indicate a possible network
problem.

KS32C50100 RISC MICROCONTROLLER ETHERNET CONTROLLER

7-65

Reporting of Receive Errors

When it detects a start of frame delimiter (SFD), the receive state machine starts putting data it has received from
the MII into the receive FIFO. It also checks for internal errors (FIFO overruns) while reception is in progress.

When the receive operation is completed, the receive state machine checks for external errors, such as frame
alignment, length, CRC, and frame too long.

The following is a description of the types of errors that may occur during a receive operation:

Priority error A parity bit protects each byte in the MAC receive FIFO. If a parity error occurs, it is
reported to the receive state machine. A detected parity error sets the RxPar bit in the
receive status register.

Frame Alignment Error (Dribble)
After receiving a packet, the receive block checks that the incoming packet (including
CRC) was correctly framed on an 8-bit boundary. If it is not and if the CRC is invalid,
data has been disrupted through the network, and the receive block reports a frame
alignment error. A CRC error is also reported.

CRC Error After receiving a packet, the receive block checks the CRC for validity, and reports a
CRC error if it is invalid. The receive unit can detect network-related errors such as
CRC, frame alignment, and length errors. It can also detect these types of errors in the
following combinations:

– CRC errors only

– Frame alignment and CRC errors only

– Length and CRC errors only

– Frame alignment, length, and CRC errors

Frame too long The receive block checks the length of the incoming packet at the end of reception
(including CRC, but excluding preamble and SFD). If the length is longer than the
maximum frame size of 1518 bytes, the receive block reports receiving a "long packet",
unless long frame mode is enabled.

Receive FIFO overrun During reception, the incoming data are put into the receive FIFO temporarily before
they are transferred to the system memory. If the FIFO is filled up because of excessive
system latency or for other reasons, the receive block sets the overrun bit in the receive
status register.

MII error The PHY informs the MAC if it detects a medium error (such as a coding violation) by
asserting the input pin Rx_er. When the MAC sees Rx_er asserted, it sets CRCErr bit of
the receive status register.

ETHERNET CONTROLLER KS32C50100 RISC MICROCONTROLLER

7-66

Timing Parameters for MII Transactions

The timing diagrams in this section conform to the guidelines described in the "Draft Supplement to ANSI/IEEE Std.
802.3, Section 22.3, Signal Characteristics."

Figure 7-25 Transmit Signal Timing Relationship at MII

Figure 7-26 Receive Signal Timing Relationship at MII

Figure 7-27 MDIO Sourced by PHY

Figure 7-28 MDIO Sourced by STA

TxD [3:0],
Tx_en

0 ns MIN, 25 ns MAX

Tx_clk

RxD [3:0],
Rx_DV,

Rx_er

Rx_clk

10 ns MIN 10 ns MIN

INPUT VALID

MDIO

MDC

7 Cycles 7 Cycles

0 ns MIN, 300 ns MAX

MDIO

MDC

10 ns MIN 10 ns MIN

INPUT VALID

KS32C50100 RISC MICROCONTROLLER HDLC CONTROLLERS

8-1

8 HDLC CONTROLLERS

The KS32C50100 has two high-level data link controllers (HDLCs) to support two-channel serial communications.

The HDLC module supports a CPU/data link interface that conforms to the synchronous data link control (SDLC)
and high-level data link control (HDLC) standards. In addition, the following function blocks are integrated into the
HDLC module:

• Two-channel DMA engine for Tx/Rx

• Support buffer descriptors per frame

• Digital phase-locked loop (DPLL) block

• Baud rate generator (BRG)

HDLC CONTROLLERS KS32C50100 RISC MICROCONTROLLER

8-2

FEATURES

Important features of the KS32C50100 HDLC block are as follows:

• Protocol features:

– Flag detection and synchronization
– Zero insertion and deletion
– Idle detection and transmission
– FCS encoding and detection (16-bit)
– Abort detection and transmission

• Four address station registers and one mask register for address search mode

• Selectable CRC/No-CRC mode

• Automatic CRC generator preset

• Digital PLL block for clock recovery

• Baud rate generator

• NRZ/NRZI/FM/Manchester data formats for Tx/Rx

• Loop-back and auto-echo mode

• Tx and Rx FIFOs with 8-word (8 X 32-bit) depth

• Selectable 1-word or 4-word data transfer mode for Tx/Rx

• Data alignment logic

• Endian translation

• Programmable interrupts

• Modem interface

• Hardware flow control

• Buffer descriptor for Tx / Rx

• Two-channel DMA Controller

– Two channels for HTxFIFO and HRXFIFO
– Single or 4-word (4 X 32-bit) burst transfer mode
– Maximum frame size allows for up to 64K bytes

• Up to 10 Mbps full-duplex operation using an external/internal clock

• HDLC frame length based on octets

KS32C50100 RISC MICROCONTROLLER HDLC CONTROLLERS

8-3

FUNCTION DESCRIPTIONS

Figure 8-1 shows the HDLC module's function blocks. These function blocks are described in detail in the following
sections.

Figure 8-1 HDLC Module Block Diagram

Bus Arbiter/
Controller

DMA
Controller

HDLC Control and
Status Registers

S
Y
S
T
E
M

B
U
S

FCS Checker

Tx FIFO
(8 Words)

Receive Shift
Register

Rx FIFO
(8 Words)

Data

Control

Address

Address

RxD

TxD

Zero
Deletion

Flag/Abort/Idle
Detection

Zero
Insertion

Decoder

Encoder

BRG

DPLL

R
E
M
O
T
E

S
E
R
I
A
L

P
O
R
T

brgout1

dplloutR
dplloutT

RxC

brgout2

loop

autoecho

Flag/Abort/Idle
Generator and

Transmitter

FCS Generator

TxC

MCLK2
(=25 MHz)

Word

HDLC CONTROLLERS KS32C50100 RISC MICROCONTROLLER

8-4

HDLC FRAME FORMAT

The HDLC transmits and receives data (address, control, information and CRC field) in a standard format called a
frame. All frames start with an opening flag (beginning of flag, BOF, 7EH) and end with a closing flag (end of flag,
EOF, 7EH). Between the opening and the closing flags, a frame contains an address (A) field, a control (C) field, an
information (I) field (optional), and a frame check sequence (FCS) field (see Table 8-1).

NOTE: The address field can be extended up to four bytes using a optional software control setting.

Flag (F)

A flag is a unique binary pattern (01111110) that is used to delimit HDLC frames. This pattern is generated internally
by the transmitter. An opening flag starts a frame and a closing flag ends the frame. Opening flags and closing flags
are automatically appended to frames.

A single flag pattern can optionally serve as both the closing flag of one frame and the opening flag of the next one.
This feature is controlled by the double-flag (FF), single-flag (F), or frame separator selection bit (the TxSDFL bit in
the HCON register).

Order of Bit Transmission

Address field, control field, and information field bytes are transferred between the CPU and the HDLC module in
parallel over the data bus. These bytes are transmitted and received LSB first. The 16-bit frame check sequence
(FCS) field is, however, transmitted and received MSB first.

Table 8-1 HDLC Data Frame Format

Opening
Flag

Address
Field

Control
Field

Information
Field

Frame Check
Sequence Field

Closing
Flag

01111110 8 bits per byte 8 bits per byte 8 bits per byte;
variable length

16 bits 01111110

KS32C50100 RISC MICROCONTROLLER HDLC CONTROLLERS

8-5

Address (A) Field

The eight bits that follow the opening flag are called address (A) field. The address field are expendable. To extend
this address byte, simply user-defined address write to the station address register. To check address byte against
the incoming data, have to be used the MASK register. If match occurred, the frame's data including address and
CRC(16-bit) into the HRXFIFO and then moved to system memory. If it is not matched, simply discarded.
KS32C50100 allows up to 32-bits address. For instance, SDLC and LAPB use an 8-bit address. LAPD further
divides its 16-bit address into different fields to specify various access points one piece of equipment. Some HDLC-
type protocol allows for extended addressing beyond 16-bit.

Control (C) Field

The eight bits that follow the address field are called the control (link control, C) field. The KS32C50100 HDLC
module treats the control field in the same way as the information field. That is, it passes the eight bits to the CPU
or memory during reception. The CPU is responsible for how the control field is handled and what happens to it.

Information (I) Field

The information (I) field follows the control (C) field and precedes the frame check sequence (FCS) field. The
information field contains the data to be transferred. Not every frame, however, must actually contain information
data. The word length of the I-field is eight bits in the KS32C50100 HDLC module. And Its total length can be
extended by 8 bits until terminated by the FCS field and the closing flag.

Frame Check Sequence (FCS) Field

The 16 bits that precede the closing flag comprise the frame check sequence (FCS) field. The FCS field contains
the cyclic redundancy check character, CRCC. The polynomial x16 + x12 + x5 + 1 is used both for the transmitter
and the receiver. Both the transmitter and the receiver polynomial registers are all initialized to 1 prior to calculating
of the FCS. The transmitter calculates the frame check sequence of all address bits, control bits, and information
fields. It then transmits the complement of the resulting remainder as the FCS value.

The receiver performs a similar calculation for all address, control, and information bits, as well as for all the FCS
fields received. It then compares the result to F0B8H. When a match occurs, the frame valid (RxFV) status bit is set
to '1'. When the result does not match, the receiver sets the CRC error bit (RxCRCE) to '1'. The transmitter and the
receiver automatically perform these FCS generation, transmission and checking functions. The KS32C50100
HDLC module also supports NO CRC operation mode. In NO CRC mode, transmitter does not append FCS to the
end of data and the receiver also does not check FCS. In this mode, the data preceding the closing flag is
transferred to the HRXFIFO. In CRC mode, the FCS field is transferred to the HRXFIFO.

HDLC CONTROLLERS KS32C50100 RISC MICROCONTROLLER

8-6

PROTOCOL FEATURES

INVALID FRAME

A valid frame must have at least the A, C, and FCS fields between its opening and closing flags. Even if no-CRC
mode is set, the frame size should not be less than 32 bits. There are three invalid frame conditions:

• Short frame: a frame that contains less than 25 bits between flags. Short frames are ignored.

• Invalid frame: a frame with 25 bits or more, having a CRC compare error or non- byte-aligned. Invalid frames
are transferred to the HRXFIFO, then the invalid frame error flag (RxCRCE, RxNO in the status register) is set
to indicate that an invalid frame has been received.

• Aborted frame: a frame aborted by the reception of an abort sequence is handled as an invalid frame.

ZERO INSERTION AND ZERO DELETION

The zero insertion and zero deletion feature, which allows the content of a frame to be transparent, is handled
automatically by the HDLC module. While the transmitter inserts a binary '0' following any sequence of five 1s
within a frame, the receiver deletes a binary '0' that follows a sequence of five 1s within a frame.

ABORT

The function of early termination of a data link is called an abort The transmitter aborts a frame by sending at least
eight consecutive 1s immediately after the abort transmitter control bit (TxABT in HCON) is set to '1'. (Setting this
control bit automatically clears the HTxFIFO.)

The abort sequence can be extended up to (at least) 16 consecutive 1s by setting the abort extend control bit
(TxABTEXT in HCON) to '1'. This feature is useful for forcing the mark idle state. The receiver interprets the
reception of seven or more consecutive 1s as an abort.

The receiver responds the abort received as follows:

• An abort in an 'out of frame' condition: an abort has no meaning during the idle or the time fill

• An abort 'in frame' after less than 25 bits are received after an opening flag: under this condition, no field of the
aborted frame is transferred to the HRXFIFO. The HDLC module clears the aborted frame data in the receiver
and flag synchronization. The aborted reception is indicated in the status register.

• An abort 'in frame' after 25 bits or more are received after an opening flag: in this condition, some fields of the
aborted frame may be transferred to the HRXFIFO. The abort status is set in the status register and the data of
the aborted frame in the HRXFIFO is cleared. Flag synchronization is also cleared and the DMA operation for
receiveing is aborted too.

IDLE AND TIME FILL

When the transmitter is not transmitting a frame, it is in an idle state. The transmitter signals that it has entered an
idle state in one of the following two ways: 1) by transmitting a continuous series of flag patterns (time fill), or 2) by
transmitting a stream of consecutive 1s (mark idle). The flags and mark idle are not transferred to the HRXFIFO.

The flag or mark idle selection bit (TxFLAG in HCON) controls this function: when TxFLAG is '0', mark idle is
selected; when TxFLAGIDLE is '1', the time fill method is selected.

KS32C50100 RISC MICROCONTROLLER HDLC CONTROLLERS

8-7

FIFO STRUCTURE

In both transmit and receive directions, 32-byte(8 word) deep FIFOs are provided for the intermediate storage of
data between the serial interface and the CPU interface.

TWO-CHANNEL DMA ENGINE

The HDLC module has a two-channel DMA engine for Tx/Rx FIFOs. The DMA TX channel programming and the
RX channel programming are described in the transmitter and receiver operation sections, respectively.

BAUD RATE GENERATOR

The HDLC module contains a programmable baud rate generator(BRG). The BRG register contains a 16-bit time
constant register, a 12-bit down counter for time constant value, two control bit to divide 16, and another two control
bits to divide 16 or 32.

A clock diagram of the BRG is shown in Figure 8-2.

At a start-up, the flip-flop on the output is set in a High state, the value in the time constant register is loaded into
the counter, and the counter starts counting down. The output of the baud rate generator may toggle upon
reaching zero, the value in the time constant register is loaded into the counter, and the process is repeated. The
time constant may be changed any time, but the new value does not take effect until the next load of the counter.

The output of the baud rate generator may be used as either the transmit clock, the receive clock, or both. It can
also drive the digital phase-locked loop. If the receive or transmit clock is not programmed to come from the TXC
pin, the output of the baud rate generator may be echoed out via the TXC pin.

The following formula relates the time constant to the baud rate where MCLK2 or RXC is the baud rate generator
input frequency in Hz. BRG generates 2 output signals, BRGOUT1, BRGOUT2, for transmit/receive clocks and the
DPLL input clock.

BRGOUT1 = (MCLK2 or RXC) / (CNT0 + 1) / (16CNT1)
BRGOUT2 = BRGOUT1 / (1 or 16 or 32 according to CNT2 value of the HBRGTC)

Figure 8-2 Baud Rate Generator Block Diagram

BRGOUT2
12-Bit Counter

CNT0

RxC

MCLK2
Divide by
 1 or 16

Divide by
1 or 16 or 32

BRGOUT1

BRGCLK

CNT1 CNT2

CNT0: HBRGTC [15:4]
CNT1: HBRGTC [3:2]
CNT2: HBRGTC [1:0]
BRGCLK: HMODE [19]

HDLC CONTROLLERS KS32C50100 RISC MICROCONTROLLER

8-8

The example in the following Table assumes a 25MHz clock from MCLK2, a 24.576MHz clock from RxC, showing a
time constant for a number of commomly used baud rates.

Table 8-2 Baud Rate Example of HDLC

Baud Rate
(BRGOUT2)

MCLK = 25 MHz RXC = 24.576 MHz

CNT0 CNT1 CNT2 Freq. Dev. (%) CNT0 CNT1 CNT2 Freq. Dev. (%)

1200 1301 0 1 1200.1 0.0 1279 0 1 1200.0 0.0

2400 650 0 1 2400.2 0.0 639 0 1 2400.0 0.0

4800 324 0 1 4807.7 0.2 319 0 1 4800.0 0.0

9600 162 0 1 9585.9 -0.1 159 0 1 9600.0 0.0

19200 80 0 1 19290.1 0.5 79 0 1 19200.0 0.0

38400 40 0 1 38109.8 -0.8 39 0 1 38400.0 0.0

57600 26 0 1 57870.4 0.5 26 0 1 56888.9 -1.2

115200 13 0 1 111607.1 -3.1 12 0 1 118153.8 2.6

KS32C50100 RISC MICROCONTROLLER HDLC CONTROLLERS

8-9

DIGITAL PHASE-LOCKED LOOP (DPLL)

The HDLC module contains a digital phase-locked loop (DPLL) function to recover clock information from a data
stream with NRZI or FM encoding. The DPLL is driven by a clock that is normally 32 (NRZI) or 16 (FM) times the
data rate. The DPLL uses this clock, along with the data stream, to construct the clock.

This clock may then be used as the receive clock, the transmit clock, or both.

Figure 8-3 shows a block diagram of the digital phase-locked loop. It consists of a 5-bit counter, an edge detector
and a pair of output decoders.

CLOCK USAGE METHOD

Figure 8-3 DPLL Block Diagram

Figure 8-4 Clock Usage Method Diagram

5-Bit Counter

Count Modifier
Receive Clock

Transmit Clock
Decoder

DecoderEdge
Detector

RxD

RxC
 MCLK

HMODE[18:16]

TxC

Brgout1
Brgout2

dplloutR

dplloutT

Receiver Receive
 Data

RxC
DPLLOUTR

TxC

BRGOUT1
BRGOUT2

Receive
Clock

RxCLK

Baud Rate
Generator

RxC

MCLK2

BRGCLK

DPLL

DPLLCLK

Transmitter Transmit
 Data

Transmit
Clock

TxCLK

RxC
DPLLOUTT

TxC

BRGOUT1
BRGOUT2

BRGOUT1

BRGOUT2

RxC
MCLK

TxC

BRGOUT1
BRGOUT2

DPLLOUTT

DPLLOUTR

NOTE: BRGCLK = HMODE[19]
DPLLCLK = HMODE[18:16]
TxCLK = HMODE[22:20]
RxCLK = HMODE[26:24]

HDLC CONTROLLERS KS32C50100 RISC MICROCONTROLLER

8-10

In the NRZ/NRZI mode, the DPLL source clock must be 32 times the data rates. In this mode, the transmit and
receive clock outputs of the DPLL are identical, and the clocks are phased so that the receiver samples the data in
the middle of the bit cell.

The DPLL counts the 32x clock using an internal 5-bit counter. As the 32x clock is counted, the DPLL searches the
incoming data stream for edges (either positive or negative transition). The output of DPLL is High while the DPLL
is waiting for an edge in the incoming data stream. When it detects a transition, the DPLL starts the clock recovery
operation.

The first sampling edge of the DPLL occurs at the counter value of 16 after the first edge is detected in the
incoming data stream. The second sampling edge occurs following the next 16. When the transition of incoming
data occurs at a count value other than 16, the DPLL adjusts its clock outputs during the next 0 to 31 counting
cycle by extending or shortening its count by one, which effectively moves the edge of the clock sampling the
receive data closer to the center of the bit cell.

The adding or subtracting of a count of 1 will produce a phase jitter of 5.63 degrees on the output. Because the
DPLL uses both edges of the incoming signal for its clock source comparison, the mark-space ratio (50%) of the
incoming signal must not deviate more than 1.5% of its baud rate if proper locking is to occur.

In the FM mode, the DPLL clock must be 16 times the data rate. The 5-bit counter in the DPLL counts from 0 to 31,
so the DPLL makes two sampling clocks during the 0 to 31 counting cycle. The DPLL output is Low while the DPLL
is waiting for an edge in the incoming data stream. The first edge the DPLL detects is assumed to be a valid clock
edge. From this point, the DPLL begins to generate output clocks.

In this mode, the transmit clock output of the DPLL lags the receive clock outputs by 90 degrees to make the
transmit and receive bit cell boundaries the same, because the receiver must sample the FM data at a one-quarter
and three-quarters bit time.

You can program the 32X clock for the DPLL to originate from one of the RXC input pins, from the TxC pin, or from
the baud rate generator output. You can also program the DPLL output to be "echoed out" of the HDLC module
over the TXC pin(if the TXC pin is not being used as an input).

During idle time, you can set the TxPRMB in HCON to send the special pattern required for a remote DPLL to lock
the phase. In this case, the content of the HPRMB register is sent repeatedly. The length of preamble is determined
by TxPL bit in HMODE[10:8].

It is noticed that the frequency of the receive clock (RxC) should be slower than half of the internal system clock
i.e., MCLK/2. Otherwise, the data transfer from receive FIFO to memory could be lost.

KS32C50100 RISC MICROCONTROLLER HDLC CONTROLLERS

8-11

HDLC OPERATIONAL DESCRIPTION

The following sections describe the operation of the HDLC module.

HDLC INITIALIZATION

A power-on or reset operation initializes the HDLC module and forces it into the reset state. After a reset, the CPU
must write a minimum set of registers, as well as any options set, based on the features and operating modes
required.

First, the configuration of the serial port and the clock mode must be defined. These settings include the following:

• Data format select

• BRG clock select

• DPLL clock select

• Transmit clock select

• Receive clock select

• BRG/DPLL enable to use internal clock

You must also set the clock for various components before each component is enabled. Additional registers may
also have to be programmed, depending on the features you select. All settings for the HDLC mode register,
HMODE, and the HDLC control register, HCON, must be programmed before the HDLC is enabled.

To enable the HDLC module, you must write a '1' to the receiver enable bit and/or the transmitter enable bit. During
normal operation, you can disable the receiver or the transmitter by writing a '0' to the RxEN or TxEN bit,
respectively. You can disable the receiver and HRXFIFO or the transmitter and HTxFIFO by writing a '1' to the
RxRS or TxRS bit, respectively.

HDLC CONTROLLERS KS32C50100 RISC MICROCONTROLLER

8-12

HDLC DATA ENCODING/DECODING

Data encoding is utilized to allow the transmission of clock and data information over the same medium. This saves
the need to transmit clocks and data over a separate medium as would normally be required for synchronous data.
The HDLC provides four different data encoding methods, selected by bits in HCON1[18:16]. An example of these
four encoding methods is shown in figure 8-5.

Figure 8-5 Data Encoding Methods and Timing Diagrams

1 1 0 0 1 0Data Bit Cell Level:

NRZ
High = 1
Low = 0

NRZI
No Change = 1
Change = 0

FM1
(Biphase Mark)

Bit Center Transition:
Transition = 1
No Transition = 0

FM0
(Biphase Space)

No Transition = 1
Transition = 0

Manchester High Low = 1
Low High = 0

TxClock

NRZ, NRZI Type

TxClock

FM0 / FM1 / Manchester Type

Data

RxClock

RxClock

Data

KS32C50100 RISC MICROCONTROLLER HDLC CONTROLLERS

8-13

HDLC TRANSMITTER OPERATION

The HTxFIFO register cannot be pre-loaded when the transmitter is disabled. After the HDLC Tx is enabled, the
flag or mark idle control bit (TxFLAG in HCON) is used to select either the mark idle state (inactive idle) or the flag
'time fill' (active idle) state. This active or inactive idle state will continue until data is loaded into the HTxFIFO.

The content of the HPRMB register can be sent out by setting the TxPRMB in HCON for the remote DPLL before
the data is loaded into the HTxFIFO. The length of preamble to be transmitted is determined by TxPL bits in
HMODE.

The availability of data in the HTxFIFO is indicated by the HTxFIFO available bit (TxFA in HSTAT) under the control
of the 4-word transfer mode bit (Tx4WD in HCON).

When you select 1-word transfer mode (not 4-word select mode), one word can be loaded into the HTxFIFO
(assuming the TxFA bit is set to '1'). When you select 4-word transfer mode, four successive words can be
transferred to the FIFO if the TxFA bit is set to '1'.

The nCTS (clear-to-send) input, nRTS (request-to-send), and nDCD (data-carrier-detect) are provided for a modem
or other hardware peripheral interface.

In auto enable mode, nDCD becomes the receiver enable. However, the receiver enable bit must be set before the
nDCD pin is used in this manner.

The TxFC status bit(in HSTAT) can cause an interrupt to be generated upon frame completion (This bit is set when
there is no data in HTxFIFO and when the closing flag or an abort is transmitted).

HDLC CONTROLLERS KS32C50100 RISC MICROCONTROLLER

8-14

Transmitter Interrupt Mode

The first byte of a frame (the address field) should be written into the Tx FIFO at the 'frame continue' address.
Then, the transmission of the frame data starts automatically. The bytes of the frame continue to be written into the
Tx FIFO as long as data is written to the 'frame continue' address. The HDLC logic keeps track of the field
sequence within the frame.

The frame is terminated when the last frame data is written to the Tx FIFO's 'frame terminate' address. The FCS
field is automatically appended by hardware, along with a closing flag. Data for a new frame can be loaded into the
Tx FIFO immediately after the previous frame data, if TxFA is '1'. The closing flag can serve as the opening flag of
the next frame or separate opening and closing flags can be transmitted. If a new frame is not ready to be
transmitted, a flag time fill or mark idle pattern is transmitted automatically.

If the Tx FIFO becomes empty at any time during the frame transmission, an underrun occurs and the transmitter
automatically terminates the frame by transmitting an abort. The underrun state is indicated when the transmitter
underrun status bit (TxU) is '1'.

Whenever you set the transmission abort control bit (TxABT in HCON), the transmitter immediately aborts the
frame (transmits at least eight consecutive 1s), clearing the Tx FIFO. If the transmission abort extension control bit
(TxABTEXT) is set at the time, an idle pattern (at least 16 consecutive 1s) is transmitted. An abort or idle in an out-
of-frame condition can be useful to gain 8 or 16 bits of delay time between read and write operations.

Transmitter DMA Mode

To use DMA operation without CPU intervention, you have to make Tx buffer descriptor chain in advance. And set
the DMA Tx buffer descriptor pointer(DMATxPTR) register to the address of the first buffer descriptor of the chain,
and then DMA Tx channel shoule be enabled.

When Tx underrun or CTS lost condition occurs during DMA operation, DMA Tx enable bit(HCON[6]) is cleared
and DMA Tx operation is stopped. This situation is reported to system with DTxABT bit set(HSTAT[22]).

In case of Tx underrun, abort signal sended and then idle pattern is sended if TxEN bit is set. In case of CTS lost,
TxD output goes high state as long as CTS remains high level.

KS32C50100 RISC MICROCONTROLLER HDLC CONTROLLERS

8-15

HDLC RECEIVER OPERATION

The HDLC receiver is provided with data and a pre-synchronized clock by means of the RXD and the internal DPLL
clock, the TXC pin, or the RXC pin. The data is a continuous stream of binary bits. One of the characteristics of this
bit stream is that a maximum of five consecutive 1s can occur unless an abort, flag, or idle condition occurs. The
receiver continuously searches (bit-by-bit) for flags and aborts.

When a flag is detected, the receiver synchronizes the frame to the flag timing. If a series of flags is received, the
receiver re-synchronizes the frame to each successive flag.

If the frame is terminated because of a short frame condition (frame data is less than 32 bits after an opening flag),
the frame is simply ignored. Noise on the data input line (RXD) during time fill can cause this kind of invalid frame.

The received data which is clocked by the external TXC or RXC, or by an internal DPLL or BRG source enters a
56-bit or 32-bit shift register before it is transferred into the HRXFIFO. Synchronization is established when a flag is
detected in the first eight locations of the shift register. When synchronization has been achieved, data is clocked
through to the last byte location of the shift register where it is transferred into the HRXFIFO.

In 1-word transfer mode, when the HRXFIFO available bit (RxFA) is '1', data is available at least in one-word. In 4-
word transfer mode, the RxFA is '1' when data is available in the last four FIFO register locations (registers 4, 5, 6,
and 7). The nDCD input is provided for a modem or other hardware interface. If AutoEN bit in HCON[28] is set to
'1', the receiver operation is dependent on the nDCD input level.

Otherwise, receiver operation is free of the nDCD input level..

Receiver Interrupt Mode

Whenever data is available in the HRXFIFO, an interrupt is generated by RxFA (if the interrupt is enabled). The
CPU reads the HDLC status register either in response to the interrupt request or in turn during a polling sequence.

When the received data available bit(RxFA) is '1', the CPU can read the data from the HRXFIFO. If the CPU reads
normal data or address data from the HRXFIFO, the RxFA bit is automatically cleared.

In CRC mode, the 16 bits preceding the closing flag are regarded as the FCS and checked by hardware, and they
are transferred to the HRXFIFO. Also, in no CRC mode, without the hardware checking, all data bits preceding the
closing flag are transferred to the HRXFIFO. When the closing flag is sent to the receiver, the frame is terminated.
Whatever data is present in the most significant byte of the receiver, the shift register is right justified and
transferred to the HRXFIFO. The frame boundary pointer, which is explained in the HRXFIFO register section, is
set simultaneously in the HRXFIFO. When the last byte of the frame appears at the 1-word or 4-word boundary
location of the HRXFIFO, depending on the settings of the Rx4WD control bit, the frame boundary pointer sets the
frame valid status bit (if the frame is completed with no error) or the RxCRCE status bit(if the frame was completed,
but with a CRC error).

If the frame reception is completed, an RxCRCE interrupt (for a frame error) or an RxFV interrupt (for normal state)
is generated. At this point, the CPU can read the Rx remaining bytes (RxRB) status bits to know how many bytes of
this frame still remain in the HRXFIFO.

When you set the frame discontinue control bit (the incoming frame discard control bit) to '1', the receiver discards
the current frame data without dropping the flag synchronization. You can use this feature to ignore a frame with a
non-matched address.

HDLC CONTROLLERS KS32C50100 RISC MICROCONTROLLER

8-16

Receiver DMA Mode

To use DMA operation without CPU intervention, you have to make Rx buffer descriptor chain in advance. And set
the DMA Rx buffer descriptor pointer(DMARxPTR) register to the address of the first buffer descriptor of the chain,
and then DMA Rx channel should be enabled.

HARDWARE FLOW CONTROL

When nCTS is active and there exists data to be transmitted in Tx FIFO, nRTS enters Low, allowing data
transmission. At the beginning of the data is an open flag while at the end a closing flag. If the frame being
tranferred discontinues, nRTS goes back to the High after the data transmission is completed.

When the condition of nCTS is shifted from Low to High, It is detected at the falling edge of Tx clock, where nRTS
also goes High. For about 5 to 13 cycles after nRTS enters High, the data transmission continues. nRTS remains
High for a maximum of 22 cycles and goes back to the Low condition if there remains any data to be transmitted in
HTxFIFO. If nCTS is still High even when nRTS went back to Low, not the data in HTxFIFO but a mark idle pattern
is transmitted.

Figure 8-6 nCTS already Asserted

Figure 8-7 CTS Lost during Transmission

TxClock

TxD

RTS

CTS

last

TxClock

TxD

RTS

CTS

Data

5-13 cycles

14-22 cycles

KS32C50100 RISC MICROCONTROLLER HDLC CONTROLLERS

8-17

If nCTS remains still High for a while after nRTS enters Low to allow data transmission from HTxFIFO, the data
transmission starts 5–12 cycles after nCTS is shifted to Low

Figure 8-8 CTS Delayed on

TxClock

TxD

RTS

CTS

Data

5-12 cycles

HDLC CONTROLLERS KS32C50100 RISC MICROCONTROLLER

8-18

MEMORY DATA STRUCTURE

The flow control to the HDLC controller uses two data structures to exchange control information and data.

• Transmit buffer descriptor

• Receive buffer descriptor

Each Tx DMA buffer descriptor has the following elements.

• Buffer data pointer

• Ownership bit

• Control field for transmitter

• Status field for Tx

• Transmit buffer length

• Next buffer descriptor pointer

Each Rx DMA buffer descriptor has the following elements.

• Buffer data pointer

• Ownership bit

• Status field for Rx

• Accumulated received buffer length for a frame

• Next buffer descriptor pointer

KS32C50100 RISC MICROCONTROLLER HDLC CONTROLLERS

8-19

DATA BUFFER DESCRIPTOR

The ownership bit in the MSB of the buffer data pointer controls the ownership of the descriptor. When the
ownership bit is '1', the DMA controller owns the descriptor. When this bit is '0', the CPU has the descriptor. The
owner of the descriptor always owns the associated data frame. (The descriptor's buffer data pointer field always
points to this buffer for about a frame.)

As it receives the data, the software sets the maximum frame length register. If the received data is longer than the
value of the maximum frame length register, this frame is ignored and the FLV bit is set. The software also sets the
DMA Rx buffer descriptor pointer to point to a chain of buffer descriptors, all of which have their ownership bit.

The DMA controller can be started to set the DMA Rx enable bit in the control register. When a frame is received, it
is moved into memory at the address specified by the DMA Rx data buffer pointer. If a frame is longer than the
value of the RxBufSize register, then the next buffer descriptors are fetched to receive the frame.

That is, to handle a frame, one or more buffer descriptors could be used. Please note that no configurable offset or
page boundary calculation is required. The received frame is moved to the buffer memory whose address is
pointed to by the buffer data pointer until the end of frame, or until the length exceeds the maximum frame length
configured.If the length exceeds the maximum frame length configured, the frame length violated bit is set.

If the entire frame is received sucessfully, the status bits in the receive buffer descriptor are set to indicate the
received frame status. The ownership bit in the buffer descriptor pointer is cleared by the CPU which has the
ownership and an interrupt may now be generated. The DMA controller copies the next buffer descriptor pointer
into the DMA Rx buffer descriptor pointer register.

If the next buffer descriptor pointer is null(0), the DRxEN bit is cleared, and DMA Rx operation is stopped.
Otherwise, the descriptor is read, and the DMA controller starts again with the next data, as described in the
previous paragraph.

When the DMA reads a descriptor, if the ownership bit is not set, it has two options:

• Skip to the next buffer descriptor when DRxSTSK bit is '0'

• Generate an interrupt and halt the DMA operation when DRxSTSK bit is '1'

During transmission, the two-byte frame length at the Tx buffer descriptor is moved to the DMA internal Tx register.
After transmission, the Tx status is saved in the Tx buffer descriptor. The DMA controller then updates the next
buffer descriptor pointer for the linked list structure.

When the DMA Tx buffer descriptor register points to the first buffer descriptor, the transmitter starts transmitting
the frame data from the buffer memory to Tx FIFO.

HDLC CONTROLLERS KS32C50100 RISC MICROCONTROLLER

8-20

BUFFER DESCRIPTOR

TRANSMIT BUFFER DESCRIPTOR

Figure 8-9 Transmit Buffer Descriptor

17 16 15 8 7 6 5 4 018

Buffer Data Pointer

3 2 119 9101112131431 30 29 28 27 26 25 24 23

T

[30:0] Buffer Data Pointer
[31] Ownership (O)
0 = CPU 1 = DMA

Tx Control Bits
[0] Preamble (P)
0 = No preamble 1 = Preamble
[1] TxNoCRC Mode (N)
0 = CRC mode 1 = No CRC mode
[2] Little-Endian Mode (E)
0 = Big-Endian 1 = Little-Endian
[3] Last (L)
0 = This is not the last buffer in the frame.
1 = This is the last buffer in the frame.
[4] Buffer Data Pointer Decrement (D)
0 = Increment 1 = Decrement
[6:5] Widget Aligment Control (WA)
00 = No invalid bytes 01 = 1 Invalid bytes
10 = 2 invalid bytes 11 = 3 invalid bytes

[23:0] Buffer Length

Tx Status Bit
These bit may be regarded as valid when the L bit (in Tx control bit) is set.
[26] Transmission Completion (T)
0 = Normal 1 = One frame completed.

[31:0] Next Buffer Descriptor Pointer
The address of the next buffer descriptor

22

O

Reserved

Reserved WA D E NL P

Buffer Length

Next Buffer Descriptor Pointer

21 20

KS32C50100 RISC MICROCONTROLLER HDLC CONTROLLERS

8-21

RECEIVE BUFFER DESCRIPTOR

Figure 8-10 Receive Buffer Descriptor

17 16 15 8 7 6 5 4 018

Buffer Data Pointer

3 2 119 9101112131431 30 29 28 27 26 25 24 23

F
L
V

[30:0] Buffer Data Pointer
[31] Ownership (O)
0 = CPU 1 = DMA
[15:0] Buffer Length
Received buffer lengths are wrote to this buffer descriptor.

Rx Status Bits
These bits may be regarded as valid when L bit (in Rx status bit) is set.
[16] CD Lost (CD)
0 = Normal 1 = CD lost occurs.
[17] CRC Error (CE)
0 = Normal
1 = CRC error occurs to the frame received.
[18] Non-octet Aligned Frame (NO)
0 = Normal
1 = Non-octet aligned frame is received.
[19] Overrun (OV)
0 = Normal
1 = The received frame overruns.
[20] DPLL Two Miss (DTM)
0 = Normal 1 = DPLL two miss clock occurs.
[21] Rx Abort (ABT)
0 = Normal
1 = The received frame aborted.
[22] First In Frame (F)
0 = This buffer descriptor status is not the first to the frame.
1 = This buffer descriptor status is the first to the frame.
[23] Last In Frame (L)
0 = This buffer descriptor status is not the last to the frame.
1 = This buffer descriptor status is the last to the frame.
[24] Frame Length Violation (FLV)
0 = Normal
1 = This received frame length exceeds the value of the maximum frame length register.
[31:0] Next Buffer Descriptor Pointer
The address of the next buffer descriptor

22

L

O

Reserved

Reserved

Buffer Length

Next Buffer Descriptor Pointer

21 20

F
A
B
T

D
T
M

O
V

N
O

C
E

C
D

HDLC CONTROLLERS KS32C50100 RISC MICROCONTROLLER

8-22

Figure 8-11 Data Structure of the Receive Data Buffer

Buffer Data Pointer #1

Reserved

Status Buffer Length

Next Buffer Descriptor

Rx Buffer
Descriptor

Start Address
Pointer Buffer Data #1

Unused

RxBufSize
Register

Value

Buffer Data #2

Unused

RxBufSize
Register

Value

Buffer Data #N

Unused

Buffer Data Pointer #2

Reserved

Status Buffer Length

Next Buffer Descriptor

Buffer Data Pointer #N

Reserved

Status Buffer Length

Next Buffer Descriptor In single linked lists, the next buffer
descriptor is filled with a null
address.

NOTE: Buffer length is accumulated until the last bit is set in STATUS.
Buffer data pointer indicates the buffer memory start address.

KS32C50100 RISC MICROCONTROLLER HDLC CONTROLLERS

8-23

HDLC SPECIAL REGISTERS

The HDLC special registers are defined as read-only or write-only registers according to the direction of information
flow. The addresses of these registers are shown in Table 8-3 and 8-4.

The transmitter FIFO register can be accessed using two different addresses, the frame terminate address and the
frame continue address. The functions of these addresses are discussed in detail in the FIFO section below.

Table 8-3 HDLC Channel A Special Registers

Registers Offset Address R/W Description Reset Value

HMODE 0x7000 R/W HDLC mode register 0x00000000

HCON 0x7004 R/W HDLC control register 0x00000000

HSTAT 0x7008 R/W HDLC status register 0x00000000

HINTEN 0x700c R/W HDLC Interrupt Enable Register 0x00000000

HTxFIFOC
(Frame Continue)

0x7010 W HTxFIFO Frame Continue register –

HTxFIFOT
(Frame Terminate)

0x7014 W HTxFIFO Frame Terminate register –

HRXFIFO 0x7018 R HRXFIFO Entry register 0x00000000

HBRGTC 0x701c R/W HDLC BRG time constant register 0x00000000

HPRMB 0x7020 R/W HDLC Preamble register 0x00000000

HSAR0 0x7024 R/W HDLC Station Address 0 0x00000000

HSAR1 0x7028 R/W HDLC Station Address 1 0x00000000

HSAR2 0x702c R/W HDLC Station Address 2 0x00000000

HSAR3 0x7030 R/W HDLC Station Address 3 0x00000000

HMASK 0x7034 R/W HDLC Mask register 0x00000000

HDMATXPTR 0x7038 R/W DMA Tx Buffer Descriptor Pointer 0xFFFFFFFF

HDMARXPTR 0x703c R/W DMA Rx Buffer Descriptor Pointer 0xFFFFFFFF

HMFLR 0x7040 R/W Maximum Frame Length register 0xXXXX0000

HRBSR 0x7044 R/W Receive Buffer Size register 0xXXXX0000

HDLC CONTROLLERS KS32C50100 RISC MICROCONTROLLER

8-24

Table 8-4 HDLC Channel B Special Registers

Registers Offset R/W Description Reset Value

HMODE 0x8000 R/W HDLC mode register 0x00000000

HCON 0x8004 R/W HDLC control register 0x00000000

HSTAT 0x8008 R/W HDLC status register 0x00000000

HINTEN 0x800c R/W HDLC Interrupt Enable Register 0x00000000

HTxFIFOC
(Frame Continue)

0x8010 W HTxFIFO Frame Continue register –

HTxFIFOT
(Frame Terminate)

0x8014 W HTxFIFO Frame Terminate register –

HRXFIFO 0x8018 R HRXFIFO Entry register 0x00000000

HBRGTC 0x801c R/W HDLC BRG time constant register 0x00000000

HPRMB 0x8020 R/W HDLC Preamble register 0x00000000

HSAR0 0x8024 R/W HDLC Station Address 0 0x00000000

HSAR1 0x8028 R/W HDLC Station Address 1 0x00000000

HSAR2 0x802c R/W HDLC Station Address 2 0x00000000

HSAR3 0x8030 R/W HDLC Station Address 3 0x00000000

HMASK 0x8034 R/W HDLC Mask register 0x00000000

HDMATXPTR 0x8038 R/W DMA Tx Buffer Descriptor Pointer 0xFFFFFFFF

HDMARXPTR 0x803c R/W DMA Rx Buffer Descriptor Pointer 0xFFFFFFFF

HMFLR 0x8040 R/W Maximum Frame Length register 0xXXXX0000

HRBSR 0x8044 R/W Receive Buffer Size register 0xXXXX0000

KS32C50100 RISC MICROCONTROLLER HDLC CONTROLLERS

8-25

HDLC GLOBAL MODE REGISTER

Table 8-5 HMODEA and HMODEB Register

Registers Offset Address R/W Description Reset Value

HMODEA 0x7000 R/W HDLC Mode register 0x00000000

HMODEB 0x8000 R/W HDLC Mode register 0x00000000

Table 8-6 HMODE Register Description

Bit
Number

Bit Name Description

[0] Multi-Frame in HTxFIFO
in DMA operation (MFF)

If this bit is set, more than one frame can be loaded into HTxFIFO. In this
case, the frame size may be less than the FIFO size.

[3:1] Reserved Not applicable.

[4] Rx Little-Endian mode
(RxLittle)

This bit determines whether the data is in Little- or Big-endian format.
HRXFIFO is in Little-endian. If this bit is set to '0', then the data on the
system bus should be in Big-endian. Therefore the bytes will be swapped
in Big- endian.

[5] Tx Little-Endian mode
(TxLittle)

This bit determines whether Tx data is in Little or Big endian (TxLittle)
format. HTxFIFO is in Little-endian. If this bit is set to '1', the data on the
system bus is Little endian. If this bit is set to '0', the data on
the system bus is in Big-endian. (that is, the data bytes are swapped to be
Little endian format.)

[7:6] Reserved Not applicable.

[10:8] Tx preamble
length(TxPL)

These bits determine the length of preamble to be sent before the opening
flag when the TxPRMB bit is set in the control register.
000 1byte, 001 2bytes, ..., and 111 8bytes will be sent.

[14:12] Data formats (DF) When the DF bits are '000', data is transmitted and received in the NRZ
data format. When DF is '001', the NRZI (zero complement) data format is
selected. DF = '010' selects the FM0 data format, DF = '011' the FM1 data
format, and DF = '100' the Manchester data format.

[15] Reserved Not applicable.

[18:16] DPLL clock select
(DPLLCLK)

Using this setting, you can configure the clock source for DPLL to one of
the following pins: TXC, RXC, MCLK, BRGOUT1, or BRGOUT2. To select
one of these pins, set the DPLLCLK bits to '000', '001', '010', '011', or '100',
respectively.

[19] BRG clock select
(BRGCLK)

If this bit is '1', MCLK2 is selected as the source clock for the baud rate
generator (BRG). If this bit is '0', the external clock at the RXC pin is
selected as the BRG source clock.

[22:20] Tx clock select (TxCLK) Using this setting, you can configure the transmit clock source to one of
the following pins: TXC, RXC, DPLLOUTT, BRGOUT1, or BRGOUT2.
To select one of these pins, set the TxCLK bits to '000', '001', '010', '011', or
'100', respectively.

HDLC CONTROLLERS KS32C50100 RISC MICROCONTROLLER

8-26

[26:24] Rx clock select (RxCLK) Using this setting, you can configure the receive clock source to one of the
following pins: TXC, RXC, DPLLOUTR, BRGOUT1, or BRGOUT2.
To select one of these pins, set the RxCLK bits to '000', '001', '010', '011',
or '100', respectively.

[30:28] TXC output pin select
(TXCOPS)

If you do not use the clock at the TXC pin as the input clock, you can use
the TXC pin to monitor TxCLK, RxCLK, BRGOUT1, BRGOUT2,
DPLLOUTT, and DPLLOUTR. To select the clock you want to monitory, set
the TXCOPS to '000', '001', '010', '011', or '100', respectively.

[31] Reserved Not applicable.

Table 8-6 HMODE Register Description

Bit
Number

Bit Name Description

KS32C50100 RISC MICROCONTROLLER HDLC CONTROLLERS

8-27

Figure 8-12 HMODE Register

17 16 15 8 7 6 5 4 018

B
R
G
C
L
K

T
x
L
i
t
t
I
e

3 2 119

M
F
FTXPLDF

91011121314

DPLL
CLK

31 30 29 28 27 26 25 24 23

RxCLK
TXC
OPS

[0] Multi-Frame in TxFIFO in DMA Opeatiom (MFF)
0 = Single frame in TxFIFO
1 = Multi frame in TxFIFO
[3:1] Reserved
[4] Rx Little-Endian Mode (RxLittle)
0 = The Rx data on the system bus is in Big-Endian format.
1 = The Rx data on the system bus is in Little-Endian format.
[5] Tx Little-Endian Mode (TxLittle)
0 = The Tx data on the system bus is in Big-Endian format.
1 = The Tx data on the system bus is in Little-Endian format.
[7:6] Reserved
[10:8] Tx Preamble Length (TxPL)
000 = 1 byte 100 = 5 byte
001 = 2 byte 101 = 6 byte
010 = 3 byte 110 = 7 byte
011 = 4 byte 111 = 8 byte
[11] Reserved
[14:12] Data Format (DF)
000 = NRZ data format 001 = NRZI
010 = FM0 011 = FMI
100 = Manchester
[15] Reserved
[18:16] DPLL Clock Select (DPLLCLK)
000 = TXC pin 001 = RXC pin
010 = MCLK 011 = BRGOUT1
100 = BRGOUT2
[19] BRG Clock Select (BRGCLK)
0 = RXC pin is selected.
1 = MCLK2 is selected.
[22:20] Tx Clock Select (TxCLK)
000 = TXC pin 001 = RXC pin
010 = DPLLOUTT 011 = BRGOUT1
100 = BRGOUT2
[23] Reserved
[26:24] Rx Clock Select (RxCLK)
000 = TXC pin 001 = RXC pin
010 = DPLLOUTR 011 = BRGOUT1
100 = BRGOUT2
[27] Reserved
[30:28] TXC Output Pin Select (TXCOPS)
This pin is used for output only when it is not used as an input clock for the DPLLCLK, TxCLK,
or RxCLK.
000 = TX clock 001 = Rx clock
010 = BRGOUT1 011 = BRGOUT2
100 = DPLLOUTT 101 = DPLLOUTR
[31] Reserved

22 21 20

TxCLK

R
x
L
i
t
t
I
e

HDLC CONTROLLERS KS32C50100 RISC MICROCONTROLLER

8-28

HDLC CONTROL REGISTER

Table 8-7 HCONA and HCONB Register

Registers Offset Address R/W Description Reset Val.

HCONA 0x7004 R/W HDLC channel A control register 0x00000000

HCONB 0x8004 R/W HDLC channel B control register 0x00000000

Table 8-8 HCON Register Description

Bit Number Bit Name Description

[0] Tx reset (TxRS) Set this bit to '1' to reset the Tx block. Tx block comprises HTxFIFO and a
transmitter block.

[1] Rx reset (RxRS) Set this bit to '1' to reset the Rx block. Rx block comprises HRXFIFO and
a receiver block.

[2] DMA Tx reset
(DTxRS)

Set this bit to '1' to reset the DMA Tx block.

[3] DMA Rx reset
(DRxRS)

Set this bit to '1' to reset the DMA Rx block.

[4] Tx enable (TxEN) When the TxEN bit is '0', the transmitter enters a disabled state and the
line becomes high state. In this case, the transmitter block is cleared
except for the HTxFIFO and the status bits associated with transmit
operation are cleared. Data cannot be loaded into the HTxFIFO.
If this bit is set to '1', the idle pattern is sent continuously. In this case, the
data can be loaded into HTxFIFO, and then sent.

[5] Rx enable (RxEN) When the RxEN bit is '0', the receiver enters a disabled state and can not
detect the flag pattern, if any. In this case, receiver block is cleared
except for the HRXFIFO and the status bits associated with receiver
operation are cleared. Data cannot be received.
If this bit is set to '1', the flag pattern is detected. In this case, the data
received can be loaded into the HRXFIFO, and moved to system
memory.

[6] DMA Tx enable
(DTxEN)

The DTxEN bit lets the HDLC Tx operate on a bus system in DMA mode.
When DMA Tx is enabled, an interrupt request caused by TxFA status is
inhibited and the HDLC does not use the interrupt request to request a
data transfer. DMA Tx monitors the HTxFIFO and fills the HTxFIFO. This
bit is auto disabled when Tx underrun occurs, or CTS lost, or next buffer
descriptor pointer reach null, or the owner bit is not DMA mode when
DTxSTSK bit is set. If Tx underrun occurs, DTxABT(in HSTAT) bit set,
and abort signal sended. If CTS lost occurs, DTxABT bit set and TxD
output goes high state as long as CTS remains high level.

KS32C50100 RISC MICROCONTROLLER HDLC CONTROLLERS

8-29

[7] DMA Rx enable
(DRxEN)

The DRxEN bit lets the HDLC Rx operate on a bus system in DMA mode.
When DMA Rx is enabled, an interrupt request caused by the RxFA
status is inhibited, and the HDLC does not use the interrupt request to
request a data transfer. DMA Rx monitors the HRXFIFO and moves the
data from the HRXFIFO to memory. This bit is automatically disabled
when the next buffer descriptor pointer becomes null, or the owner bit is
not in DMA mode when the DTxSTSK bit is set.

[8] DPLL enable
(DPLLEN)

Setting this bit enables the DPLL, causing the DPLL to enter search
mode. In Search mode, the DPLL searches for a locking edge in the
incoming data stream.
After DPLL is enabled (in NRZI mode for example), the DPLL starts
sampling immediately after the first edge is detected. (In FM mode, the
DPLL examines the clock edge of every other bit to decide what
correction must be made to remain in sync.) If the DPLL does not detect
an edge during the expected window, it sets the one clock missing bit.
If the DPLL does not detect an edge after two successive attempts, it sets
the two clock missing bit and the DPLL automatically enters the Search
mode. To reset both clocks missing latches, you can disable and re-
enable the DPLL using the reset Rx status.

[9] BRG enable
(BRGEN)

This bit controls the operation of the baud rate generator (BRG). To
enable the BRG counter, set the BRGEN bit to '1'. To inhibit counting,
clear the bit to '0'.

[10] Tx 4 word mode
(Tx4WD)

When this bit is '0', and TxFA bit in status register is '1', it is indicated that
Tx FIFO is empty for 1 word. It means that 1-word data can be loaded to
Tx FIFO.
Similarly, when this bit is '1', the same status register bit indicate that 4
words of data can be loaded to Tx FIFO without reading the status bit for
a second time.
Specifically, the status register bit affected by the 1-word or 4-word
transfer setting are the transmit data available (TxFA) bit.

[11] Rx 4 word mode
(Rx4WD)

When this bit is '0', and the RxFA bit in the status register is '1', it is
indicated that Rx FIFO has 1-word data. It means that 1 word data can be
moved to memory.
Similarly, when this bit is '1', the same status register bit indicates that 4
words of data can be moved in the memory without reading the status bit
for a second time.
Specifically, the status register bit affected by the 1-word or 4-word
transfer setting are the receive data available (RxFA) bit, and the residue
bytes status bits, RxRB[3:0].

[13:12] Rx widget
alignment (RxWA)

These bits determine how many bytes are invalid in the first memory
word of the frame to be received. The invalid bytes are inserted when the
word is assembled in the HRXFIFO. '00' =No Invalid bytes;
'01' = 1 invalid byte, '10' = 2 invalid bytes, '11' = 3 invalid bytes.

[14] DMA Tx stop or
skip (DTxSTSK)

This bit determines a DMA Tx stop or skip when DMA has not the
ownership associated with the Tx buffer descriptor. DMA Tx is disabled in
this condition when this bit is set.

Table 8-8 HCON Register Description

Bit Number Bit Name Description

HDLC CONTROLLERS KS32C50100 RISC MICROCONTROLLER

8-30

[15] DMA Rx stop or
skip (DRxSTSK)

This bit determines a DMA Rx stop or skip when DMA has not the
ownership associated with the Rx buffer descriptor. If this bit is set, DMA
Rx is disabled.

[16] DMA Rx memory
address
decrement
(DRxMADEC)

This bit determines whether the address is incremented or decremented.
If this bit is set to '1', then the address will be decremented.

[17] Tx flag idle
(TxFLAG)

This bit selects the flag 'time fill' mode (active idle) or the mark idle mode
(inactive idle) for the transmitter. The selected active or inactive idle state
continues until data is sent (after nRESET has return to High level). The
flag idle pattern is 7EH; the mark idle pattern is FFH.

[18] Tx single flag
(TxSFLAG)

This bit controls whether separate closing and opening flags are
transmitted in succession to delimit frames. When this bit is '0',
independent opening and closing flags are transmitted in order to
separate frame.
When this bit is set to '1', the closing flag of the current frame serves as
the opening flag of the next frame.

[19] Tx loop-back mode
(TxLOOP)

This bit is used for self-testing. If this bit is set to '1', the transmit data
output (TxD) is internally connected to the receiver data input (RxD). In
Loop-back mode, nCTS and nDCD inputs are ignored. For normal
operation, this bit should always be '0'.

[20] Rx echo mode
(RxECHO)

Setting this bit to '1' selects the auto-echo mode of operation. In this
mode, the TXD pin is connected to RXD as in local loop-back mode, but
the receiver still monitors the RXD input.

[21] Tx abort extension
(TxABTEXT)

When this bit is set to '1', the abort pattern that is initiated when TxABT =
'1' is extended to at least 16 bits of 1s in succession, and the mark idle
state is entered.

[22] Tx abort (TxABT) When this bit is set to '1', an abort sequence of at least eight bits of 1s is
transmitted. The abort is initiated and the HTxFIFO is cleared. TxABT is
then cleared automatically by hardware.

[23] Tx preamble
(TxPRMB)

When this bit is set to '1', the content of the HPRMB register is
transmitted as many TxPL bit values in interrupt mode instead of mark
idle or time fill mode. This is useful for sending the data needed by the
DPLL to lock the phase. In DMA mode, this bit is meaningless.

[24] Tx data terminal
ready (TxDTR)

The TxDTR bit directly controls the nDTR output state. Setting this bit
forces the nDTR pin to Low level. When you clear the TxDTR bit, nDTR
goes High.

[25] Rx frame
discontinue
(RxDISCON)

When this bit is set, the frame currently received is ignored and the data
in this frame is discarded. Only the last frame received is affected. There
is no effect on subsequent frames, even if the next frame enters the
receiver when the discontinue bit is set. This bit is automatically cleared
after a cycle.

[26] Tx no CRC
(TxNOCRC)

When this bit is set to '1', the CRC is not appended to the end of a frame
by hardware.

Table 8-8 HCON Register Description

Bit Number Bit Name Description

KS32C50100 RISC MICROCONTROLLER HDLC CONTROLLERS

8-31

[27] Rx no CRC
(RxNOCRC)

When this bit is set to '1', the receiver does not check for CRC by
hardware. (CRC data is always moved to the HRXFIFO.)

[28] Auto enable
(AutoEN)

This bit programs the function of both nDCD and nCTS. However, TxEN
and RxEN must be set before the nCTS and nDCD pins can be used.
When this bit is '0', if the nCTS becomes high, the transmitter sends mark
idle pattern. However, though the nDCD becomes high, the receiver can
receive the data.
When this bit is '1', if the nCTS becomes high, the transmitter send mark
idle but clears the HTxFIFO and the Tx block. If nDCD becomes high, the
receiver can't operate, and the HRXFIFO and Rx blocks are cleared.

[31:29] Reserved Not applicable.

Table 8-8 HCON Register Description

Bit Number Bit Name Description

HDLC CONTROLLERS KS32C50100 RISC MICROCONTROLLER

8-32

Figure 8-13 HDLC Control Register (HCON)

17 16 15 8 7 6 5 4 018

T
x
S
F
L
A
G

T
x
F
L
A
G

D
R
x
S
T
S
K

R
x
E
N

D
T
x
E
N

3 2 119

D
R
x
R
S

D
T
x
R
S

R
x
R
S

T
x
R
S

D
P
L
L
E
N

B
R
G
E
N

T
x
4
W
D

R
x
4
W
D

R
x
w
A

91011121314

D
R
x
M
A
D
E
C

31 30 29 28 27 26 25 24 23

T
x
A
B
T

R
x
D
I
S
C
O
N

T
x
N
O
C
R
C

R
x
N
O
C
R
C

T
x
D
T
R

[0] Tx reset (TxRS)
0 = Normal operation. 1 = TxFIFO and Tx block are reset.
[1] Rx reset (RxRS)
0 = Normal operation. 1 = RxFIFO and Rx block are reset.
[2] DMA Tx reset (DTxRS)
0 = Normal operation. 1 = DMA Tx block is reset.
[3] DMA Rx reset (DRxRS)
0 = Normal operation. 1 = DMA Rx block is reset.
[4] Tx enable (TxEN)
0 = Tx disabled. 1 = Tx enabled.
[5] Rx enable (RxEN)
0 = Rx disabled. 1 = Rx enabled.
[6] DMA Tx enable (DTxEN)
0 = DMA Tx disabled. 1 = DMA Tx enabled.
[7] DMA Rx enable (DRxEN)
0 = DMA Rx disabled. 1 = DMA Rx enabled.
[8] DPLL enable (DPLLEN)
0 = Disable
1 = Enable; DPLL enters search mode for a locking edge in the incoming
data stream.
[9] BRG enable (BRGEN)
0 = BRG counter is inhibited.
1 = BRG counter is enabled.
[10] Tx 4 word burst mode (Tx4WD)
0 = 1-word mode selected. 1 = 4-word mode selected.
[11] Rx 4 word burst mode (Rx4WD)
0 = 1-word mode selected. 1 = 4-word mode selected.
[13:12] Rx widget alignment (RxWA)
00 = No invalid byte
01 = 1 invalid byte
10 = 2 invalid bytes
11 = 3 invalid bytes
[14] DMA Tx stop or skip (DTxSTSK)
0 = DMA Tx skips when DMA not owner bit is set.
1 = DMA Tx stops when DMA not owner bit is set.
[15] DMA Rx stop or skip (DRxSTSK)
0 = DMA Rx skips when DMA not owner bit is set.
1 = DMA Rx stops when DMA not owner bit is set.
[16] DMA Rx memory address decrement (DRxMADEC)
0 = Address is incremented.1 = Address is decremented.
[17] Tx flag idle (TxFLAG)
0 = Enter mark idle mode (a bit pattern of consecutive ones)
1 = Enter time fill mode (a bit pattern of consecutive opening (closing) flag, as
in string 01111110 01111110 ...

A
u
t
o
E
N

22 21 20

T
x
P
R
M
B

T
x
A
B
T
E
X
T

R
x
E
C
H
O

T
x
L
O
O
P

D
T
x
S
T
S
K

D
R
x
E
N

T
x
E
N

KS32C50100 RISC MICROCONTROLLER HDLC CONTROLLERS

8-33

Figure 8-14 HDLC Control Register (HCON)

17 16 15 8 7 6 5 4 018

T
x
S
F
L
A
G

T
x
F
L
A
G

D
R
x
S
T
S
K

R
x
E
N

D
T
x
E
N

3 2 119

D
R
x
R
S

D
T
x
R
S

R
x
R
S

T
x
R
S

D
P
L
L
E
N

B
R
G
E
N

T
x
4
W
D

R
x
4
W
D

R
x
w
A

91011121314

D
R
x
M
A
D
E
C

31 30 29 28 27 26 25 24 23

T
x
A
B
T

R
x
D
I
S
C
O
N

T
x
N
O
C
R
C

R
x
N
O
C
R
C

T
x
D
T
R

[18] Tx single flag (TxSFLAG)
0 = Double flag mode (a closing & opening flags are used to separate frames)
1 = Single flag mode (only one flags are used to separate frames.)
[19] Tx loop-back mode (TxLOOP)
0 = Normal operation.
1 = The transmit data output is internally connected to the receiver data input for self
testing.
[20] Rx echo mode (RxECHO)
0 = Disable Rx auto-echo mode.
1 = Enable Rx DMA Tx block is reset.
[21] Tx abort extension (TxABTEXT)
0 = At least consecutive eight 1s are transfered.
1 = At least 16 consecutive 1s are transferred.
[22] Tx abort (TxABT)
0 = Normal
1 = Enable (at least eight consecutive 1s are transmitted.)
[23] Tx preamble (TxPRMB)
0 = Transmit a mark idle or time fill bit pattern
1 = Transmit the content of HPRMB
[24] Tx data terminology ready (TxDTR)
0 = nDTR goes high level.
1 = nDTR goes low level.
[25] Rx frame discontinue (RxDISCON)
0 = Normal
1 = Ignore the currently received frame.
[26] Tx No CRC (TxNOCRC)
0 = Disable
1 = CRC is not appended by hardware.
[27] Rx No CRC (RxNOCRC)
0 = Disable
1 = Receiver does not check CRC by hardware.
(CRC is treated as data in any case)
[28] Auto enable (AutoEN)
0 = Normal operation. The nCTS and nDCD become high, the transmitter sends
mark idle and receiver receives data.
1 = The nDCD and nCTS become high, RxFIFO, Rx block, TxFIFO, and
Tx block are cleared. The transmitter sends mark idle, and the receiver does not
operate.
[31:29] Reserved

A
u
t
o
E
N

22 21 20

T
x
P
R
M
B

T
x
A
B
T
E
X
T

R
x
E
C
H
O

T
x
L
O
O
P

D
T
x
S
T
S
K

D
R
x
E
N

T
x
E
N

HDLC CONTROLLERS KS32C50100 RISC MICROCONTROLLER

8-34

HDLC STATUS REGISTER (HSTAT)

 NOTE

Reading the HDLC status register is a non-destructive process. The method used to clear a High-
level status condition depends on the bit's function and operation mode(DMA or interrupt). For
details, please see the description of each status register.

SUMMARY

There are two kinds of bits in a status register.

1. TxFA, TxCTS, RxFA, RxDCD, RxFV, RxCRCE, RxNO, RxIERR, and RxOV bits are show each bit's status.
These bits are set or cleared automatically according to the each bit status.

2. All other bits are cleared by the CPU writing '1' to each bit.

Table 8-9 HSTATA and HSTATB Register

Registers Offset Address R/W Description Reset Value

HSTATA 0x7008 R/W HDLC Channel A Status Register 0X00000000

HSTATB 0x8008 R/W HDLC Channel B Status Register 0X00000000

KS32C50100 RISC MICROCONTROLLER HDLC CONTROLLERS

8-35

Table 8-10 HSTAT Register Description

Bit Number Bit Name Description

[3:0] Rx remaining bytes
(RxRB)

(RxRB + 1) indicates how many data bytes are valid in a 1-word or 4-word
boundary when the receiver has received a complete frame. In 1-word
transfer mode, the RxRB value is either 0, 1, 2, or 3. In 4-word mode, it is 0,
1, ..., 14, or 15.

[4] Tx frame complete
(TxFC)

This status bit is automatically set to '1' when the two conditions are met: 1)
there is no data in the Tx FIFO, and 2) either an abort or a closing flag is
transmitted. You can clear this bit by writing '1' to this bit.

[5] Tx FIFO available
(TxFA)

If this bit is '1', the data to be sent can be loaded into the HTxFIFO register.
In 1-word transfer mode, the TxFA status bit is set to '1' when the first
register of the HTxFIFO is empty.
In 4-word transfer mode, TxFA = '1' when the first four 32-bit registers of the
HTxFIFO are empty. The TxFA status condition is automatically cleared
when HTxFIFO is no longer available. During DMA Tx operation, this bit is
always ’0', so not generating interrupt.

[6] Tx clear-to-send
(TxCTS)

The nCTS input is projected to this status bit. If the level at the nCTS input
pin is Low, this status bit is'1'. If nCTS input pin is High level, TxCTS is '0'.
This bit does not generate an interrupt.

[7] Tx stored clear-to-
send (TxSCTS)

This bit is set to '1' each time a transition in nCTS input occurs. You can
clear this bit by writing '1' to this bit.

[8] Tx underrun (TxU) When the transmitter runs out of data during a frame transmission, an
underrun occurs and the frame is automatically terminated by transmitting
an abort sequence. The underrun condition is indicated when TxU is '1'. You
can clear this bit by writing a '1' to this bit.

[9] Rx FIFO available
(RxFA)

This status bit indicates when the data received can be read from the Rx
FIFO. When RxFA is '1', it indicates that data (other than an address or a
final data word) is available in the HRXFIFO. In 1-word transfer mode, RxFA
bit set to ’1’ when received data is available in the last FIFO register. In 4-
word transfer mode, it is set to ’1’ when the data received is available in the
last four 32-bit FIFO registers. Even if the data reside in FIFO for only two
words, when the Last bit is set, Rx FIFO is regarded as valid. (The received
data available condition is cleared automatically when the data received is
no longer available.) During DMA Rx operation, this bit is always ’0’, so does
not generate an interrupt.

[10] Reserved Not applicable.

[11] Rx flag detected
(RxFD)

This bit is set to ’1’ when the last bit of the flag sequence is received. This bit
generates an interrupt if enabled. You can clear this bit by writing a
'1' to this bit.

[12] Rx data carrier
detected (RxDCD)

The DCD status bit mirrors the state of the nDCD input pin. If nDCD input pin
is low, this status bit is '1'. If nDCD input pin is High, it is '0'. This bit does not
generate an interrupt.

[13] Rx stored data
carrier detected
(RxSDCD)

This bit is set to '1' when a transition in nDCD input occurs, and can
generate interrupt, if enabled. You can clear this bit by writing a '1' to this bit.

HDLC CONTROLLERS KS32C50100 RISC MICROCONTROLLER

8-36

[14] Rx frame valid
(RxFV)

This bit signals frame's ending boundary to the CPU and also indicates that
no frame error occurred. It is set when the last data byte of a frame is
transferred into the last location of the Rx FIFO and is available to be read.

[15] Rx idle (RxIDLE) The RxIDLE status bit indicates that a minimum of 15 consecutive 1s have
been received. The event is stored in the status register and can be used to
trigger a receiver interrupt. The RxIDLE bit continues to reflect the inactive
idle condition until a '0' is received. You can clear this bit by writeing a '1' to
this bit.

[16] Rx abort (RxABT) The RxABT status bit is set to '1' when seven or more consecutive 1s (abort
sequence) have been received. When an abort is received in an 'in-frame'
condition, the event is stored in the status register triggering an interrupt
request. You can clear this bit by writeing a '1' to this bit.

[17] Rx CRC error
(RxCRCE)

The RxCRCE status bit is set a frame is completed with a CRC error.

[18] Rx non-octet align
(RxNO)

The RxNO bit is set to '1', if received data is non-octet aligned frame.

[19] Rx overrun (RxOV) The RxOV status bit is set to '1', if the data received is transferred into the
HRXFIFO when it is full, resulting in a loss of data. Continued overruns
destroy data in the first FIFO register.

[20] DMA Rx memory
overflow (RxMOV)

This bit is set when there is no more buffer during receiving data. If this bit is
set, DRxEN bit is cleared. You can clear this bit by writeing '1' to this bit.

[21] Reserved. Not applicable.

[22] DMA Tx abort
(DTxABT)

This bit is set to ’1’ when abort signal is sended due to the Tx underrun or
CTS lost occurred. If this bit is set, DTxEN(in HCON) bit cleared. You can
clear this bit by writeing '1' to this bit.

[23] Rx internal error
(RxIERR)

This bit is set to '1' when received frame will be detected error possibility due
to the receive clock is unstable.

[24] DMA Rx frame
done every
received frame
(DRxFD)

This bit is set when a DMA Rx operation has successfully operated a frame
to memory from HRXFIFO, and when the last byte of a frame has been
written to memory. This bit generate interrupt when set to '1' to know a frame
is received. You can clear this bit by writing '1' to this bit.

[25] DMA Rx null list
(DRxNL)

If this bit is set, the DMA Rx buffer descriptor pointer has a null address. In
this case, DMA Rx is disabled and the data transfer from the Rx FIFO to
buffer memory is discontinued. So the HRXFIFO is cleared. You can clear
this bit by writing '1' to this bit.

[26] DMA Rx not owner
(DRxNO)

This bit is set, when DMA is not owner of the current buffer descriptor, and
DRxSTSK bit was set. In this case, DMA Rx is disabled and can generate
interrupt, if enabled. If DRxSTSK bit is zero, this bit is always zero. You can
clear this bit by writing '1' to this bit.

[27] DMA Tx frame
done (DTxFD)

This bit is set to '1' when DMA Tx operation has successfully transferred a
frame from memory to Tx FIFO. You can clear this bit by writing '1' to this bit.

Table 8-10 HSTAT Register Description

Bit Number Bit Name Description

KS32C50100 RISC MICROCONTROLLER HDLC CONTROLLERS

8-37

[28] DMA Tx null list
(DTxNL)

If this bit is set '1', the DMA Tx buffer descriptor pointer has a null address. In
this case, DMA Tx is disabled and the data to be transferred discontinued
from the buffer memory to Tx FIFO. You can clear this bit by writing '1' to this
bit.

[29] DMA Tx not owner
(DTxNO)

This bit is set, when DMA is not owner of the current buffer descriptor, and
DTxSTSK bit was set. In this case, DMA Tx disabled and can generate
interrupt, if enabled. If DTxSTSK bit is zero, this bit is always zero. You can
clear this bit by writing '1' to this bit.

[30] DPLL one clock
missing
(DPLLOM)

When operating in FM/Manchester mode, the DPLL sets this bit to '1' if it
does not detect an edge in its first attempt. You can clear this bit by writing a
'1' to this bit.

[31] DPLL two clock
missing
(DPLLTM)

When it is operating in the FM/Manchester mode, the DPLL sets this bit to '1'
if it does not detect an edge in two successive attempts. At the same time
the DPLL enters Search mode. In NRZ/NRZI mode, and while the DPLL is
disabled, this bit is always '0'. You can clear this bit by writing a '1' to this bit.

Table 8-10 HSTAT Register Description

Bit Number Bit Name Description

HDLC CONTROLLERS KS32C50100 RISC MICROCONTROLLER

8-38

Figure 8-15 HDLC Status Register

[3:0] Rx remaining bytes (RxRB)
At 1-word boundary: At 4-word boundary:
0000 = Valid data byte is 1 0000 = Valid data byte is 1
0001 = Valid data byte is 2 .
0010 = Valid data byte is 3 .
0011 = Valid data byte is 4 1111 = Valid data byte is 16
[4] Tx frame complete (TxFC)
0 = Normal operation
1 = Automatically set; if two conditions are met:
 1) Tx FIFO is empty. 2) An abort or a closing flag is transmitted.
[5] Tx FIFO available (TxFA)
0 = Tx FIFO is not available.
1 = Tx FIFO is available. (that is, the data to be transmitted can now be
 loaded into the Tx FIFO.)
[6] Tx clear-to-send (TxCTS)
0 = Level at the nCTS input pin is High.
1 = Level at the nCTS input pin is Low.
[7] Tx stored clear-to-send (TxSCTS)
0 = Normal operation
1 = A transition occurred at the nCTS input. (This transitioncan be used to
 trigger an interrupt)
[8] Tx underrun (TxU)
0 = Normal operation
1 = The transmitter ran out of data during transmission.
[9] Rx FIFO available (RxFA)
0 = Normal operation
1 = Data is available in the RxFIFO.
[10] Reserved
[11] Rx flag detected (RxFD)
0 = Normal operation.
1 = This bit is set, when the last bit of the flag sequence is received.
[12] Rx data-carrier-detected (RxDCD)
0 = nDCD input pin is High.
1 = nDCD input pin is Low.
[13] Rx stored data-carrier-detected (RxSDCD)
0 = Normal operation.
1 = When a transition of the nDCD input occurs, this bit is set.
[14] Rx frame valid (RxFV)
0 = Normal operation.
1 = The last data byte of a frame is transferred into the last location
of RxFIFO.
[15] Rx idle (RxIDLE)
0 = Normal operation.
1 = A minimum 15 consecutive 1s have been received.

17 16 15 8 7 6 5 4 018

R
x
N
O

R
x
C
R
C
E

R
x
I
D
L
E

T
x
F
A

T
x
C
T
S

3 2 119

R
x
R
B

T
x
U

R
x
F
A

R
x
F
D

R
x
D
C
D

91011121314

R
x
A
B
T

31 30 29 28 27 26 25 24 23

D
T
x
N
L

D
R
x
F
D

D
T
x
N
O

22 21 20

R
x
M
O
V

R
x
O
V

R
x
F
V

T
x
S
C
T
S

T
x
F
C

D
P
L
L
T
M

D
P
L
L
O
M

D
R
x
N
O

D
R
x
N
L

R
x
S
D
C
D

R
x
I
E
R
R

D
T
x
A
B
T

D
T
x
F
D

KS32C50100 RISC MICROCONTROLLER HDLC CONTROLLERS

8-39

Figure 8-16 HDLC Status Register (Continued)

[16] Rx abort (RxABT)
0 = Normal operation.
1 = Seven or more consecutive 1s have been received, in-frame condition.
[17] Rx CRC error (RxCRCE)
0 = Normal operation.
1 = A frame Rx operation is completed with a CRC error.
[18] Rx non-octet align (RxNO)
0 = Received frame is octet.
1 = Received frame is not octet.
[19] Rx overrun (RxOV)
0 = Normal operation.
1 = Received data is transferred into the RxFIFO when it is full.
[20] Rx memory overflow (RxMOV)
0 = Normal operation.
1 = Indicates memory overflow when Rx buffer descriptor next pointer has null address.
[21] Reserved
[22] DMA Tx abort (DTxABT)
0 = Normal operation.
1 = Abort signal is sended and DMA Tx enable bit is cleared.
[23] Rx internal error (RxIERR)
0 = Normal operation.
1 = Received frame is not stable due to receive clock is unstable.
[24] DMA Rx frame done every received frame (DRxFD)
0 = Normal operation.
1 = DMA Rx operation has successfully transferred a frame from RxFIFO to buffer memory.
[25] DMA Rx null list (DRxNL)
0 = Normal operation.
1 = DMA Rx buffer descriptor pointer has a null address.
[26] DMA Rx not owner (DRxNO)
0 = DMA has the ownership.
1 = CPU has the ownership.
[27] DMA Tx frame done (DTxFD)
0 = Normal operation.
1 = DMA Tx operation has successfully transferred a frame from memory to Tx FIFO.
[28] DMA Tx null list (DTxNL)
0 = Normal operation
1 = DMA Tx buffer descriptor pointer has a null address.
[29] DMA Tx not owner (DTxNO)
0 = DMA has the ownership.
1 = CPU has the ownership.
[30] DPLL one clock missing (DPLLOM)
0 = Normal operation
1 = Set in FM/Manchester mode when DPLL does not detect an edge on the first entry.
[31] DPLL two clock missing (DPLLTM)
0 = Normal operation
1 = DPLL was not detected on two consecutive edges and search mode was entered.

17 16 15 8 7 6 5 4 018

R
x
N
O

R
x
C
R
C
E

R
x
I
D
L
E

T
x
F
A

T
x
C
T
S

3 2 119

R
x
R
B

T
x
U

R
x
F
A

R
x
F
D

R
x
D
C
D

91011121314

R
x
A
B
T

31 30 29 28 27 26 25 24 23

D
T
x
N
L

D
R
x
F
D

D
T
x
N
O

22 21 20

R
x
M
O
V

R
x
O
V

R
x
F
V

T
x
S
C
T
S

T
x
F
C

D
P
L
L
T
M

D
P
L
L
O
M

D
R
x
N
O

D
R
x
N
L

R
x
S
D
C
D

R
x
I
E
R
R

D
T
x
A
B
T

D
T
x
F
D

HDLC CONTROLLERS KS32C50100 RISC MICROCONTROLLER

8-40

HDLC INTERRUPT ENABLE REGISTER (HINTEN)

Table 8-11 HINTENA and HINTENB Register

Registers Offset Address R/W Description Reset Value

HINTENA 0x700c R/W HDLC Interrupt Enable Register 0X00000000

HINTENB 0x800c R/W HDLC Interrupt Enable Register 0X00000000

Table 8-12 HINTEN Register Description

Bit Number Bit Name Description

[3:0] Reserved -

[4] TxFCIE Tx frame complete interrupt enable

[5] TxFAIE Tx FIFO available to write interrupt enable

[6] Reserved -

[7] TxSCTSIE CTS transition has occurred interrupt enable

[8] TxUIE Tx underrun has occurred interrupt enable

[9] RxFAIE Rx FIFO available to read interrupt enable

[10] Reserved -

[11] RxFDIE Rx flag detected interrupt enable

[12] Reserved –

[13] RxSDCDIE DCD transition interrupt enable

[14] RxFVIE Rx frame valid interrupt enable

[15] RxIDLEIE Idle detected interrupt enable

[16] RxABTIE Abort detected interrupt enable

[17] RxCRCEIE CRC error frame interrupt enable

[18] RxNOIE Non-octet aligned frame interrupt enable

[19] RxOVIE Rx overrun interrupt enable

[20] RxMOVIE Rx memory overflow interrupt enable

[21] Reserved –

[22] DTxABTIE DMA Tx abort interrupt enable

[23] RxIERRIE Rx internal error interrupt enable

[24] DRxFDIE DMA Rx frame done interrupt enable

[25] DRxNLIE DMA Rx null list interrupt enable

[26] DRxNOIE DMA Rx not owner interrupt enable

[27] DTxFDIE DMA Tx frame done every transmitted frame interrupt enable

[28] DTxNLIE DMA Tx null list interrupt enable

KS32C50100 RISC MICROCONTROLLER HDLC CONTROLLERS

8-41

[29] DTxNOIE DMA Tx not owner interrupt enable

[30] DPLLOMIE DPLL one clock missing interrupt enable

[31] DPLLTMIE DPLL two clocks missing interrupt enable

Table 8-12 HINTEN Register Description

Bit Number Bit Name Description

HDLC CONTROLLERS KS32C50100 RISC MICROCONTROLLER

8-42

Figure 8-17 HDLC Interrupt Enable Register

17 16 15 8 7 4 018

R
x
N
O
I
E

R
x
C
R
C
E
I
E

R
x
I
D
L
E
I
E

220 19

R
x
F
A
I
E

R
x
F
D
I
E

R
x
S
D
C
D
I
E

91011121314

R
x
A
B
T
I
E

R
x
O
V
I
E

31 30 29 28 27 26 25 24 23

D
R
x
F
D
I
E

D
T
x
N
O
I
E

D
P
L
L
O
M
I
E

D
P
L
L
T
M
I
E

D
R
x
N
O
I
E

22 21

R
x
M
O
V
I
E

R
x
F
V
I
E

T
x
F
C
I
E

T
x
F
A
I
E
E

6 5 3 1

[3:0] Reserved

[4] Tx frame complete interrupt enable
 (TxFCIE)

[5] Tx FIFO available to write interrupt
enable (TxFAIE)

[6] Reserved

[7] CTS transition has occurred interrupt
enable (TxSCTIE)

[8] Transmit underrun has occurred
interrupt enable (TxUIE)

[9] RxFIFO available to read interrupt
enable (RxFAIE)

[10] Reserved

[11] Flag detected interrupt enable
 (RxFDIE)

[12] Reserved

[13] DCD transition interrupt enable
 (RxSDCDIE)

[14] Valid frame interrupt enable (RxFVIE)

[15] Idle detected interrupt enable
 (RxIDLEIE)

[16] Abort detected interrupt enable
 (RxABTIE)

[17] CRC error frame interrupt enable
 (RxCRCEIE)
[18] Non-octet aligned frame interrupt
enable (RxNOIE)

[19] Rx overrun interrupt enable (RxOVIE)

[20] Rx memory overflow interrupt enable
 (RxMOVIE)

[21] Reserved

[22] DMA Tx abort interrupt enable
 (DTxABTIE)

[23] Rx internal error interrupt enable
 (RxIERRIEN)

[24] DMA Rx frame done every received frame
interrupt enable (DRxFDIE)

[25] DMA Rx null list interrupt enable
 (DRxNLIE)

[26] DMA Rx not owner interrupt
enable (DRxNOIE)

[27] DMA Tx frame done every received frame
interrupt enable (DTxFDIE)

[28] DMA Tx null list interrupt enable
 (DTxNLIE)

[29] DMA Tx not owner interrupt enable
 (DTxNOIE)

[30] DPLL one missing interrupt enable
 (DPLLOMIE)

[31] DPLL two missing interrupt enable
 (DPLLTMIE)

D
T
x
N
L
I
E

D
R
x
N
L
I
E

T
x
U
I
E

T
x
S
C
T
S
I
E

D
T
x
A
B
T
I
E

R
x
I
E
R
R
I
E

D
T
x
F
D
I
E

KS32C50100 RISC MICROCONTROLLER HDLC CONTROLLERS

8-43

HDLC TX FIFO (HTXFIFO)

The Tx FIFO consists of eight 32-bit registers that are used for buffer storage of data to be transmitted. Data is
always transferred from a full register to an empty adjacent register. The Tx FIFO can be addressed at two different
register addresses: the 'frame continue' address and the 'frame terminate' address.

Each register has four pointers, data valid pointer bit (4 bits), last pointer bit, NoCRC pointer bit, Preamble pointer
bit. The data valid pointer bit indicates whether each byte is valid or not. The last byte pointer bit indicates whether
the frame to be sent has the frame last byte or not. The NoCRC pointer bit determines whether the CRC data is to
be appended or not by hardware.

When a valid data byte is written to the 'frame continue' address, the data valid pointer is set, but the last byte
pointer is not set. When a valid data byte is written to the 'frame terminate' address, the data valid pointer and last
byte pointer are set together. To reset these pointers, you write a '1' to either the TxABT bit or the TxRS bit in the
HCON register.

In DMA mode, when the DMA controller writes data to the HTxFIFO, Tx buffer descriptor Buffer Length field value
must be pre-set. However, if the Last bit is set in buffer descriptor, the last byte pointer in HTxFIFO is also set. This
means the last byte of the frame is in HTxFIFO. If the transmitted frame is longer than the Buffer Length field value,
the last byte pointer will not be set, and the next buffer descriptor having the last byte pointer bit will be used.

The pointers continue shifting through the FIFO. When the transmitter detects a positive transition in the data valid
pointer at the last location of the FIFO, it initiates a frame with an opening flag. When it detects a negative transition
in the last byte pointer at the last location of the FIFO, it closes the frame, appending the CRC and a closing flag
follows.

The status of the Tx FIFO is indicated by the transmitter FIFO register available (TxFA) status bit. When TxFA = '1',
the Tx FIFO is available for loading data and data can be loaded into it. (This function is controlled by the Tx4WD
bit.) The HTxFIFO is reset by writing a '1' to the Tx reset, or the TxABT bit or by the nRESET. During a reset
operation, the TxFA status bit is suppressed and data loading is inhibited.

Figure 8-18 HDLC Tx FIFO Function Diagram

TxFIFO

8-bit 8-bit 8-bit 8-bit

8 Tx Data

Data Valid (4-bit) Last (1-bit) NoCRC Preamble

HDLC CONTROLLERS KS32C50100 RISC MICROCONTROLLER

8-44

HDLC RX FIFO (HRXFIFO)

The Rx FIFO consists of eight 32-bit registers that are used for the buffer storage of the data received. Data bytes
are always transferred from a full register to an adjacent empty register. Each register has pointer bits that indicate
the frame status. When these pointers appear at the last 1-word or 4-word FIFO location, they update the LAST
bit(indicating the last of a frame), the OVERRUN bit, the CRC error bit, or Non-octet aligned bit.

The HRXFIFO data available (RxFA) status bits indicate the current state of the HRXFIFO. When the HRXFIFO
data status bit is '1', the HRXFIFO is ready to be read. The HRXFIFO data status is controlled by the 4-word or 1-
word transfer selection bit (Rx4WD). When an overrun occurs, the overrun frame of the HRXFIFO is no longer
valid.

An 'in frame' abort or a High level on nDCD input with the AutoEN bit in HCON is set to '1', the frame is cleared in
the HRXFIFO. (The last byte of the previous frame, which is separated by the frame boundary pointer, is retained).
Data in HRXFIFO should be read by word size.

The HRXFIFO is cleared by the Rx reset bit set to '1', an abort signal received, or nRESET

Figure 8-19 HDLC Rx FIFO Function Diagram

RxFIFO

8-bit 8-bit 8-bit 8-bit

Rx Data

Last OV CRCE NOData Valid

KS32C50100 RISC MICROCONTROLLER HDLC CONTROLLERS

8-45

HDLC BRG TIME CONSTANT REGISTERS (HBRGTC)

The HDLC BRG time constant register value can be changed at any time, but the new value does not take effect
until the next time the constant is loaded into the down counter. No attempt is made to synchronize the loading of
the time constant into HBRGTC while the clock is driving the down counter. For this reason, you should first disable
the baud rate generator before loading the new time constant into the HBRGTC register.

The formula for determining the appropriate time constant for a given baud rate is shown below. The desired rate is
shown in bits per second. This formula shows how the counter decrements from N down to zero-plus-one cycles for
reloading the time constant. This value is then fed to a toggle flip-flop to generate the square wave output.

BRGOUT1 = (MCLK2 or RXC) / (CNT0 + 1) / (16CNT1)
BRGOUT2 = BRGOUT1 / (1 or 16 or 32 according to CNT2 value of the HBRGTC)

Table 8-13 HBRGTCA and HBRGTCB Register

Registers Offset Address R/W Description Reset Value

HBRGTCA 0x701c R/W HDLC BRG Time Constant Register 0x00000000

HBRGTCB 0x801c R/W HDLC BRG Time Constant Register 0x00000000

Figure 8-20 HDLC BRG Time Constant Register

31 16 15 0

CNT0

[1:0] Time constant value for CNT2
00 = divide by 1
01 = divide by 16
10 = divide by 32

[3:2] Time constant value for CNT1
00 = divide by 1
01 = divide by 16

[15:4] Time constant value for CNT0

30 29 28 27 26 25 24 23 22 21 20 19 18 17 14 13 12 11 10 9 8 7 6 5 4 3 2 1

CNT1 CNT2

HDLC CONTROLLERS KS32C50100 RISC MICROCONTROLLER

8-46

HDLC PREAMBLE CONSTANT REGISTER (HPRMB)

The HPRMB register is used to meet the DPLL requirements for phase-locking. The preamble pattern is
transmitted as many Tx preamble length bit values in HMODE[10:8] when the Tx preamble bit (TxPRMB) is '1', and
then the Tx preamble bit is cleared automatically. The opening flag follows this preamble pattern, and the data will
be transmitted.

The reference for the preamble pattern of each data mode is as follows:

Table 8-14 HPRMBA and HPRMBB Register

Registers Offset Address R/W Description Reset Value

HPRMBA 0x7020 R/W HDLC Preamble Constant Register 0x00000000

HPRMBB 0x8020 R/W HDLC Preamble Constant Register 0x00000000

Figure 8-21 HDLC Preamble Constant Register

Table 8-15 Preamble Reference Pattern

Data Mode Preamble Pattern

NRZ AA

NRZI 00

FM0 FF

FM1 00

MANCHESTER AA

31 16 15 0

[7:0] Preamble Pattern

30 29 28 27 26 25 24 23 22 21 20 19 18 17 14 13 12 11 10 9 8 7 6 5 4 3 2 1

Preamble Pattern

KS32C50100 RISC MICROCONTROLLER HDLC CONTROLLERS

8-47

HDLC STATION ADDRESS REGISTERS (HSADR0–3) AND HMASK REGISTER

Each HDLC controller has five 32-bit registers for address recognition: four station address registers and one mask
register. Generally, the HDLC controller reads the address of the frame from the receiver, to check it against the
four station address values, and then masks the result with the user-defined HMASK register. A "1" in the HMASK
register represents a bit position for which an address comparision should occur. A "0" represents a masked bit
position. If you check the address up to four bytes, the HMASK register value should be 0xffffffff. Dependent on the
HMASK register value, the frame's address is compared. If the address is not matched, this frame is discarded.

Table 8-16 HSADR and HMASK Register

Registers Offset Address R/W Description Reset Val.

HSADR0A 0x7024 R/W HDLC station address 0 0X00000000

HSADR1A 0x7028 R/W HDLC station address 1 0X00000000

HSADR2A 0x702c R/W HDLC station address 2 0X00000000

HSADR3A 0x7030 R/W HDLC station address 3 0X00000000

HMASKA 0x7034 R/W HDLC address mask register 0X00000000

HSADR0B 0x8024 R/W HDLC station address 0 0X00000000

HSADR1B 0x8028 R/W HDLC station address 1 0X00000000

HSADR2B 0x802c R/W HDLC station address 2 0X00000000

HSADR3B 0x8030 R/W HDLC station address 3 0X00000000

HMASKB 0x8034 R/W HDLC address mask register 0X00000000

Figure 8-22 Address Recognition

0x F F F F F F F F

0x A B C D E F G H

0x F F F F F F F F

0x A B C D E F G H

0x A B C D E F G H

HMASK

HSADR0

HSADR1

HSADR2

HSADR3

0x F F 0 0 0 0 0 0

0x 5 5 X X X X X X

0x 5 5 X X X X X X

0x 5 5 X X X X X X

0x 5 5 X X X X X X

HMASK

HSADR0

HSADR1

HSADR2

HSADR3

Note : Recognize one 32bit address and
 the 32bit broadcast address

Note : Recognize a single 8bit address

HDLC CONTROLLERS KS32C50100 RISC MICROCONTROLLER

8-48

Figure 8-23 HDLC Station Address and HMASK Register

31 16 15 0

Station address byte register and MASK register

[31:24] First address byte

[23:16] Second address byte

[15:8] Third address byte

[7:0] Fourth address byte

30 29 28 27 26 25 24 23 22 21 20 19 18 17 14 13 12 11 10 9 8 7 6 5 4 3 2 1

fourth bytethird bytesecond bytefirst byte

KS32C50100 RISC MICROCONTROLLER HDLC CONTROLLERS

8-49

DMA TX BUFFER DESCRIPTOR POINTER REGISTER

The DMA transmit buffer descriptor pointer register contains the address of the Tx buffer data pointer on the data to
be sent. During a DMA operation, the buffer descriptor pointer is updated by the next buffer data pointer.

Table 8-17 DMA Tx Buffer Descriptor Pointer Registers

Registers Offset Address R/W Description Reset Value

HDMATXPTRA 0x7038 R/W DMA Tx Buffer Descriptor Pointer 0xFFFFFFFF

HDMATXPTRB 0x8038 R/W DMA Tx Buffer Descriptor Pointer 0xFFFFFFFF

Figure 8-24 DMA Tx Buffer Descriptor Pointer

31 16 15 0

[25:0] DMA Tx Buffer Descriptor Pointer

30 29 28 27 26 25 24 23 22 21 20 19 18 17 14 13 12 11 10 9 8 7 6 5 4 3 2 1

DMA Tx Buffer Descriptor Pointer

HDLC CONTROLLERS KS32C50100 RISC MICROCONTROLLER

8-50

DMA RX BUFFER DESCRIPTOR POINTER REGISTER

The DMA receive buffer descriptor pointer register contains the address of the Rx buffer data pointer on the data to
be received. During a DMA operation, the buffer descriptor pointer is updated by the next buffer data pointer.

Table 8-18 DMA Rx Buffer Descriptor Pointer Registers

Registers Offset Address R/W Description Reset Value

HDMARXPTRA 0x703c R/W DMA Rx Buffer Descriptor Pointer 0xFFFFFFFF

HDMARXPTRB 0x803c R/W DMA Rx Buffer Descriptor Pointer 0xFFFFFFFF

Figure 8-25 DMA Rx Buffer Descriptor Pointer

31 16 15 0

[25:0] DMA Rx Buffer Descriptor Pointer

30 29 28 27 26 25 24 23 22 21 20 19 18 17 14 13 12 11 10 9 8 7 6 5 4 3 2 1

DMA Rx Buffer Descriptor Pointer

KS32C50100 RISC MICROCONTROLLER HDLC CONTROLLERS

8-51

MAXIMUM FRAME LENGTH REGISTER

The HDLC controller checks the length of an incoming frame against the user-defined value in DMA mode. If the
frame received exceeds this register value, the frame is discarded, and FLV(Frame Length Violated) bit is set in the
buffer descriptor belonging to that frame.

Table 8-19 HDMATXCNT and HDMARXCNT Registers

Registers Offset Address R/W Description Reset Value

HMFLRA 0x7040 R/W Maximum Frame Length 0xXXXX0000

HMFLRB 0x8040 R/W Maximum Frame Length 0xXXXX0000

Figure 8-26 Maximum Frame Length Register

31 16 15 0

[15:0] Maximum Frame Length

30 29 28 27 26 25 24 23 22 21 20 19 18 17 14 13 12 11 10 9 8 7 6 5 4 3 2 1

Maximum Frame Length

HDLC CONTROLLERS KS32C50100 RISC MICROCONTROLLER

8-52

RECEIVE BUFFER SIZE REGISTER

The Rx buffer size register contains the 16-bit user-defined value. This user-defined count value determines the
buffer size for one Buffer Descriptor. If incoming HDLC frame is longer than the Rx buffer size register value, the
next buffer descriptor having the Rx buffer size value will be used.

Table 8-20 DMA Rx Buffer Size Register

Registers Offset Address R/W Description Reset Value

HRBSRA 0x7044 R/W Receive Buffer Size Register 0xXXXX0000

HRBSRB 0x8044 R/W Receive Buffer Size Register 0xXXXX0000

Figure 8-27 DMA Receive Buffer Size Register

31 16 15 0

[15:0] Receive Buffer Size Register

30 29 28 27 26 25 24 23 22 21 20 19 18 17 14 13 12 11 10 9 8 7 6 5 4 3 2 1

Receive Buffer Size

KS32C50100 RISC MICROCONTROLLER DMA CONTROLLER

9-1

9 DMA CONTROLLER

The KS32C50100 has a two-channel general DMA controller, called the GDMA. The two-channel GDMA performs
the following data transfers without CPU intervention:

• Memory-to-memory (memory to/from memory)

• UART-to-memory (serial port to/from memory)

The on-chip GDMA can be started by software and/or by an external DMA request (nXDREQ). Software can also
be used to restart a GDMA operation after it has been stopped.

The CPU can recognize when a GDMA operation has been completed by software polling and/or when it receives
an appropriate internally generated GDMA interrupt. The KS32C50100 GDMA controller can increment or
decrement source or destination addresses and conduct 8-bit (byte), 16-bit (half-word), or 32-bit (word) data
transfers.

Figure 9-1 GDMA Controller Block Diagram

GDMA Channel 0

nDREQ

nDACK

GDMA Channel 1

nDREQ nDACK

GDMA

SYSTEM BUS

Port 14 Data

nXDACK 0

Mode Selection

nXDREQ 0

UART1

IOPCON [27:26]

nXDACK 1

IOPCON [29:28]Mode Selection

Port 15 Data

UART0

nXDREQ 1

GDMA

DMA CONTROLLER KS32C50100 RISC MICROCONTROLLER

9-2

GDMA SPECIAL REGISTERS

GDMA CONTROL REGISTERS

Table 9-1 GDMA Special Registers Overview

Register Offset Address R/W Description Reset Value

GDMACON0 0xB000 R/W GDMA controller channel 0 control register 0x00000000

GDMACON1 0xC000 R/W GDMA controller channel 1 control register 0x00000000

GDMASRC0 0xB004 R/W GDMA channel 0 source address register Undefined

GDMADST0 0xB008 R/W GDMA channel 0 destination address register Undefined

GDMASRC1 0xC004 R/W GDMA channel 1 source address register Undefined

GDMADST1 0xC008 R/W GDMA channel 1 destination address register Undefined

GDMACNT0 0xB00C R/W GDMA channel 0 transfer count register Undefined

GDMACNT1 0xC00C R/W GDMA channel 1 transfer count register Undefined

Table 9-2 GDMACON0 and GDMACON1 Registers

Register Offset Address R/W Description Reset Value

GDMACON0 0xB000 R/W GDMA controller channel 0 control register 0x00000000

GDMACON1 0xC000 R/W GDMA controller channel 1 control register 0x00000000

Table 9-3 GDMA Control Register Description

Bit Number Bit Name Description

[0] Run enable/disable Setting this bit to “1”, starts a DMA operation. To stop DMA,
you must clear this bit to “0”. You can use the GMA run bit
control address (GDMACON offset address + 0x20) to
manipulate this bit. By using the run bit control address,
other GDMA control register values are not affected.

[1] Busy status When DMA starts, this read-only status bit is automatically
set to “1”. When it is “0”, DMA is idle.

[3:2] GDMA mode selection Four sources can initiate a DMA operation: 1) software
(memory-to-memory), 2) an external DMA request
(nXDREQ), 3) the UART0 block, and 4) the UART1 block.
The mode selection setting determines which source can
initiate a DMA operation at any given time.

[4] Destination address direction This bit controls whether the destination address will be
decremented (“1”) or incremented (”0”) during a DMA
operation.

KS32C50100 RISC MICROCONTROLLER DMA CONTROLLER

9-3

[5] Source address direction This bit controls whether the source address will be
decremented (“1”) or incremented (“0”) during a DMA
operation.

[6] Destination address fix This bit determines whether or not the destination address
will be changed during a DMA operation. You use this
feature when transferring data from multiple sources to a
single destination.

[7] Source address fix This bit determines whether or not the source address will
be changed during a DMA operation. You use this feature
when transferring data from a single source to multiple
destinations.

[8] Stop interrupt enable To start/stop a DMA operation, you set/clear the run enable
bit. If the Stop interrupt enable bit is “1” when DMA starts, a
Stop interrupt is generated when DMA operation stops. If
this bit is “0”, the Stop interrupt is not generated.

[9] Four-data burst enable If this bit is set to one, GDMA operates under 4-data burst
mode. Under the 4-data burst mode, 4 consecutive source
addresses are read and then are written to the consecutive
destination addresses. If 4-data burst mode is set to one,
"transfer count register" should be set carefully because the
4-data burst move is executed during decreasing of the
transfer count. The 4-data burst mode can be used only
when GMDA mode is software or external DMA request
mode.

[10] Peripheral direction This bit is used to specify the direction of a DMA operation
when the mode bits [3:2] are set to '10' (UART0 from/to
memory) or '11' (UART1 from/to memory). If this bit is “1”,
DMA operates in the memory-to-peripheral direction (e.g.,
to the parallel port or UART). When it is “0”, DMA operates
in the peripheral-to-memory direction.

[11] Single/Block mode This bit determines the number of external DMA requests
(nXDREQs) that are required for a DMA operation. In
Single mode, when [11]=”0”, the KS32C50100 requires an
external DMA request for every DMA operation.
In Block mode, when [11]=”1”, the KS32C50100 requires
only one external DMA request during the entire DMA
operation. An entire DMA operation is defined as the
operation of DMA until the counter value is zero.
NOTE: You should not use Block mode together with
Demand mode, or Single mode in conjunction with
Continuous mode.

Table 9-3 GDMA Control Register Description

Bit Number Bit Name Description

DMA CONTROLLER KS32C50100 RISC MICROCONTROLLER

9-4

NOTE: To ensure the reliability of DMA operations, the GDMA control register bits must be configured independently and
carefully.

[13:12] Transfer width These bits determine the transfer data width to be one byte,
one half-word, or one word. If you select a byte transfer
operation, the source/destination address will be
incremented or decremented by one with each transfer.
Each half-word transfer increments or decrements the
address by two, and each word transfer by four.

[14] Continuous mode This bit lets the DMA controller hold the system bus until
the DMA transfer count value is zero. You must therefore
manipulate this bit carefully so that DMA transfer
operations do not exceed a acceptable time interval (as, for
example, in a DRAM refresh operation).
NOTE: You can use Continuous mode together with a
software request mode.

[15] Demand mode Setting this bit speeds up external DMA operations. When
[15]=”1”, the DMA transfers data when the external DMA
request signal (nXDREQ) is active. The amount of data
transferred depends on how long nXDREQ is active. When
nXDREQ is active and DMA gets the bus in Demand mode,
DMA holds the system bus until the nXDREQ signal
becomes non-active. Therefore, the period of the active
nXDREQ signal should be carefully timed so that the entire
operation does not exceed an acceptable interval (as, for
example, in a DRAM refresh operation).
NOTE: In Demand mode, you must clear the Single/Block
and Continuous mode control bits to “0”.

Table 9-3 GDMA Control Register Description

Bit Number Bit Name Description

KS32C50100 RISC MICROCONTROLLER DMA CONTROLLER

9-5

Figure 9-2 GDMA Control Register

31 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

D
M

C
N

T
W

S
B

T
D

F
B

S
I

S
F

D
F

S
A

D
A

M
O
D
E

B
S

R
E

[0] Run enable (RE)
0 = Disable DMA operation 1 = Enable DMA operation

[1] Busy status (BS)
0 = DMA is idle 1 = DMA is active

[3:2] Mode selection (MODE)
00 = Software mode (memory to memory)
01 = External EXTDREQ mode (for external devices)
10 = UART0 block 11 = UART1 block

[4] Destination address direction (DA)
0 = Increase destination address 1 = Decrease destination address

[5] Source address direction (SA)
0 = Increase source address 1 = Decrease source address

[6] Destination address fix (DF)
0 = Increase/decrease destination address
1 = Do not ch ange destination address (fix)

[7] Source address fix (SF)
0 = Increase/decrease source address
1 = Do not change source address (fix)

[8] Stop interrupt enable (SI)
0 = Do not generate a Stop interrupt when DMA stops
1 = Generate a Stop interrupt when DMA stops

[9] Four-data burst enable (FB)
0 = Disable 4-data burst mode
1 = Enable 4-data burst mode

[10] Transfer direction (for UART0/UART1 only) (TD)
0 = UART0/UART1 to memory 1 = Memory to UART0/UART1

[11] Single/block mode (SB)
0 = One nXDREQ initiates a single DMA operation
1 = One nXDREQ initiates a whole DMA operation

[13:12] Transfer width (TW)
00 = Byte (8 bits) 01 = Half-word (16 bits)
10 = Word (32 bits) 11 = No use

[14] Continuous mode (CN)
0 = Normal operation
1 = Hold system bus until the whole DMA operation stops

[15] Demand mode (DM)
0 = Normal external DMA mode 1 = Demand mode

DMA CONTROLLER KS32C50100 RISC MICROCONTROLLER

9-6

GDMA SOURCE/DESTINATION ADDRESS REGISTERS

The GDMA source/destination address registers contain the 26-bit source/destination addresses for GDMA
channels 0 and 1. Depending on the settings you make to the GDMA control register (GDMACON), the source or
destination addresses will either remain the same, or they will be incremented or decremented.

Table 9-4 GDMASRC0/1 and GDMADST0/1 Registers

Register Offset Address R/W Description Reset Value

GDMASRC0 0xB004 R/W GDMA channel 0 source address register Undefined

GDMADST0 0xB008 R/W GDMA channel 0 destination address register Undefined

GDMASRC1 0xC004 R/W GDMA channel 1 source address register Undefined

GDMADST1 0xC008 R/W GDMA channel 1 destination address register Undefined

Figure 9-3 GDMA Source/Destination Address Register

31 026 25

Source/Destination Address

[25:0] Source/destination address

KS32C50100 RISC MICROCONTROLLER DMA CONTROLLER

9-7

DMA TRANSFER COUNT REGISTERS

The DMA transfer count registers contain the 24-bit current count value of the number of DMA transfers completed
for GDMA channels 0 and 1.

The count value is always decremented by one for each completed DMA operation, regardless of the GDMA data
transfer width or four-data burst mode.

NOTE

At the 4-data burst mode, actual transfer data size will be "Transfer Count x4."

Table 9-5 GDMACNT0/1 Registers

Register Offset Address R/W Description Reset Value

GDMACNT0 0xB00C R/W GDMA channel 0 transfer count register Undefined

GDMACNT1 0xC00C R/W GDMA channel 1 transfer count register Undefined

Figure 9-4 DMA Transfer Count Register

31 024

Transfer Count

23

[23:0] Transfer count

DMA CONTROLLER KS32C50100 RISC MICROCONTROLLER

9-8

GDMA FUNCTION DESCRIPTION

The following sections provide a functional description of the GDMA controller operations.

GDMA TRANSFERS

The GDMA transfers data directly between a requester and a target. The requester and target are memory,UART
or external devices. An external device requests GDMA service by activating nXDREQ signal. A channel is
programmed by writing to registers which contain requester address, target address, the amount of data, and other
control contents. UART, external I/O, or Software(memory) can request GDMA service. UART is internally
connected to the GDMA.

STARTING/ENDING GDMA TRANSFERS

GDMA starts to transfer data after the GDMA receives service request from nXDREQ signal, UART, or Software.
When the entire buffer of data has been transferred, the GDMA becomes idle. If you want to preform another buffer
transfer, the GDMA must be reprogrammed. Although the same buffer transfer wii be preformed again, the GDMA
must be reprogrammed.

DATA TRANSFER MODES

Single Mode

A GDMA request (nXDREQ or an internal request) causes one byte, one half-word, or one word to be transmitted if
4-data burst mode is disable state, or four times of transfer width if 4-data burst mode is enable state. Single mode
requires a GDMA request for each data transfer. The nXDREQ signal can be de-asserted after checking that
nXDACK has been asserted.

Figure 9-5 External DMA Requests (Single Mode)

RD/WR Cycle

nXDREQ

nXDACK

KS32C50100 RISC MICROCONTROLLER DMA CONTROLLER

9-9

Block Mode

The assertion of only one GDMA request (nXDREQ or an internal request) causes all of the data, as specified by
the control register settings, to be transmitted in a single operation. The GDMA transfer is completed when the
transfer counter value reaches zero. The nXDREQ signal can be de-asserted after checking that nXDACK has
been asserted.

Figure 9-6 External DMA Requests (Block Mode)

nXDACK

nXDREQ

RD/WR Cycle

DMA CONTROLLER KS32C50100 RISC MICROCONTROLLER

9-10

Demand Mode

In Demand mode, the GDMA continues transferring data as long as the GDMA request input (nXDREQ) is held
active.

DMA TRANSFER TIMING DATA

Figure 9-8 provides detailed timing data for GDMA data transfers that are triggered by external DMA requests.
Please note that read/write timing depends on which memory banks are selected. To access ROM banks, which is
in multiplexing bus mode, by 4-data burst mode, refer to chapter 4 (4-29 page) for read/write timing of ROM bank 5.

Figure 9-7 External DMA Requests (Demand Mode)

Figure 9-8 External DMA Requests Detailed Timing

nXDACK

RD/WR Cycle

nXDREQ

MCLKO

nXDREQ

nXDACK Min. 3 cycles

tXDRs tXDRh

tXDAf tXDAr

tXDRs

tXDRh

tXDAf

tXDAr

setup time

hold time

delay
(falling)

delay
(rising)

min max

5.05 nsec

5.0

2.14

1.54

15.3

17.05

KS32C50100 RISC MICROCONTROLLER UART

10-1

10 SERIAL I/O (UART)

The KS32C50100 UART (Universal Asynchronous Receiver/Transmitter) unit provides two independent
asynchronous serial I/O (SIO) ports. Each port can operate in interrupt-based or DMA-based mode. That is, the
UART can generate internal interrupts or DMA requests to transfer data between the CPU and the serial I/O ports.

The most important features of the KS32C50100 UART include:

• Programmable baud rates

• Infra-red (IR) transmit/receive

• Insertion of one or two Stop bits per frame

• Selectable 5-bit, 6-bit, 7-bit, or 8-bit data transfers

• Parity checking

Each SIO unit has a baud rate generator, transmitter, receiver, and a control unit, as shown in Figure 10-1. The
baud-rate generator can be driven by the internal system clock, MCLK, or by the external clock, UCLK. The
transmitter and receiver blocks have independent data buffer registers and data shifters.

Transmit data is written first to the transmit buffer register. From there, it is copied to the transmit shifter and then
shifted out by the transmit data pin, UATXDn. Receive data is shifted in by the receive data pin, UARXDn. It is then
copied from the shifter to the receive buffer register when one data byte has been received.

The SIO control units provide software controls for mode selection, and for status and interrupt generation.

UART KS32C50100 RISC MICROCONTROLLER

10-2

Figure 10-1 Serial I/O Block Diagram

UATxDn

UARxDn

LINE CONTROL REGISTER
(ULCONn)

UART CONTROL REGISTER
(UCONn)

UART STATUS REGISTER
(USTATn)

0

1

0

1

TRANSMIT SHIFT REGISTER

IR Tx
ENCODER

IR Rx
DECODER

nUADTRn

nUADSRn

BAUD RATE GENERATOR

BAUD RATE DIVISOR
(UTXBUFn)

S
Y
S
T
E
M

B
U
S

RECEIVE BUFFER REGISTER
(URXBUFn)

TRANSMIT BUFFER REGISTER
(UTXBUFn)

RECEIVE SHIFT REGISTER

KS32C50100 RISC MICROCONTROLLER UART

10-3

UART SPECIAL REGISTERS

Table 10-1 UART Special Registers Overview

Register Offset Address R/W Description Reset Value

ULCON0 0xD000 R/W UART0 line control register 0x00

ULCON1 0xE000 R/W UART1 line control register 0x00

UCON0 0xD004 R/W UART0 control register 0x00

UCON1 0xE004 R/W UART1 control register 0x00

USTAT0 0xD008 R UART0 status register 0xC0

USTAT1 0xE008 R UART1 status register 0xC0

UTXBUF0 0xD00C W UART0 transmit buffer register 0xXX

UTXBUF1 0xE00C W UART1 transmit buffer register 0xXX

URXBUF0 0xD010 R UART0 receive buffer register 0xXX

URXBUF1 0xE010 R UART1 receive buffer register 0xXX

UBRDIV0 0xD014 R/W UART0 baud rate divisor register 0x00

UBRDIV1 0xE014 R/W UART1 baud rate divisor register 0x00

BRDCNT0 0xD018 W UART0 baud rate count register 0x00

BRDCNT1 0xE018 W UART1 baud rate count register 0x00

BRDCLK0 0xD01C W UART0 baud rate clock monitor 0x0

BRDCLK1 0xE01C W UART1 baud rate clock monitor 0x0

UART KS32C50100 RISC MICROCONTROLLER

10-4

UART LINE CONTROL REGISTERS

Table 10-2 ULCON0 and ULCON1 Registers

Register Offset Address R/W Description Reset Value

ULCON0 0xD000 R/W UART0 line control register 0x00

ULCON1 0xE000 R/W UART1 line control register 0x00

Table 10-3 UART Line Control Register Description

Bit Number Bit Name Description

[1:0] Word length (WL) This two-bit word length value indicates the number of data
bits to be transmitted or received per frame: ’00’ = 5 bits,
’01’ = 6 bits, ’10’ = 7 bits, and ’11’ = 8 bits.

[2] Number of Stop bits This bit specifies how many Stop bits are used to signal
end-of-frame (EOF): "0" = one Stop bit per frame and "1" =
two Stop bits per frame.

[5:3] Parity mode (PMD) The 3-bit parity mode value specifies how parity generation
and checking are to be performed during UART transmit
and receive operations: ’0xx’ = no parity, ’100’ = odd parity,
’101’ = even parity, ’110’ = parity is forced/checked as a "1",
and ’111’ = parity forced/checked as a "0".

[6] Serial Clock Selection This selection bit specifies the clock source.
0 = Internal (MCLK)
1 = External (UCLK)

[7] Infra-red mode The KS32C50100 UART block supports infra-red (IR)
transmit and receive operations. In IR mode, the transmit
period is pulsed at a rate of 3/16 that of the normal serial
transmit rate (when the transmit data value in the UTXBUF
register is zero).
To enable IR mode operation, you set ULCON[7] to "1".
Otherwise, the UART operates in normal mode. In IR
receive mode, the receiver must detect the
3/16 pulsed period to recognize a zero value in the receiver
buffer register, URXBUF, as the IR receive data.
When bit [7] is "0", normal UART mode is selected. When it
is "1", infra-red Tx/Rx mode is selected.

KS32C50100 RISC MICROCONTROLLER UART

10-5

Figure 10-2 UART Line Control Registers

31 8 7 1 0

S
T
B

W
L

P
M
D

X
I
R

6 5 3 2

[1:0] Word length per frame (WL)
00 = 5 bits 01 = 6 bits
10 = 7 bits 11 = 8 bits

[2] Number of Stop bits at the end of frame (STB)
0 = One stop bit per frame
1 = Two stop bits per frame

[5:3] Parity mode (PMD)
0xx = No parity
100 = Odd parity
101 = Even parity
110 = Parity forced/checked as 1.
111 = Parity forced/checked as 0.

[6] Serial Clock Selection (SC)
0 = Internal (MCLK)
1 = External (UCLK)

[7] Infra-red mode selection (IR)
0 = Normal mode operation
1 = Infra-red Tx/Rx mode

UART KS32C50100 RISC MICROCONTROLLER

10-6

UART CONTROL REGISTERS

Table 10-4 UCON0 and UCON1 Registers

Register Offset Address R/W Description Reset Value

UCON0 0xD004 R/W UART0 control register 0x00

UCON1 0xE004 R/W UART1 control register 0x00

Table 10-5 UART Control Register Description

Bit Number Bit Name Description

[1:0] Receive mode (RxM) This two-bit value determines which function is currently
able to read data from the UART receive buffer register,
RBR: ’00’ = disable Rx mode, ’01’ = interrupt request, ’10’ =
GDMA channel 0 request, and ’11’ = GDMA channel 1
request.

[2] Rx status interrupt enable This bit lets the UART generate an interrupt if an exception
(a break, frame error, parity error, or overrun error) occurs
during a receive operation.
If this bit is set to "1", the UART generates a receive status
interrupt. If this bit is "0", the receive status interrupt is not
generated.

[4:3] Transmit mode (TxM) This two-bit value determines which function is currently
able to write Tx data to the UART transmit buffer register,
UTXBUF. ’00’ = disable Tx mode, ’01’ = interrupt request,
’10’ = GDMA channel 0 request, and ’11’ = GDMA channel
1 request.

[5] Data set ready (DSR) Setting UCON[5] causes the KS32C50100 to assert its data
set ready (DSR) signal output, nUADSR. Clearing this bit to
"0" causes the DSR output to be de-asserted.

[6] Send break Setting UCON0/1[6] to "1" causes the UART to send a
break. If it is "0", a break is not sent.
A break is defined as a continuous Low level signal on the
transmit data output with a duration of more than one frame
transmission time.
By setting this bit when the transmitter is empty (transmitter
empty bit, USTAT[7] = "1"), you can use the transmitter to
time the frame. When USTAT[7] is "1", write the transmit
buffer register, UTXBUF, with the data to be transmitted.
Then, poll the USTAT[7] value. When USTAT[7] returns to
"1", clear (reset) the send break bit, UCON0/1[6].

KS32C50100 RISC MICROCONTROLLER UART

10-7

[7] Loop-back mode Setting this bit causes the UART to enter Loop-back mode.
In Loop-back mode, the transmit data output is sent High
level and the transmit buffer register, UTXBUF, is internally
connected to the receive buffer register, URXBUF.
NOTE: This mode is provided for test purposes only. For
normal operation, this bit should always be "0".

Figure 10-3 UART Control Registers

Table 10-5 UART Control Register Description

Bit Number Bit Name Description

31 8 7 1 0

R
x
S
I

R
x
M

D
S
R

S
B
K

L
P
B

6 5 3 24

T
x
M

[1:0] SIO receive mode selection (RxM)
00 = Disable
01 = Interrupt request
10 = GDMA channel 0 request
11 = GDMA channel 1 request

[2] Receive status interrupt enable (RxSI)
0 = Do not generate receive status interrupt
1 = Generate receive status interrupt

[4:3] SIO transmit mode selection (TxM)
00 = Disable
01 = Interrupt request
10 = GDMA channel 0 request
11 = GDMA channel 1 request

[5] Data set ready (DSR)
0 = Deassert KS32C5000 DSR output (nUADSR)
1 = Assert KS32C5000 DSR output (nUADSR)

[6] Send break (SBK)
0 = Do not send break
1 = Send break

[7] Loop-back enable (LPB)
0 = Normal operating mode
1 = Enable Loop-back mode (for testing only)

UART KS32C50100 RISC MICROCONTROLLER

10-8

UART STATUS REGISTERS

Table 10-6 USTAT0 and USTAT1 Registers

Register Offset Address R/W Description Reset Value

USTAT0 0xD008 R UART0 status register 0xC0

USTAT1 0xE008 R UART1 status register 0xC0

Table 10-7 UART Status Register Description

Bit Number Bit Name Description

[0] Overrun error USTAT[0] is automatically set to "1" whenever an overrun
error occurs during a serial data receive operation. The
overrun error indicates that the new received data has
overwritten old received data before the old data could be
read.
If the receive status interrupt enable bit, UCON[2] is "1", a
receive status interrupt is generated if an overrun error
occurs.
This bit is automatically cleared to "0" whenever the UART
status register (USTAT) is read.

[1] Parity error USTAT[1] is automatically set to "1" whenever a parity error
occurs during a serial data receive operation. If the receive
status interrupt enable bit, UCON[2], is "1", a receive status
interrupt is generated if a parity error occurs.
This bit is automatically cleared to "0" whenever the UART
status register (USTAT) is read.

[2] Frame error USTAT[2] is automatically set to "1" whenever a frame error
occurs during a serial data receive operation. A frame error
occurs when a zero is detected instead of the Stop bit(s).
If the receive status interrupt enable bit, UCON[2] is "1", a
receive status interrupt is generated if a frame error occurs.
The frame error bit is automatically cleared to "0" whenever
the UART status register (USTAT) is read.

[3] Break interrupt USTAT[3] is automatically set to "1" to indicate that a break
signal has been received.
If the receive status interrupt enable bit, UCON[2], is "1", a
receive status interrupt is generated if a break occurs.
The break interrupt bit is automatically cleared to "0" when
you read the UART status register.

[4] Data terminal ready (DTR) The USTAT[4] bit indicates the current signal level at the
data terminal ready (DTR) pins (nUADTR). When this bit is
"1", the level at the DTR pin (nUADTR) is Low. When it is
"0", the DTR pin is High level.

KS32C50100 RISC MICROCONTROLLER UART

10-9

[5] Receive data ready USTAT[5] is automatically set to "1" whenever the receive
data buffer register (URXBUF) contains valid data received
over the serial port. The receive data can then be read from
the URXBUF. When this bit is "0", the URXBUF does not
contain valid data.
Depending on the current setting of the UART receive
mode bits, UCON[1:0], an interrupt or a DMA request is
generated when USTAT[5] is "1".

[6] Tx Buffer register empty USTAT[6] is automatically set to "1" when the transmit
buffer register (UTXBUF) does not contain valid data. In
this case, the UTXBUF can be written with the data to be
transmitted.
When this bit is "0", the UTXBUF contains valid Tx data that
has not yet been copied to the transmit shift register. In this
case, the UTXBUF cannot be written with new Tx data.
Depending on the current setting of the SIO transmit mode
bits, UCON[4:3], an interrupt or a DMA request will be
generated whenever USTAT[6] is "1".

[7] Transmit complete (TC) USTAT[7] is automatically set to "1" when the transmit
buffer register has no valid data to transmit and when the
Tx shift register is empty. When the transmitter empty bit is
"1", it indicates to software that it can now disable the
transmitter function block.

Table 10-7 UART Status Register Description

Bit Number Bit Name Description

UART KS32C50100 RISC MICROCONTROLLER

10-10

Figure 10-4 UART Status Registers

31 8 7 1 0

F
E

P
E

R
D
R

T
B
E

T
C

6 5 3 24

D
T
R

B
K
D

O
V

[0] Overrun error (OV)
0 = No overrun error during receive
1 = Overrun error (generate receive status interrupt if UCON[2] is 1)

[1] Parity error (PE)
0 = No parity error during receive
1 = Parity error (generate receive status interrupt if UCON[2] is 1)

[2] Frame error (FE)
0 = No frame error during receive
1 = Frame error (generate receive status interrupt if UCON[2] is 1)

[3] Break detect (BKD)
0 = No break received
1 = Break received (generate receive status interrupt if UCON[2] is 1)

[4] Data terminal ready (DTR)
0 = DTR pin (nUADTR) is High
1 = DTR pin (nUADTR) is Low

[5] Receive data ready (RDR)
0 = No valid data in the receive buffer register
1 = Valid data present in the receive buffer register
 (issue interrupt or DMA request if UCON[1:0] is set)

[6] Transmit buffer register empty (TBE)
0 = Valid data in transmit holding register
1 = No data in transmit holding register
 (as the setting of UCON[4:3], interrupt or GDMA request is generated.)

[7] Transmit complete (TC)
0 = Transmit in progress
1 = Transmit complete; no data for Tx

KS32C50100 RISC MICROCONTROLLER UART

10-11

UART TRANSMIT BUFFER REGISTERS

The UART transmit buffer registers, UTXBUF0 and UTXBUF1, contain an 8-bit data value to be transmitted over
the UART channel.

Table 10-8 UXTBUF0 and UXTBUF1 Registers

Register Offset Address R/W Description Reset Value

UTXBUF0 0xD00C W UART0 transmit buffer register 0xXX

UTXBUF1 0xE00C W UART1 transmit buffer register 0xXX

Table 10-9 UART Transmit Register Description

Bit Number Bit Name Description

[7:0] Transmit data This field contains the data to be transmitted over the single
channel UART.
When this register is written, the transmit buffer register
empty bit in the status register, USTAT[6], should be "1".
This is to prevent overwriting of transmit data that may
already be present in the UTXBUF.
Whenever the UTXBUF is written with a new value, the
transmit register empty bit, USTAT[6], is automatically
cleared to "0".

Figure 10-5 UART Transmit Buffer Registers

31 0

Transmit Data

8 7

[7:0] Transmit data for UART

UART KS32C50100 RISC MICROCONTROLLER

10-12

UART RECEIVE BUFFER REGISTERS

The UART receive buffer registers, URXBUF0 and URXBUF1, contain an 8-bit data value for received serial data.

Table 10-10 UXRBUF0 and UXRBUF1 Registers

Register Offset Address R/W Description Reset Value

URXBUF0 0xD010 R UART0 receive buffer register 0xXX

URXBUF1 0xE010 R UART1 receive buffer register 0xXX

Table 10-11 UART Transmit Register Description

Bit Number Bit Name Description

[7:0] Receive data This field contains the data received over the single
channel UART.
When the UART finishes receiving a data frame, the
receive data ready bit in the UART status register,
USTAT[5], should be "1". This prevents reading invalid
receive data that may already be present in the URXBUF.
Whenever the URXBUF is read, the receive data ready
bit(USTAT[5]) is automatically cleared to "0".

Figure 10-6 UART Receive Buffer Registers

31 0

Receive Data

8 7

[7:0] Receive data for UART

KS32C50100 RISC MICROCONTROLLER UART

10-13

UART BAUD RATE DIVISOR REGISTERS

The values stored in the baud rate divisor registers, UBRDIV0 and UBRDIV1, let you determine the serial Tx/Rx
clock rate (baud rate) as follows:

BRGOUT = (MCLK2 or UCLK) / (CNT0 + 1) / (16^CNT1) / 16

Table 10-12 UBRDIV0 and UBRDIV0 Registers

Register Offset Address R/W Description Reset Value

UBRDIV0 0xd014 R/W UART0 baud rate divisor register 0x00

UBRDIV1 0xe014 R/W UART1 baud rate divisor register 0x00

Figure 10-7 UART Baud Rate Divisor Registers

16 15

CNT1

[3:0] Baud rate divisor value CNT1
xxx0 = divide by 1
xxx1 = divide by 16

[15:4] Time constant value for CNT0

31 30 29 28 27 26 24 23 22 21 20 19 1725 18 14 13 12 11 910 7 6 5 4 3 2 08 1

CNT0

UART KS32C50100 RISC MICROCONTROLLER

10-14

UART BAUD RATE EXAMPLES

UART BRG input clock, MCLK2 is the system clock frequency divided by 2.

If the system clock frequency is 50 MHz and MCLK2 is selected, the maximum BRGOUT output clock rate is
MCLK2/16 (= 1.5625 MHz).

UCLK is the external clock input pin for UART0, UART1. UART BRG input clock, MCLK2, UCLK can be selected by
UCCON[6] register.

Figure 10-8 UART Baud Rate Generator (BRG)

Table 10-13 Typical Baud Rates Examples of UART

Baud Rates
(BRGOUT)

MCLK2 = 25 MHz UCLK = 33 MHz

CNT0 CNT1 Freq. Dev. (%) CNT0 CNT1 Freq. Dev. (%)

1200 1301 0 1200.1 0.0 1735 1 1200.08 0.0064

2400 650 0 2400.2 0.0 867 1 2400.15 0.0064

4800 324 0 4807.7 0.2 433 0 4800.31 0.0064

9600 162 0 9585.9 -0.1 216 0 9600.61 0.0064

19200 80 0 19290.1 0.5 108 0 19113.15 0.45

38400 40 0 38109.8 -0.8 53 0 38580.15 0.47

57600 26 0 57870.4 0.5 35 0 57870.37 0.47

115200 13 0 111607.1 -3.1 17 0 115740.74 0.47

230400 6 0 223214.28 3.12 8 0 231481.48 0.47

460860 2 0 520833.34 13.01 4 0 416666.66 9.59

MCLK2

UCLK

SC

12-bit Counter

CNT1

Divide by 1 or 16 Divide by 16

CNT0

BRGOUT

Sample Clock

NOTE: CNT0 = UBRDIVn[15:4], CNT1 = UBRDIVn[3:0], SC = ULCON[6]

KS32C50100 RISC MICROCONTROLLER UART

10-15

Figure 10-9 Interrupt-Based Serial I/O Timing Diagram (Tx and Rx Only)

THRE

UTXDn ParityStart Data Bits (5-8) Stop
(1-2)

Start

INT_TXD

WR_THR

<TRANSMITTER>

<RECEIVER>

INT_RXD

URXBUF Previous Receive Data Valid Receive Data

URXDn ParityStart Data Bits (5-8) Stop
(1-2)

Start Data Bits

UART KS32C50100 RISC MICROCONTROLLER

10-16

Figure 10-10 DMA-Based Serial I/O Timing Diagram (Tx Only)

Figure 10-11 DMA-Based Serial I/O Timing Diagram (Rx Only)

THRE

<TRANSMITTER>

TxD ParityStart Data Bits (5-8) Stop

TxE Select DMA Mode

WR_THR

nXDREQ

nXDACK

<RECEIVER>

URXDn Stop
(1-2)

ParityStart Data Bits (5-8) Start Data Bits

URXBUFn Previous Receive Data Valid Receive Data

nXDREQ

nXDACK

RxE Select DMA Mode

KS32C50100 RISC MICROCONTROLLER UART

10-17

Figure 10-12 Serial I/O Frame Timing Diagram (Normal UART)

Figure 10-13 Infra-Red Transmit Mode Frame Timing Diagram

0 1 0 1 0 0 1 1 0 1

Start
Bit

Stop
Bit

SIO Frame

Data Bits

0 1 0 1 0 0 1 1 0 1

Stop
Bit

IR Transmit Frame

Data Bits
Start
Bit

Bit frame = T 7/16T 6/16T

3/16T

UART KS32C50100 RISC MICROCONTROLLER

10-18

Figure 10-14 Infra-Red Receive Mode Frame Timing Diagram

0 1 0 1 0 0 1 1 0 1

Start
Bit

Stop
Bit

IR Receive Frame

Data Bits

3/16T

Bit frame = T 13/16T

KS32C50100 RISC MICROCONTROLLER 32-BIT TIMERS

11-1

11 32-BIT TIMERS

OVERVIEW

The KS32C50100 has two 32-bit timers. These timers can operate in interval mode or in toggle mode. The output
signals are TOUT0 and TOUT1, respectively.

You enable or disable the timers by setting control bits in the timer control register, TCON. An interrupt request is
generated whenever a timer count-out (down count) occurs.

INTERVAL MODE OPERATION

In interval mode, a timer generates a one-shot pulse of a preset timer clock duration whenever a time-out occurs.
This pulse generates a time-out interrupt that is directly output at the timer's configured output pin (TOUTn). In this
case, the timer frequency monitored at the TOUTn pin is calculated as:

fTOUT = fMCLK / Timer data value

TOGGLE MODE OPERATION

In toggle mode, the timer pulse continues to toggle whenever a time-out occurs. An interrupt request is generated
whenever the level of the timer output signal is inverted (that is, when the level toggles). The toggle pulse is output
directly at the configured output pin.

Using toggle mode, you can achieve a flexible timer clock range with 50% duty. In toggle mode, the timer frequency
monitored at the TOUTn pin is calculated as follows:

fTOUT = fMCLK / (2 * Timer data value)

Figure 11-1 Timer Output Siganl Timing

INTERVAL MODE

TOGGLE MODE
(INITIAL TOUTn IS 0)

f TOUT

Time-out Time-out Time-out

f TOUT

32-BIT TIMERS KS32C50100 RISC MICROCONTROLLER

11-2

TIMER OPERATION GUIDELINES

The block diagram in Figure 11-2 shows how the 32-bit timers are configured in the KS32C50100. The following
guidelines apply to timer functions.

• When a timer is enabled, it loads a data value to its count register and begins decrementing the count register
value.

• When the timer interval expires, the associated interrupt is generated. The base value is then reloaded and the
timer continues decrementing its count register value.

• If a timer is disabled, you can write a new base value into its registers.

• If the timer is halted while it is running, the base value is not automatically re-loaded.

Figure 11-2 32-Bit Timer Block Diagram

AUTO
RE-LOAD

TMOD.TMDn
TMOD.TCLRn

PORT 16, PORT 17
DATA OUT

IOPCON.TOENn

TOUTn

INTPND and
INTMSK

INTERRUPT
REQUEST

f MCLK

TMOD.TEn

32-BIT TIMER DATA
REGISTER (TDATAn)

32-BIT TIMER COUNT
REGISTER (TCNTn)
[DOWN COUNTER]

PND

PULSE
GENERATOR

KS32C50100 RISC MICROCONTROLLER 32-BIT TIMERS

11-3

TIMER MODE REGISTER

The timer mode register, TMOD, is used to control the operation of the two 32-bit timers. TMOD register settings
are described in Figure 11-3.

Table 11-1 TMOD Register

Register Offset Address R/W Description Reset Value

TMOD 0x6000 R/W Timer mode register 32’h00000000

Figure 11-3 Timer Mode Register (TMOD)

31 1 0

T
C
L
R
0

T
M
D
0

T
C
L
R
1

6 5 3 24

T
M
D
1

T
E
1

T
E
0

[0] Timer 0 enable (TE0)
0 = Disable timer 0
1 = Enable timer 0

[1] Timer 0 mode selection (TMD0)
0 = Interval mode
1 = Toggle mode

[2] Timer 0 initial TOUT0 value (TCLR0)
0 = Initial TOUT0 is 0 in toggle mode
1 = Initial TOUT0 is 1 in toggle mode

[3] Timer 1 enable (TE1)
0 = Disable timer 1
1 = Enable timer 1

[4] Timer 1 mode seletion (TMD1)
0 = Interval mode
1 = Toggle mode

[5] Timer 1 initial TOUT1 value (TCLR1)
0 = Initial TOUT1 is 0 in toggle mode
1 = Initial TOUT1 is 1 in toggle mode

32-BIT TIMERS KS32C50100 RISC MICROCONTROLLER

11-4

TIMER DATA REGISTERS

The timer data registers, TDATA0 and TDATA1, contain a value that specifies the time-out duration for each timer.
The formula for calculating the time-out duration is: (Timer data + 1) cycles.

Table 11-2 TDATA0 and TDATA1 Registers

Register Offset Address R/W Description Reset Value

TDATA0 0x6004 R/W Timer 0 data register 0x00000000

TDATA1 0x6008 R/W Timer 1 data register 0x00000000

Figure 11-4 Timer Data Registers (TDATA0, TDATA1)

31 0

Timer Data

[31:0] Timer 0/1 data value

KS32C50100 RISC MICROCONTROLLER 32-BIT TIMERS

11-5

TIMER COUNT REGISTERS

The timer count registers, TCNT0 and TCNT1, contain the current timer 0 and 1 count value, respectively, during
normal operation.

Table 11-3 TCNT0 and TCNT1 Registers

Register Offset Address R/W Description Reset Value

TCNT0 0x600C R/W Timer 0 count register 0xffffffff

TCNT1 0x6010 R/W Timer 1 count register 0xffffffff

Figure 11-5 Timer Count Registers (TCNT0, TCNT1)

31 0

Timer Count

[31:0] Timer 0/1 count value

32-BIT TIMERS KS32C50100 RISC MICROCONTROLLER

11-6

NOTES

KS32C50100 RISC MICROCONTROLLER I/O PORTS

12-1

12 I/O PORTS

The KS32C50100 has 18 programmable I/O ports. You can configure each I/O port to input mode, output mode, or
special function mode. To do this, you write the appropriate settings to the IOPMOD and IOPCON registers. User
can set filtering for the input ports using IOPCON register.

The modes of the ports from port0 to port7 are determined only by the IOPMOD register. But port[11:8] can be used
as xINTREQ[3:0], port[13:12] as nXDREQ[1:0], port[15:14] as nXDACK[1:0], port[16] as TOUT0, or port[17] as
TOUT1 depending on the settings in IOPCON register.

Figure 12-1 I/O Port Function Diagram

IOPDATA
(READ)

ALTERNATE FUNCTIONS

IOPDATA
(WRITE)

INTERRUPT OR DMA
REQUEST IOPCON IOPCON

IOPCON

IOPMOD VDD

PORT0-PORT7
PORT8/xINTREQ0

.

.
PORT11/xINTREQ3
PORT12/nXDREQ0
PORT13/nXDREQ1
PORT14/nXDACK0
PORT15/nXDACK1
PORT16/TOUT0
PORT17/TOUT1

OUTPUT
LATCH

INPUT
LATCH

ACTIVE
ON/OFF &

EDGE
DETECTION

FILTER
ON/OFF

S
Y
S
T
E
M

B
U
S

I/O PORTS KS32C50100 RISC MICROCONTROLLER

12-2

I/O PORT SPECIAL REGISTERS

Three registers control the I/O port configuration: IOPMOD, IOPCON, and IOPDATA. These registers are described
in detail below.

I/O PORT MODE REGISTER (IOPMOD)

The I/O port mode register, IOPMOD, is used to configure the port pins, P17–P0.

NOTE

If the port is used for a special fuction such as an external interrupt request, an external DMA
request, or acknowledge signal and timer outputs, its mode is determined by the IOPCON register,
not by IOPMOD.

Table 12-1 IOPMOD Register

Register Offset Address R/W Description Reset Value

IOPMOD 0x5000 R/W I/O port mode register 0x00000000

Figure 12-2 I/O Port Mode Register (IOPMOD)

31 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 018

[0] I/O port mode bit for port 0
0 = Input
1 = Output

[1] I/O port mode bit for port 1
0 = Input
1 = Output

[2] I/O port mode bit for port 2
0 = Input
1 = Output

.

.

.
[17] I/O port mode bit for port 17
0 = Input
1 = Output

X X X X X X X X X X X X X X X X X X

KS32C50100 RISC MICROCONTROLLER I/O PORTS

12-3

I/O PORT CONTROL REGISTER (IOPCON)

The I/O port control register, IOPCON, is used to configure the port pins, P17–P8.

NOTE

If the port is used for a special fuction such as an external interrupt request, an external DMA
request, or acknowledge signal and timer outputs, its mode is determined by the IOPCON register,
not by IOPMOD.

For the special input ports, KS32C50100 provides 3-tap filtering. If the input signal levels are same for the three
system clock periods, that level is taken as input for dedicated signals such as external interrupt requests and
external DMA requests.

Table 12-2 IOPCON Register

Register Offset Address R/W Description Reset Value

IOPCON 0x5004 R/W I/O port control register 0x00000000

I/O PORTS KS32C50100 RISC MICROCONTROLLER

12-4

Figure 12-3 I/O Port Control Register (IOPCON)

15 4 0

x
I
R
Q
3

20 19

x
I
R
Q
0

9101431 30 29 28 27 26 25 23

D
A
K
0

D
A
K
1

22

T
O
E
N
1

T
O
E
N
0

D
R
Q
1

D
R
Q
0

x
I
R
Q
2

5

x
I
R
Q
1

[4:0] Control external interrupt request 0 input for port 8 (xIRQ0)
[4] Port 8 for xINTREQ0
 0 = Disable 1 = Enable
[3] 0 = Active Low 1 = Active High
[2] 0 = Filtering off 1 = Filtering on
[1:0] 00 = Level detection 01 = Rising edge detection
 10 = Falling edge detection 11 = Both edge detection

[9:5] Control external interrupt request 1 input for port 9 (xIRQ1)
(See control external interrupt request 1.)

[14:10] Control external interrupt request 2 input for port 10 (xIRQ2)
(See control external interrupt request 2.)

[19:15] Control external interrupt request 3 input for port 11 (xIRQ3)
(See control external interrupt request 3.)

[22:20] Control external DMA request 0 input for port 12 (DRQ0)
[22] Port 12 for nXDREQ0
 0 = Disable 1 = Enable
[21] 0 = Filtering off 1 = Filtering on
[20] 0 = Active Low 1 = Active High

[25:23] Control external DMA request 1 input for port 13 (DRQ1)
[25] Port 13 for nXDREQ1
 0 = Disable 1 = Enable
[24] 0 = Filtering off 1 = Filtering on
[23] 0 = Active Low 1 = Active High

[27:26] Control external DMA acknowledge 0 output for port 14 (DAK0)
[27] Port 14 for nXDACK0
 0 = Disable 1 = Enable
[26] 0 = Active Low 1 = Active High

[29:28] Control external DMA acknowledge 1 output for port 15 (DAK1)
[29] Port 15 for nXDACK1
 0 = Disable 1 = Enable
[28] 0 = Active Low 1 = Active High

[30] Control timeout0 for port 16 (TOEN0)
 0 = Disable 1 = Enable

[31] Control timeout1 for port 17 (TOEN1)
 0 = Disable 1 = Enable

KS32C50100 RISC MICROCONTROLLER I/O PORTS

12-5

I/O PORT DATA REGISTER (IOPDATA)

The I/O port data register, IOPDATA, contains one-bit read values for I/O ports that are configured to input mode
and one-bit write values for ports that are configured to output mode. Bits[17:0] of the 18-bit I/O port register value
correspond directly to the 18 port pins, P17–P0.

Table 12-3 IOPDATA Register

Register Offset Address R/W Description Reset Value

IOPDATA 0x5008 R/W I/O port data register Undefined

Figure 12-4 I/O Port Data Register (IOPDATA)

31 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 018

P
17

P
16

P
15

P
14

P
13

P
12

P
11

P
10

P
9

P
8

P
7

P
6

P
5

P
4

P
3

P
2

P
1

P
0

[17:0] I/O port read/write values for ports 17-0 (P0-P17)

NOTE: The values in the I/O port data register reflect the signal level on the
respective I/O port pins. When the ports are configured to output mode, the
bit reflects the ports write value. When the port is configured to input mode,
the bit reflects the ports read value.

I/O PORTS KS32C50100 RISC MICROCONTROLLER

12-6

Figure 12-5 External Interrupt Request Timing (Active High)

Figure 12-6 External Interrupt Request Timing (Active Low)

MCLKO

xINTREQn

INTERNAL INTREQn

IOPCON.xIRQn [1:0] (=00)

IOPCON.xIRQn [1:0] (=11)

IOPCON.xIRQn [1:0] (=10)

IOPCON.xIRQn [1:0] (=01)

MCLKO

xINTREQn

INTERNAL INTREQn

IOPCON.xIRQn [1:0] (=00)

IOPCON.xIRQn [1:0] (=11)

IOPCON.xIRQn [1:0] (=01)

IOPCON.xIRQn [1:0] (=10)

KS32C50100 RISC MICROCONTROLLER INTERRUPT CONTROLLER

13-1

13 INTERRUPT CONTROLLER

The KS32C50100 interrupt controller has a total of 21 interrupt sources. Interrupt requests can be generated by
internal function blocks and at external pins.

The ARM7TDMI core recongnizes two kinds of interrupts: a normal interrupt request (IRQ), and a fast interrupt
request (FIQ). Therefore all KS32C50100 interrupts can be categorized as either IRQ or FIQ. The KS32C50100
interrupt controller has an interrupt pending bit for each interrupt source.

Four special registers are used to control interrupt generation and handling:

• Interrupt priority registers. The index number of each interrupt source is written to the pre-defined interrupt
priority register field to obtain that priority. The interrupt priorities are pre-defined from 0 to 20.

• Interrupt mode register. Defines the interrupt mode, IRQ or FIQ, for each interrupt source.

• Interrupt pending register. Indicates that an interrupt request is pending. If the pending bit is set, the interrupt
pending status is maintained until the CPU clears it by writing a "1" to the appropriate pending register. When
the pending bit is set, the interrupt service routine starts whenever the interrupt mask register is "0". The
service routine must clear the pending condition by writing a "1" to the appropriate pending bit. This avoids the
possibility of continuous interrupt requests from the same interrupt pending bit.

• Interrupt mask register. Indicates that the current interrupt has been disabled if the corresponding mask bit is
"1". If an interrupt mask bit is "0" the interrupt will be serviced normally. If the global mask bit (bit 21) is set to
"1", no interrupts are serviced. However, the source's pending bit is set if the interrupt is generated. When the
global mask bit has been set to "0", the interrupt is serviced.

INTERRUPT CONTROLLER KS32C50100 RISC MICROCONTROLLER

13-2

INTERRUPT SOURCES

The 21 interrupt sources in the KS32C50100 interrupt structure are listed, in brief, as follows:

Table 13-1 KS32C50100 Interrupt Sources

Index Values Interrupt Source

[20] I2C-bus interrupt

[19] Ethernet controller MAC Rx interrupt

[18] Ethernet controller MAC Tx interrupt

[17] Ethernet controller BDMA Rx interrupt

[16] Ethernet controller BDMA Tx interrupt

[15] HDLC channel B Rx interrupt

[14] HDLC channel B Tx interrupt

[13] HDLC channel A Rx interrup

[12] HDLC channel A Tx interrupt

[11] Timer 1 interrupt

[10] Timer 0 interrupt

[9] GDMA channel 1 interrupt

[8] GDMA channel 0 interrupt

[7] UART1 receive & error interrupt

[6] UART1 transmit interrupt

[5] UART0 receive & error interrupt

[4] UART0 transmit interrupt

[3] External interrupt 3

[2] External interrupt 2

[1] External interrupt 1

[0] External interrupt 0

KS32C50100 RISC MICROCONTROLLER INTERRUPT CONTROLLER

13-3

INTERRUPT CONTROLLER SPECIAL REGISTERS

INTERRUPT MODE REGISTER

Bit settings in the interrupt mode register, INTMOD, specify if an interrupt is to be serviced as a fast interrupt (FIQ)
or a normal interrupt (IRQ).

Table 13-2 INTMOD Register

Register Offset Address R/W Description Reset Value

INTMOD 0x4000 R/W Interrupt mode register 0x00000000

Figure 13-1 Interrupt Mode Register (INTMOD)

31 20 19 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 01821

X X

[20:0] Interrupt mode bits

NOTE: Each of the 21 bits in the interrupt mode enable register,
INTMOD, corresponds to an interrupt source. When the
source interrupt mode bit is set to 1, the interrupt is
processed by the ARM7TDMI core in FIQ (fast interrupt)
mode. Otherwise, it is processed in IRQ mode (normal
interrupt). The 21 interrupt sources are mapped as follows:

[20] I 2C interrupt
[19] Ethernet controller MAC Rx interrupt
[18] Ethernet controller MAC Tx interrupt
[17] Ethernet controller BDMA Rx i nterrupt
[16] Ethernet controller BDMA Tx interrupt
[15] HDLC channel B Rx interrupt
[14] HDLC channel B Tx interrupt
[13] HDLC channel A Rx interrupt
[12] HDLC channel A Tx interrupt
[11] Timer 1 interrupt
[10] Timer 0 interrupt
[9] GDMA channel 1 interrupt
[8] GDMA channel 0 interrupt
[7] UART1 receive & error interrupt
[6] UART1 transmit interrupt
[5] UART0 receive & error interrupt
[4] UART0 transmit interrupt
[3] External interrupt 3
[2] External interrupt 2
[1] External interrupt 1
[0] External interrupt 0

INTMOD

INTERRUPT CONTROLLER KS32C50100 RISC MICROCONTROLLER

13-4

INTERRUPT PENDING REGISTER

The interrupt pending register, INTPND, contains interrupt pending bits for each interrupt source. This register has
to be cleared at the top of a interrupt service routine.

Table 13-3 INTPND Register

Register Offset Address R/W Description Reset Value

INTPND 0x4004 R/W Interrupt pending register 0x00000000

Figure 13-2 Interrupt Pending Register (INTPND)

31 20 19 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 01821

X X

[20:0] Interrupt pending bits

NOTE: Each of the 21 bits in the interrupt pending register,
INTPND, corresponds to an interrupt source. When
an interrupt request is generated, its pending bit is set to 1.
The service routine must then clear the pending
condition by writing a 1 to the appropriate pending bit at start.
The 21 interrupt sources are mapped as follows:

[20] I 2C interrupt
[19] Ethernet controller MAC Rx interrupt
[18] Ethernet controller MAC Tx interrupt
[17] Ethernet controller BDMA Rx inter rupt
[16] Ethernet controller BDMA Tx interrupt
[15] HDLC channel B Rx interrupt
[14] HDLC channel B Tx interrupt
[13] HDLC channel A Rx interrupt
[12] HDLC channel A Tx interrupt
[11] Timer 1 interrupt
[10] Timer 0 interrupt
[9] GDMA channel 1 interrupt
[8] GDMA channel 0 interrupt
[7] UART1 receive & error interrupt
[6] UART1 transmit interrupt
[5] UART0 receive & error interrupt
[4] UART0 transmit interrupt
[3] External interrupt 3
[2] External interrupt 2
[1] External interrupt 1
[0] External interrupt 0

INTPND

KS32C50100 RISC MICROCONTROLLER INTERRUPT CONTROLLER

13-5

INTERRUPT MASK REGISTER

The interrupt mask register, INTMSK, contains interrupt mask bits for each interrupt source.

Table 13-4 INTMSK Register

Register Offset Address R/W Description Reset Value

INTMSK 0x4008 R/W Interrupt mask register 0x003FFFFF

Figure 13-3 Interrupt Mask Register (INTMSK)

31 20 19 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 01821

X X

22

G

[20:0] Individual interrupt mask bits

NOTE: Each of the 21 bits in the interrupt mask register, INTMSK,
(except for the global mask bit, G) corresponds to an interrupt
source. When a source interrupt mask bit is 1, the interrupt is not
serviced by the CPU when the corresponding interrupt request is
generated. If the mask bit is 0, the interrupt is serviced upon
request. And if global mask bit (bit 21) is 1, no interrupts are
serviced. (However, the source pending bit is set whenever the
interrupt is generated.) After the global mask bit is cleared, the
interrupt is serviced. The 21 interrupt sources are mapped as
follows:

[20] I 2C interrupt
[19] Ethernet controller MAC Rx interrupt
[18] Ethernet controller MAC T x interrupt
[17] Ethernet controller BDMA Rx interrupt
[16] Ethernet controller BDMA Tx interrupt
[15] HDLC channel B Rx interrupt
[14] HDLC channel B Tx interrupt
[13] HDLC channel A Rx interrupt
[12] HDLC channel A Tx interrupt
[11] Timer 1 interrupt
[10] Timer 0 interrupt
[9] GDMA channel 1 interrupt
[8] GDMA channel 0 interrupt
[7] UART1 receive & error interrupt
[6] UART1 transmit interrupt
[5] UART0 receive & error interrupt
[4] UART0 transmit interrupt
[3] External interrupt 3
[2] External interrupt 2
[1] External interrupt 1
[0] External interrupt 0

[21] Global interrupt mask bit
0 = Enable interrupt requests
1 = Disable all interrupt requests

INTMSK

INTERRUPT CONTROLLER KS32C50100 RISC MICROCONTROLLER

13-6

INTERRUPT PRIORITY REGISTERS

The interrupt priority registers, INTPRI0–INTPRI5, contain information about which interrupt source is assigned to
the pre-defined interrupt priority field. Each INTPRIn register value determines the priority of the corresponding
interrupt source. The lowest priority value is priority 0, and the highest priority value is priority 20.

The index value of each interrupt source is written to one of the above 21 positions (see Figure 13-4). The position
value then becomes the written interrupt's priority value. The index value of each interrupt source is listed in Table
13-1.

Table 13-5 Interrupt Priority Register Overview

Registers Offset Address R/W Description Reset Value

INTPRI0 0x400C R/W Interrupt priority register 0 0x03020100

INTPRI1 0x4010 R/W Interrupt priority register 1 0x07060504

INTPRI2 0x4014 R/W Interrupt priority register 2 0x0B0A0908

INTPRI3 0x4018 R/W Interrupt priority register 3 0x0F0E0D0C

INTPRI4 0x401C R/W Interrupt priority register 4 0x13121110

INTPRI5 0x4020 R/W Interrupt priority register 5 0x00000014

Figure 13-4 Interrupt Priority Registers (INTPRIn)

PRIORITY0

PRIORITY4

PRIORITY8

PRIORITY12

PRIORITY16

PRIORITY20

PRIORITY1

PRIORITY17

PRIORITY13

PRIORITY9

PRIORITY5

PRIORITY2

PRIORITY6

PRIORITY10

PRIORITY14

PRIORITY18

0 0 0

PRIORITY19

PRIORITY15

PRIORITY11

PRIORITY7

PRIORITY3 0 0 0 0 0 0 0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 0

0 0 0

0 0 0

0 0 0

0 0 00 0 0

0 0 0

0 0 0

0 0 00 0 0

0 0 0

0 0 0

0 0 0

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 02 1

INTPRI0

INTPRI1

INTPRI2

INTPRI3

INTPRI4

INTPRI5

HIGH PRIORITY LOW PRIORITY

LOW
PRIORITY

HIGH
PRIORITY

KS32C50100 RISC MICROCONTROLLER INTERRUPT CONTROLLER

13-7

INTERRUPT OFFSET REGISTER

The interrupt offset register, INTOFFSET, contains the interrupt offset address of the interrupt which has the highest
priority among the pending interrupts. The content of the interrupt offset address is "bit position value of the
interrupt source << 2".

If all interrupt pending bits are "0" when you read this register, the return value is "0x00000054".

This register is valid only under the IRQ or FIQ mode in the ARM7TDMI. In the interrupt service routine, you should
read this register before changing the CPU mode.

INTOSET_FIQ/INTOSET_IRQ register can be used to get the highest priority interrupt without CPU mode change.
Other usages are similar to INTOFFSET.

NOTE

If the lowest interrupt priority (priority 0) is pending, the INTOFFSET value will be "0x00000000".
The reset value will, therefore, be changed to "0x00000054" (to be differentiated from interrupt
pending priority 0).

Table 13-6 INTOFFSET Register

Register Offset Address R/W Description Reset Value

INTOFFSET 0x4024 R Interrupt offset register 0x00000054

INTOSET_FIQ 0x4030 R FIQ Interrupt offset register 0x00000054

INTOSET_IRQ 0x4034 R IRQ Interrupt offset register 0x00000054

INTERRUPT CONTROLLER KS32C50100 RISC MICROCONTROLLER

13-8

INTERRUPT PENDING BY PRIORITY REGISTER

The interrupt pending by priority register, INTPNDPRI, contains interrupt pending bits which are re-ordered by the
INTPRIn register settings. INTPNDPRI[20] is mapped to the interrupt source of whichever bit index is written into
the priority 20 field of the INTPRIn registers.

This register is useful for testing. To validate the interrupt pending by priority value, you can obtain the highest
priority pending interrupt from the interrupt offset register, INTOFFSET.

Table 13-7 INTPNDPRI Register

Register Offset Address R/W Description Reset Value

INTPNDPRI 0x4028 R Interrupt pending by priority 0x00000000

KS32C50100 RISC MICROCONTROLLER INTERRUPT CONTROLLER

13-9

INTERRUPT PENDING TEST REGISTER

The interrupt pending test register, INTPNDTST, is used to set or clear INTPND and INTPNDPRI. If user writes
data to this register, it is written into both the INTPND register and INTPNDPRI register. The interrupt pending test
register, INTPNDTST, is also useful for testing.

For INTPND, the same bit position is updated with the new comming data. For INTPNDPRI, the mapping bit
position by INTPRIn registers is updated with the new comming data to keep with the contents of the INTPND
register.

Table 13-8 INTPNDTST Register

Register Offset Address R/W Description Reset Value

INTPNDTST 0x402C W Interrupt pending test register 0x00000000

INTERRUPT CONTROLLER KS32C50100 RISC MICROCONTROLLER

13-10

NOTES

KS32C50100 RISC MICROCONTROLLER ELECTRICAL DATA

14-1

14 ELECTRICAL DATA

This chapter describes the KS32C50100 electrical data.

ABSOLUTE MAXIMUM RATINGS

RECOMMENDED OPERATING CONDITIONS

NOTE: It is strongly recommended that all the supply pins (VDD/VDDA) be powered from the same source to avoid power
lattch-up.

Table 14-1 Absolute Maximum Ratings

Symbol Parameter Rating Unit

VDD/VDDA Supply voltage – 0.3 to 3.8 V

VIN DC input voltage 3.3 V I/O – 0.3 to VDD + 0.3 V

5 V-tolerant – 0.3 to 5.5

IIN DC input current ± 10 mA

TOPR Operating temperature 0 to 70 ° C

TSTG Storage temperature – 40 to 125 ° C

Table 14-2 Recommended Operating Conditions

Symbol Parameter Rating Unit

VDD/VDDA Supply voltage 3.0 to 3.6 V

fOSC Oscillator frequency 10 to 40 MHz

LF External Loop Filter Capacitance 820 pF

TA Commercial temperature 0 to 70 ° C

ELECTRICAL DATA KS32C50100 RISC MICROCONTROLLER

14-2

D.C. ELECTRICAL CHARACTERISTICS

NOTES:
1. All 5 V-tolerant inputs have less than 0.2 V hysterisis.
2. Type B1 means 1mA output driver cells, and Type B6/B24 means 6mA/24mA output driver cells.

Table 14-3 D.C. Electrical Characteristics

VDD = 3.3 V ± 0.3 V, VEXT = 5 ± 0.25 V, TA = 0 to 70 ° C (in case of 5 V-tolerant I/O)

Symbol Parameter Condition Min Typ Max Unit

VIH
 (1) High level input voltage LVCMOS

interface
2.0 V

VIL
(1) Low level input voltage LVCMOS

interface
0.8 V

VT Switching threshhold LVCMOS 1.4 V

VT+ Schmitt trigger positive-going threshold LVCMOS 2.0

VT– Schmitt trigger negative-going threshold LVCMOS 0.8

IIH High level input current Input buffer VIN = VDD – 10 10 µA

Input buffer with
pull-up

10 30 60

IIL Low level input current Input buffer VIN = VSS – 10 10 µA

Input buffer with
pull-down

– 60 – 30 – 10

VOH High level output voltage Type B1 to B16 (2) IOH = – 1 µA VDD–
0.05

V

Type B1 IOH = – 1 mA 2.4

Type B2 IOH = – 2 mA

Type B4 IOH = – 4 mA

Type B6 IOH = – 6 mA

VOL Low level output voltage Type B1 to B16 (2) IOL = 1 µA 0.05 V

Type B1 IOL = 1 mA 0.4

Type B2 IOL = 2 mA

Type B4 IOL = 4 mA

Type B6 IOL = 6 mA

IOZ Tri-state output leakage current VOUT = VSS or
VDD

– 10 10 µA

IDD Maximum operating current VDD = 3.6 V,
fMCLK = 50 MHz

230 mA

KS32C50100 RISC MICROCONTROLLER ELECTRICAL DATA

14-3

A.C. ELECTRICAL CHARACTERISTICS

NOTE : The value (N) is calculated from MCLKO falling. The other is MCLKO rising.

Table 14-4 A.C. Electrical Characteristics

(Ta = 0 ° C to + 70 ° C, VDD = 3.0 V to 3.6 V)

Signal Name Description Min Max Unit

tEMz Memory control signal High-Z time 10.79 11.02 ns

tEMRs ExtMREQ setup time 2.08

tEMRh ExtMREQ hold time 5.87

tEMAr ExtMACK rising edge delay time 5.64(N) 13.02(N)

tEMAf ExtMACK falling edge delay time 5.81(N) 13.44(N)

tADDRh Address hold time 10.41 10.56

tADDRd Address delay time 12.57 15.23

tNRCS ROM/SRAM/Flash bank chip select delay time 16.31(N) 18.80(N)

tNROE ROM/SRAM or external I/O bank output enable delay 7.39(N) 9.24(N)

tNWBE ROM/SRAM or external I/O bank write byte enable delay 17.56 19.33

tRDh Read data hold time 8.83 11.65

tWDd Write data delay time (SRAM or external I/O) 1.19 1.66

tWDh Write data hold time (SRAM or external I/O) 3.81 7.83

tNRASf DRAM row address strobe active delay 7.35(N) 9.27(N)

tNRASr DRAM row address strobe release delay 10.68 10.94

tNCASf DRAM column address strobe read active delay 7.46(N) 9.27(N)

tNCASr DRAM CAS signal release read delay time 7.41(N) 9.21(N)

tNCASwf DRAM column address strobe write active delay 7.46(N) 9.27(N)

tNCASwr DRAM CAS signal release write delay time 7.41(N) 9.21(N)

tNDWE DRAM bank write enable delay time 8.49 9.71

tNDOE DRAM bank out enable delay time 17.66(N) 19.35(N)

tNECS External I/O bank chip select delay time 16.39(N) 19.13(N)

tWDDd DRAM write data delay time (DRAM) 0.36 0.95

tWDDh DRAM writre data hold time (DRAM 0.13 0.81

tWs External wait setup time 0

tWh External wait hold time 16

ELECTRICAL DATA KS32C50100 RISC MICROCONTROLLER

14-4

NOTES

KS32C50100 RISC MICROCONTROLLER MECHANICAL DATA

15-1

15 MECHANICAL DATA

PACKAGE DEMENSIONS

This section describes the mechanical data for the KS32C50100’s 208-pin QFP package.

Figure 15-1 208-QFP-2828B Package Dimensions

0.25 MIN

NOTE: Dimensions are in millimeters.

28
.0

0B
S

C

30
.6

0B
S

C

30.60BSC

#1

± 0.08 MAX

0.20

208 -QFP-2828B

(1.25)

0.08 MAX

0.15

0-7°

3.40 ±0.20

4.10 MAX

0.45-0.75

+0.05
-0.06

0.50BSC

+0.07
-0.03

28.00BSC

MECHANICAL DATA KS32C50100 RISC MICROCONTROLLER

15-2

NOTES

KS32C50100 RISC MICROCONTROLLER APPENDIX A

A-1

APPENDIX A

TEST ACCESS PORT

This section describes relevent sections of the IEEE Standard 1149.1 Compatible Test Access Port (TAP). This
standard applies to the Test Access Port and Boundary Scan (JTAG) specification, which is supported by the
KS32C50100 microcontoller.
In test mode, package pads are monitored by the serial scan circuitry. This is done to support connectivity testing
during manufacturing, as well as system diagnostics. JTAG control is not used to drive internal data out of the
KS32C50100.
To conform with IEEE 1194.1, the KS32C50100 has a TAP controller, an instruction register, a bypass register, and
an ID register. These components are described in detail below.

APPENDIX A KS32C50100 RISC MICROCONTROLLER

A-2

TAP CONTROLLER

The TAP controller is responsible for interpreting the sequence of logical values on the TMS signal. It is a
synchronous state machine which controls the JTAG logic (see Figure B-1). In Figure B-1, the value shown next to
each curved arrow represents the value of the TMS signal as it is sampled on the rising edge of the TCK signal.

Figure A-1 TAP Controller State Machine

0

TEST LOGIN RESET

RUN-TEST/IDLE SELECT-DR_SCAN

CAPTURE-DR

SHIFT-DR

EXIT1-DR

PAUSE-DR

EXIT2-DR

UPDATE-DR

0

0

1

0

1

1

0

SELECT-IR_SCAN

CAPTURE-IR

SHIFT-IR

EXIT1-IR

PAUSE-IR

EXIT2-IR

UPDATE-IR

0

0

1

0

1

1

01 1

1 1

1

0

KS32C50100 RISC MICROCONTROLLER APPENDIX A

A-3

BOUNDARY SCAN REGISTER

The KS32C50100 scan chain implementation uses a 233-bit boundary scan register. This register contains bits for
all device signals and clock pins, and for associated control signals.
All bi-directional pins have two register bits in the boundary scan register for pin data. Each pin is controlled by an
associated control bit in the boundary scan register. The twenty-three bits in the boundary scan register define the
output enable signals for associated groups of bi-directional and tri-stateable pins. The control bits and their bit
positions are listed in Table B-1.

BOUNDARY SCAN DEFINITIONS

The boundary scan bit definitions are listed in Tables B-2 through B-5:
• The first column in the table defines the bit's ordinal position in the boundary scan register. The shift register

cell nearest TDO (that is, the first bit to be shifted out) is defined as bit 0. The last bit to be shifted out is bit
number 232.

• The second column refers to one of the four KS32C50100 cell types: jtin1, jtbi1, and jtout1.

• The third column lists the pin name of pin-related cells or defines the name of bi-directional control register bits.

• The fourth column lists the pin type. TS-Output indicates a tri-stateable output pin, and OD-I/O denotes an
open-drain bi-directional pin.

• The fifth column indicates the associated boundary scan register control bit for bi-directional, tri-state output

Table A-1 Boundary Scan Control Bits

Name Bit Number Name Bit Number Name Bit Number

penb[17] 9 penb[9] 33 penb[1] 57

penb[16] 12 penb[8] 36 penb[0] 60

penb[15] 15 penb[7] 39 d_enb 127

penb[14] 18 penb[6] 42 dis_bus 184

penb[13] 21 penb[5] 45 mdio_oe 192

penb[12] 24 penb[4] 48 txcben 211

penb[11] 27 penb[3] 51 txcaen 222

penb[10] 30 penb[2] 54

APPENDIX A KS32C50100 RISC MICROCONTROLLER

A-4

pins.

Table A-2 Boundary Scan Definitions (Page 1)

Bit
Number

Cell
Type

Pin/Cell
Name

Pin
Type

Output
CTL Cell

Bit
Number

Cell
Type

Pin/Cell
Name

Pin
Type

Output
CTL Cell

0 jtin1 UARXD1 Input – 32 jtbi1 P[10] Input –

1 jtout1 nUADSR0 Output – 33 jtout1 penb[9] – –

2 jtout1 UATXD0 Output – 34 jtbi1 P[9]o TS-Output penb[9]

3 jtin1 UADTR0 Input – 35 jtbi1 P[9]i Input –

4 jtin1 UARXD0 Input – 36 jtout1 penb[8] – –

5 jtbi1 SDA OD-Output – 37 jtbi1 P[8] TS-Output –

6 jtbi1 SDA OD-Input – 38 jtbi1 P[8] Input –

7 jtbi1 SCL OD-Output – 39 jtout1 penb[7] – –

8 jtbi1 SCL OD-Input – 40 jtbi1 P[7] TS-Output penb[7]

9 jtout1 penb[17] – – 41 jtbi1 P[7] Input –

10 jtbi1 P[17] TS-Output penb[17] 42 jtout1 penb[6] – –

11 jtbi1 P[17] Input – 43 jtbi1 P[6] TS-Output penb[6]

12 jtout penb[16] – – 44 jtbi1 P[6] Input –

13 jtbi1 P[16] TS-Output penb[16] 45 jtout1 penb[5] – –

14 jtbi1 P[16] Input – 46 jtbi1 P[5] TS-Output penb[5]

15 jtout1 penb[15] – – 47 jtbi1 P[5] Input –

16 jtbi1 P[15] TS-Output penb[15] 48 jtout1 penb[4] – –

17 jtbi1 P[15] Input – 49 jtbi1 P[4] TS-Output penb[4]

18 jtout1 penb[14] – – 50 jtbi1 P[4] Input –

19 jtbi1 P[14] TS-Output penb[14] 51 jtout1 penb[3] – –

20 jtbi1 P[14] Input – 52 jtbi1 P[3] TS-Output penb[3]

21 jtout1 penb[13] – – 53 jtbi1 P[3] Input –

22 jtbi1 P[13] TS-Output penb[13] 54 jtout1 penb[2] – –

23 jtbi1 P[13] Input – 55 jtbi1 P[2] TS-Output penb[2]

24 jtout1 penb[12] – – 56 jtbi1 P[2] Input –

25 jtbi1 P[12] TS-Output penb[12] 57 jtout1 penb[1] – –

26 jtbi1 P[12] Input – 58 jtbi1 P[1]o TS-Output penb[1]

27 jtout1 penb[11] – – 59 jtbi1 P[1]i Input –

28 jtbi1 P[11] TS-Output penb[11] 60 jtout1 penb[0] – –

29 jtbi1 P[11] Input – 61 jtbi1 P[0] TS-Output penb[0]

30 jtout1 penb[10] – – 62 jtbi1 P[0] Input –

31 jtbi1 P[10] TS-Output penb[10] 63 jtbi1 XDATA[31] TS-Output denb

KS32C50100 RISC MICROCONTROLLER APPENDIX A

A-5

Table A-3 Boundary Scan Definitions (Page 2)

Bit
Number

Cell
Type

Pin/Cell
Name

Pin
Type

Output
CTL Cell

Bit
Number

Cell
Type

Pin/Cell
Name

Pin
Type

Output
CTL Cell

64 jtbi1 XDATA[31] Input – 96 jtbi1 XDATA[15] Input –

65 jtbi1 XDATA[30] TS-Output denb 97 jbti1 XDATA[14] TS-Output denb

66 jtbi1 XDATA[30] Input – 98 jtbi1 XDATA[14] Input –

67 jtbi1 XDATA[29] TS-Output denb 99 jtbi1 XDATA[13] TS-Output denb

68 jtbi1 XDATA[29] Input – 100 jtbi1 XDATA[13] Input –

69 jtbi1 XDATA[28] TS-Output denb 101 jtbi1 XDATA[12] TS-Output denb

70 jtbi1 XDATA[28] Input – 102 jtbi1 XDATA[12] Input –

71 jtbi1 XDATA[27] TS-Output denb 103 jtbi1 XDATA[11] TS-Output denb

72 jtbi1 XDATA[27] Input – 104 jtbi1 XDATA[11] Input –

73 jtbi1 XDATA[26] TS-Output denb 105 jtbi1 XDATA[10] TS-Output denb

74 jtbi1 XDATA[26] Input – 106 jtbi1 XDATA[10] Input –

75 jtbi1 XDATA[25] TS-Output denb 107 jtbi1 XDATA[9] TS-Output denb

76 jtbi1 XDATA[25] Input – 108 jtbi1 XDATA[9] Input –

77 jtbi1 XDATA[24] TS-Output denb 109 jtbi1 XDATA[8] TS-Output denb

78 jtbi1 XDATA[24] Input – 110 jtbi1 XDATA[8] Input –

79 jtbi1 XDATA[23] TS-Output denb 111 jtbi1 XDATA[7] TS-Output denb

80 jtbi1 XDATA[23] Input – 112 jtbi1 XDATA[7] Input –

81 jtbi1 XDATA[22] TS-Output denb 113 jtbi1 XDATA[6] TS-Output denb

82 jtbi1 XDATA[22] Input – 114 jtbi1 XDATA[6] Input –

83 jtbi1 XDATA[21] TS-Output denb 115 jtbi1 XDATA[5] TS-Output denb

84 jtbi1 XDATA[21] Input – 116 jtbi1 XDATA[5] Input –

85 jtbi1 XDATA[20] TS-Output denb 117 jtbi1 XDATA[4] TS-Output denb

86 jtbi1 XDATA[20] Input – 118 jtbi1 XDATA[4] Input –

87 jtbi1 XDATA[19] TS-Output denb 119 jtbi1 XDATA[3] TS-Output denb

88 jtbi1 XDATA[19] Input – 120 jtbi1 XDATA[3] Input –

89 jtbi1 XDATA[18] TS-Output denb 121 jtbi1 XDATA[2] TS-Output denb

90 jtbi1 XDATA[18] Input – 122 jtbi1 XDATA[2] Input –

91 jtbi1 XDATA[17] TS-Output 123 jtbi1 XDATA[1] TS-Output denb

92 jtbi1 XDATA[17] Input – 124 jtbi1 XDATA[1] Input –

93 jtbi1 XDATA[16] TS-Output denb 125 jtbi1 XDATA[0] TS-Output denb

94 jtbi1 XDATA[16] Input – 126 jtbi1 XDATA[0] Input –

95 jtbi1 XDATA[15] TS-Output denb 127 jtout1 denb – –

APPENDIX A KS32C50100 RISC MICROCONTROLLER

A-6

Table A-4 Boundary Scan Definitions (Page 3)

Bit
Number

Cell
Type

Pin/Cell
Name

Pin
Type

Output
CTL Cell

Bit
Number

Cell
Type

Pin/Cell
Name

Pin
Type

Output
CTL Cell

128 jtout1 PADDR[21] TS-O dis_bus 160 jtout1 nCAQS[0] TS-O dis_bus

129 jtout1 PADDR[20] TS-O dis_bus 161 jtout1 nRAS[3] TS-O dis_bus

130 jtout1 PADDR[19] TS-O dis_bus 162 jtout1 nRAS[2] TS-O dis_bus

131 jtout1 PADDR[18] TS-O dis_bus 163 jtout1 nRAS[1] TS-O dis_bus

132 jtout1 PADDR[17] TS-O dis_bus 164 jtout1 nRAS[0] TS-O dis_bus

133 jtout1 PADDR[16] TS-O dis_bus 165 jtout1 nRCS[5] TS-O dis_bus

134 jtout1 PADDR[15] TS-O dis_bus 166 jtout1 nRCS[4] TS-O dis_bus

135 jtout1 PADDR[14] TS-O dis_bus 167 jtout1 nRCS[3] TS-O dis_bus

136 jtout1 PADDR[13] TS-O dis_bus 168 jtout1 nRCS[2] TS-O dis_bus

137 jtout1 PADDR[12] TS-O dis_bus 169 jtout1 nRCS[1] TS-O dis_bus

138 jtout1 PADDR[11] TS-O dis_bus 170 jtin1 CLKSEL Input –

139 jtout1 PADDR[10] TS-O dis_bus 171 jtin1 nRESET Input –

140 jtout1 PADDR[9] TS-O dis_bus 172 jtck MCLK Input –

141 jtout1 PADDR[8] TS-O dis_bus 173 jtout1 MCKLO Output –

142 jtout1 PADDR[7] TS-O dis_bus 174 jtin1 CLKOEN Input –

143 jtout1 PADDR[6] TS-O dis_bus 175 jtout1 nRCS[0] TS-O dis_bus

144 jtout1 PADDR[5] TS-O dis_bus 176 jtin1 B0SIZE[1] Input –

145 jtout1 PADDR[4] TS-O dis_bus 177 jtin1 B0SIZE[0] Input –

146 jtout1 PADDR[3] TS-O dis_bus 178 jtout1 nOE TS-O dis_bus

147 jtout1 PADDR[2] TS-O dis_bus 179 jtin1 nEWAIT Input –

148 jtout1 PADDR[1] TS-O dis_bus 180 jtout nECS[3] TS-O dis_bus

149 jtout1 PADDR[0] TS-O dis_bus 181 jtout1 nECS[2] TS-O dis_bus

150 jtout1 EXTMACK Output – 182 jtout1 nECS[1] TS-O dis_bus

151 jtin1 EXTMREQ TS-O – 183 jtout1 nECS[0] TS-O dis_bus

152 jtout1 nWBE[3] TS-O dis_bus 184 jtout1 dis_bus – –

153 jtout1 nWBE[2] TS-O dis_bus 185 jtin1 UCLK Input –

154 jtout1 nWBE[1] TS-O dis_bus 186 jtin1 TMODE Input –

155 jtout1 nWBE[0] TS-O dis_bus 187 jtout1 MDC Output –

156 jtout1 nDWE TS-O dis_bus 188 jtin1 LITTLE – –

157 jtout1 nCAS[3] TS-O dis_bus 189 jtout1 mdio_oe – –

158 jtout1 nCAS[2] TS-O dis_bus 190 jtbi1 MDIO TS-O mdio_oe

159 jtout1 nCAS[1] TS-O dis_bus 191 jtbi1 MDIO Input –

KS32C50100 RISC MICROCONTROLLER APPENDIX A

A-7

Table A-5 Boundary Scan Definitions (Page 4)

Bit
Number

Cell
Type

Pin/Cell
Name

Pin
Type

Output
CTL Cell

Bit
Number

Cell
Type

Pin/Cell
Name

Pin
Type

Output
CTL Cell

192 jtout1 TX_EN/
TXEN_10M

Output – 218 jtout1 nDTRB Output –

193 jtin1 TX_CLK/
TXCLK_10M

Input – 219 jtout1 txcaen – –

194 jtout1 TX_ERR/
PCOMP_10M

Output – 220 jtbi1 TXCA Output txcaen

195 jtout1 TXD3 Output – 221 jtbi1 TXCA Input –

196 jtout1 TXD2 Output – 222 jtout1 nSYNCA Output –

197 jtout1 TXD1/
LOOP10

Output – 223 jtin1 RXCA Input –

198 jtout1 TXD0/
TXD_10M

Output – 224 jtin1 nDCDA Input –

199 jtin1 COL/
COL_10M

Input – 225 jtin1 nCTSA Input –

200 jtin1 RX_CLK/
RXCLK_10M

Input – 226 jtout1 TXDA Output –

201 jtin1 RX_ERR Input – 227 jtout1 nRTSA Output –

202 jtin1 RXD3 Input š 228 jtin1 RXDA Input –

203 jtin1 RXD2 Input – 229 jtout1 nDTRA Output –

204 jtin1 RXD1 Input – 230 jtout1 nUADSR1 Output –

205 jtin1 RXD0/
RXD_10M

Input – 231 jtout1 UATXD1 Output –

206 jtin1 RX_DV/
LINK10

Input – 232 jtin1 UADTR1 Input –

207 jtin1 CRS/
CRS_10M

Input –

208 jtout1 txcben – –

209 jtbi1 TXCB TS-Out txcben

210 jtbi1 TXCB Input –

211 jtout1 nSYNCB Output –

212 jtin1 RXCB Input –

213 jtin1 nDCDB Input –

214 jtin1 nCTSB Input –

215 jtout1 TXDB Output –

216 jtout1 nRTSB Output –

217 jtin1 RXDB Input –

NOTE : TS-O is tri-state output.

APPENDIX A KS32C50100 RISC MICROCONTROLLER

A-8

Figure A-2 KS32C50100 Scan Cells

JTIN1

SHIFT

TDI0

TDO0 SETN

DINP0N

MODE 0

DOUT0
D

Q

MUX

0

1 D

Q

MUX

0

1

JTOUT1

TDI0

TDO1 MODE 1

DOUT1
D

Q D

Q

MUX

0

1

DINP1

TCK UPDATE

JTBI1

MUX

0

1

JTCK

TDI TDO
D

Q

MUX

0

1

TCK

SHIFT

KS32C50100 RISC MICROCONTROLLER APPENDIX A

A-9

INSTRUCTION REGISTER

The instruction register is four bits in length. There is no parity bit. The fixed value ’0001’ is loaded into the
instruction register during the CAPTURE-IR controller state.
The TAP machines supports the following public instructions. However, the KS32C50100 boundary scan logic only
supports EXTEST, IDCODE, BYPASS, and SAMPLE/PRELOAD instructions. The remaining instructions are used
for ARM7TDMI core testing and debugging.

Table A-6 Public Instructions

Instruction Binary Code

EXTEST 0000

SCAN_N 0010

INTEST 1100

IDCODE 1110

BYPASS 1111

CLAMP 0101

HIGHZ 0111

CLAMPZ 1001

SAMPLE/PRELOAD 0011

RESTART 0100

APPENDIX A KS32C50100 RISC MICROCONTROLLER

A-10

--
Samsung Electronics Co.
-- KS32C50100 BSDL
--
-- Version 1.1 01-27-99
-- Revision List:
-- 1) Pin name NC changed to LITTLE
-- 2) 1194 -> 1149
-- Package Type: QFP2828B
--

entity KS32C50100 is

generic (PHYSICAL_PIN_MAP : string := "QFP2828B");

port (

nUADTR1 : inbit;
UATXD1 : outbit;
nUADSR1 : outbit;

nDTRA : outbit;
RXDA : inbit;
nRTSA : outbit;
TXDA : outbit;
nCTSA : inbit;
nDCDA : inbit;
RXCA : inbit;
nSYNCA : outbit;
TXCA : inoutbit;
nDTRB : outbit;
RXDB : inbit;
nRTSB : outbit;
TXDB : outbit;
nCTSB : inbit;
nDCDB : inbit;
RXCB : inbit;
nSYNCB : outbit;
TXCB : inoutbit;

CRS_CRS_10M: inbit;

RX_DV_LINK10: inbit;
RXD : inbit_vector(0 to 3);
RX_ERR : inbit;
RX_CLK_RXCLK_10M: in bit;

COL_COL_10M: inbit;
TXD : outbit_vector(0 to 3);
TX_ERR_PCOMP_10M: outbit;
TX_CLK_TXCLK_10M: in bit;
TX_EN_TXEN_10M: outbit;

KS32C50100 RISC MICROCONTROLLER APPENDIX A

A-11

MDIO : inoutbit;
LITTLE : inbit;
MDC : outbit;

TCK : inbit;
TMS : inbit;
TDI : inbit;
TDO : outbit;
nTRST : inbit;
TMODE : inbit;
UCLK : inbit;

nECS : outbit_vector(0 to 3);

nEWAIT : inbit;
nOE : outbit;
B0SIZE : inbit_vector(0 to 1);

CLKOEN : inbit;
MCLKO : outbit;
MCLK : inbit;
nRESET : inbit;
CLKSEL : inbit;

nRCS : outbit_vector(0 to 5);
nRAS : outbit_vector(0 to 3);
nCAS : outbit_vector(0 to 3);
nDWE : outbit;
nWBE : outbit_vector(0 to 3);

ExtMREQ : inbit;
ExtMACK : outbit;
ADDR : outbit_vector(0 to 21);

XDATA : inoutbit_vector(0 to 31);

P : inoutbit_vector(0 to 17);
SCL : inoutbit;
SDA : inoutbit;
UARXD0 : inbit;
nUADTR0 : inbit;
UATXD0 : outbit;
nUADSR0 : outbit;
UARXD1 : inbit;
VDDP : linkagebit_vector(0 to 10);
VDDI : linkagebit_vector(0 to 10);
VSSP : linkagebit_vector(0 to 11);
VSSI : linkagebit_vector(0 to 10)

);

APPENDIX A KS32C50100 RISC MICROCONTROLLER

A-12

use STD_1149_1_1149.all;

attribute PIN_MAP of KS32C50100 : entity is PHYSICAL_PIN_MAP;

-- QFP2828B Pin Map
--
-- No-connects: 49
--

constant QFP2828B : PIN_MAP_STRING :=

"nUADTR1 : 3, " &
"UATXD1 : 4, " &
"nUADSR1 : 5, " &

"nDTRA : 6, " &
"RXDA : 7, " &
"nRTSA : 8, " &
"TXDA : 9, " &
"nCTSA : 10, " &
"nDCDA : 13, " &
"RXCA : 14, " &
"nSYNCA : 15, " &
"TXCA : 16, " &
"nDTRB : 17, " &
"RXDB : 18, " &
"nRTSB : 19, " &
"TXDB : 20, " &
"nCTSB : 23, " &
"nDCDB : 24, " &
"RXCB : 25, " &
"nSYNCB : 26, " &
"TXCB : 27, " &

"CRS_CRS_10M : 28, " &

"RX_DV_LINK10 : 29, " &
"RXD : (30, 33, 34, 35), " &
"RX_ERR : 36, " &
"RX_CLK_RXCLK_10M : 37, " &

"COL_COL_10M : 38, " &
"TXD : (39, 40, 43, 44), " &
"TX_ERR_PCOMP_10M : 45, " &
"TX_CLK_TXCLK_10M : 46, " &
"TX_EN_TXEN_10M : 47, " &
"MDIO : 48, " &
"LITTLE : 49, " &
"MDC : 50, " &

KS32C50100 RISC MICROCONTROLLER APPENDIX A

A-13

"TCK : 58, " &
"TMS : 59, " &
"TDI : 60, " &
"TDO : 61, " &
"nTRST : 62, " &
"TMODE : 63, " &
"UCLK : 64, " &

"nECS : (67, 68, 69, 70), " &

"nEWAIT : 71, " &
"nOE : 72, " &
"B0SIZE : (73, 74), " &

"CLKOEN : 76, " &
"MCLKO : 77, " &
"MCLK : 80, " &
"nRESET : 82, " &
"PCLKSEL : 83, " &

"nRCS : (75, 84, 85, 86, 87, 88), " &
"nRAS : (89, 90, 91, 94), " &
"nCAS : (95, 96, 97, 98), " &
"nDWE : 99, " &
"nWBE : (100, 101, 102, 107), " &

"ExtMREQ : 108, " &
"ExtMACK : 109, " &
-- A0 A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A12 A13 A14 A15 A16 A17 A18 A19 A20 A21
"ADDR : (110, 111, 112, 113, 114, 115, 116, 117, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 132, 133, 134,
135), " &

-- D0 D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 D11 D12 D13 D14 D15 D16 D17 D18 D19 D20
D21 D22 D23 D24 D25 D26 D27 D28 D29 D30 D31
"XDATA : (136, 137, 138, 139, 140, 141, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 159, 160,
161,162, 163, 164, 165, 166, 169, 170, 171, 172, 173, 174, 175), " &

-- P0 P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12 P13 P14 P15 P16 P17
"P : (176, 179, 180, 181, 182, 183, 184, 185, 186, 189, 190, 191, 192, 193, 194, 195, 196, 199), " &
"SCL : 200, " &
"SDA : 201, " &
"UARXD0 : 202, " &
"nUADTR0 : 203, " &
"UATXD0 : 204, " &
"nUADSR0 : 205, " &
"UARXD1 : 206, " &
"VDDP : 1, 21, 41, 53, 78, 103, 118, 142, 157, 177, 197, " &
"VDDI : 11, 31, 51, 65, 92, 105, 130, 155, 167, 187, 207, " &
"VSSP : 2, 22, 42, 54, 79, 93, 106, 131, 156, 168, 188, 208, " &
"VSSI : 12, 32, 52, 66, 81, 104, 119, 143, 158, 178, 198 ";

APPENDIX A KS32C50100 RISC MICROCONTROLLER

A-14

attribute TAP_SCAN_IN of TDI : signal is true;
attribute TAP_SCAN_OUT of TDO : signal is true;

attribute TAP_SCAN_MODE of TMS : signal is true;

attribute TAP_SCAN_RESET of nTRST : signal is true;

attribute TAP_SCAN_CLOCK of TCK : signal is true;

attribute INSTRUCTION_LENGTH of KS32C50100 : entity is 4;

attribute INSTRUCTION_OPCODE of KS32C50100 : entity is
"EXTEST (0000)," &
"SCAN_N (0010)," &
"INTEST (1100)," &
"IDCODE (1110)," &
"BYPASS (1111)," &
"CLAMP (0101)," &
"HIGHZ (0111)," &
"CLAMPZ (1001)," &
"SAMPLE (0011)," &
"RESTART (0100)";

-- KS32C50100's IDCODE is the ARM7TDMI's IDCODE.
attribute REGISTER_ACCESS of KS32C50100 : entity is

"0001" & -- version
"111100" & -- design center
"0011110000" &-- sequence number
"11110000111" &-- Samsung
"1"; -- required by 1149.1

attribute REGISTER_ACCESS of KS32C50100 : entity is
"IDCODE (IDCODE)," &
"BOUNDARY (INTEST, SAMPLE, EXTEST)," &
"BYPASS (CLAMP, HIGHZ, BYPASS)";

attribute BOUNDARY_CELLS of KS32C50100 : entity is "BC_4, BC_2, BC_1";

attribute BOUNDARY_LENGTH of KS32C50100 : entity is 233;

attribute BOUNDARY_REGISTER of KS32C50100 : entity is

-- num cell port function safe [ccell disval rslt]

 "0 (BC_2, UARXD1, input, X) ," &
 "1 (BC_1, nUADSR0, output2, X) ," &
 "2 (BC_1, UATXD0, output2, X) ," &
 "3 (BC_2, nUADTR0, input, X) ," &
 "4 (BC_2, UARXD0, input, X) ," &
 "5 (BC_1, SDA, output3, 1, 5, 1, Z) ," & -- Open-drain Output

KS32C50100 RISC MICROCONTROLLER APPENDIX A

A-15

 "6 (BC_2, SDA, input, X) ," &
 "7 (BC_1, SCL, output3, 1, 7, 1, Z) ," & -- Open-drain Output
 "8 (BC_2, SCL, input, X) ," &

 "9 (BC_1, *, controlr, 1) ," & --P_ENB(17)
 "10 (BC_1, P(17), output3, X, 9, 1, Z) ," &
 "11 (BC_2, P(17), input, X) ," &

 "12 (BC_1, *, controlr, 1) ," & --P_ENB(16)
 "13 (BC_1, P(16), output3, X, 12, 1, Z) ," &
 "14 (BC_2, P(16), input, X) ," &

 "15 (BC_1, *, controlr, 1) ," & --P_ENB(15)
 "16 (BC_1, P(15), output3, X, 15, 1, Z) ," &
 "17 (BC_2, P(15), input, X) ," &

 "18 (BC_1, *, controlr, 1) ," & --P_ENB(14)
 "19 (BC_1, P(14), output3, X, 18, 1, Z) ," &
 "20 (BC_2, P(14), input, X) ," &

 "21 (BC_1, *, controlr, 1) ," & --P_ENB(13)
 "22 (BC_1, P(13), output3, X, 21, 1, Z) ," &
 "23 (BC_2, P(13), input, X) ," &

 "24 (BC_1, *, controlr, 1) ," & --P_ENB(12)
 "25 (BC_1, P(12), output3, X, 24, 1, Z) ," &
 "26 (BC_2, P(12), input, X) ," &

 "27 (BC_1, *, controlr, 1) ," & --P_ENB(11)
 "28 (BC_1, P(11), output3, X, 27, 1, Z) ," &
 "29 (BC_2, P(11), input, X) ," &

 "30 (BC_1, *, controlr, 1) ," & --P_ENB(10)
 "31 (BC_1, P(10), output3, X, 30, 1, Z) ," &
 "32 (BC_2, P(10), input, X) ," &
 "33 (BC_1, *, controlr, 1) ," & --P_ENB(9)
 "34 (BC_1, P(9), output3, X, 33, 1, Z) ," &
 "35 (BC_2, P(9), input, X) ," &

 "36 (BC_1, *, controlr, 1) ," & --P_ENB(8)
 "37 (BC_1, P(8), output3, X, 36, 1, Z) ," &
 "38 (BC_2, P(8), input, X) ," &

 "39 (BC_1, *, controlr, 1) ," & --P_ENB(7)
 "40 (BC_1, P(7), output3, X, 39, 1, Z) ," &
 "41 (BC_2, P(7), input, X) ," &

 "42 (BC_1, *, controlr, 1) ," & --P_ENB(6)
 "43 (BC_1, P(6), output3, X, 42, 1, Z) ," &
 "44 (BC_2, P(6), input, X) ," &

 "45 (BC_1, *, controlr, 1) ," & --P_ENB(5)
 "46 (BC_1, P(5), output3, X, 45, 1, Z) ," &

APPENDIX A KS32C50100 RISC MICROCONTROLLER

A-16

 "47 (BC_2, P(5), input, X) ," &

 "48 (BC_1, *, controlr, 1) ," & --P_ENB(4)
 "49 (BC_1, P(4), output3, X, 48, 1, Z) ," &
 "50 (BC_2, P(4), input, X) ," &

 "51 (BC_1, *, controlr, 1) ," & --P_ENB(3)
 "52 (BC_1, P(3), output3, X, 51, 1, Z) ," &
 "53 (BC_2, P(3), input, X) ," &

 "54 (BC_1, *, controlr, 1) ," & --P_ENB(2)
 "55 (BC_1, P(2), output3, X, 54, 1, Z) ," &
 "56 (BC_2, P(2), input, X) ," &

 "57 (BC_1, *, controlr, 1) ," & --P_ENB(1)
 "58 (BC_1, P(1), output3, X, 57, 1, Z) ," &
 "59 (BC_2, P(1), input, X) ," &

 "60 (BC_1, *, controlr, 1) ," & --P_ENB(0)
 "61 (BC_1, P(0), output3, X, 60, 1, Z) ," &
 "62 (BC_2, P(0), input, X) ," &

 "63 (BC_1, XDATA(31), output3, X, 127, 1, Z) ," &
 "64 (BC_2, XDATA(31), input, X) ," &

 "65 (BC_1, XDATA(30), output3, X, 127, 1, Z) ," &
 "66 (BC_2, XDATA(30), input, X) ," &

 "67 (BC_1, XDATA(29), output3, X, 127, 1, Z) ," &
 "68 (BC_2, XDATA(29), input, X) ," &

 "69 (BC_1, XDATA(28), output3, X, 127, 1, Z) ," &
 "70 (BC_2, XDATA(28), input, X) ," &

KS32C50100 RISC MICROCONTROLLER APPENDIX A

A-17

 "71 (BC_1, XDATA(27), output3, X, 127, 1, Z) ," &
 "72 (BC_2, XDATA(27), input, X) ," &

 "73 (BC_1, XDATA(26), output3, X, 127, 1, Z) ," &
 "74 (BC_2, XDATA(26), input, X) ," &

 "75 (BC_1, XDATA(25), output3, X, 127, 1, Z) ," &
 "76 (BC_2, XDATA(25), input, X) ," &

 "77 (BC_1, XDATA(24), output3, X, 127, 1, Z) ," &
 "78 (BC_2, XDATA(24), input, X) ," &

 "79 (BC_1, XDATA(23), output3, X, 127, 1, Z) ," &
 "80 (BC_2, XDATA(23), input, X) ," &

 "81 (BC_1, XDATA(22), output3, X, 127, 1, Z) ," &
 "82 (BC_2, XDATA(22), input, X) ," &

 "83 (BC_1, XDATA(21), output3, X, 127, 1, Z) ," &
 "84 (BC_2, XDATA(21), input, X) ," &

 "85 (BC_1, XDATA(20), output3, X, 127, 1, Z) ," &
 "86 (BC_2, XDATA(20), input, X) ," &

 "87 (BC_1, XDATA(19), output3, X, 127, 1, Z) ," &
 "88 (BC_2, XDATA(19), input, X) ," &

 "89 (BC_1, XDATA(18), output3, X, 127, 1, Z) ," &
 "90 (BC_2, XDATA(18), input, X) ," &

 "91 (BC_1, XDATA(17), output3, X, 127, 1, Z) ," &
 "92 (BC_2, XDATA(17), input, X) ," &

 "93 (BC_1, XDATA(16), output3, X, 127, 1, Z) ," &
 "94 (BC_2, XDATA(16), input, X) ," &

 "95 (BC_1, XDATA(15), output3, X, 127, 1, Z) ," &
 "96 (BC_2, XDATA(15), input, X) ," &

 "97 (BC_1, XDATA(14), output3, X, 127, 1, Z) ," &
 "98 (BC_2, XDATA(14), input, X) ," &

 "99 (BC_1, XDATA(13), output3, X, 127, 1, Z) ," &
 "100 (BC_2, XDATA(13), input, X) ," &

 "101 (BC_1, XDATA(12), output3, X, 127, 1, Z) ," &
 "102 (BC_2, XDATA(12), input, X) ," &

 "103 (BC_1, XDATA(11), output3, X, 127, 1, Z) ," &
 "104 (BC_2, XDATA(11), input, X) ," &

 "105 (BC_1, XDATA(10), output3, X, 127, 1, Z) ," &
 "106 (BC_2, XDATA(10), input, X) ," &

APPENDIX A KS32C50100 RISC MICROCONTROLLER

A-18

 "107 (BC_1, XDATA(9), output3, X, 127, 1, Z) ," &
 "108 (BC_2, XDATA(9), input, X) ," &

 "109 (BC_1, XDATA(8), output3, X, 127, 1, Z) ," &
 "110 (BC_2, XDATA(8), input, X) ," &

 "111 (BC_1, XDATA(7), output3, X, 127, 1, Z) ," &
 "112 (BC_2, XDATA(7), input, X) ," &

 "113 (BC_1, XDATA(6), output3, X, 127, 1, Z) ," &
 "114 (BC_2, XDATA(6), input, X) ," &

 "115 (BC_1, XDATA(5), output3, X, 127, 1, Z) ," &
 "116 (BC_2, XDATA(5), input, X) ," &

 "117 (BC_1, XDATA(4), output3, X, 127, 1, Z) ," &
 "118 (BC_2, XDATA(4), input, X) ," &

 "119 (BC_1, XDATA(3), output3, X, 127, 1, Z) ," &
 "120 (BC_2, XDATA(3), input, X) ," &

 "121 (BC_1, XDATA(2), output3, X, 127, 1, Z) ," &
 "122 (BC_2, XDATA(2), input, X) ," &

 "123 (BC_1, XDATA(1), output3, X, 127, 1, Z) ," &
 "124 (BC_2, XDATA(1), input, X) ," &

 "125 (BC_1, XDATA(0), output3, X, 127, 1, Z) ," &
 "126 (BC_2, XDATA(0), input, X) ," &

 "127 (BC_1, *, controlr, 1) ," & --DATAOUT_ENB

 "128 (BC_1, ADDR(21), output3, X, 184, 1, Z) ," &
 "129 (BC_1, ADDR(20), output3, X, 184, 1, Z) ," &
 "130 (BC_1, ADDR(19), output3, X, 184, 1, Z) ," &
 "131 (BC_1, ADDR(18), output3, X, 184, 1, Z) ," &
 "132 (BC_1, ADDR(17), output3, X, 184, 1, Z) ," &
 "133 (BC_1, ADDR(16), output3, X, 184, 1, Z) ," &
 "134 (BC_1, ADDR(15), output3, X, 184, 1, Z) ," &
 "135 (BC_1, ADDR(14), output3, X, 184, 1, Z) ," &
 "136 (BC_1, ADDR(13), output3, X, 184, 1, Z) ," &
 "137 (BC_1, ADDR(12), output3, X, 184, 1, Z) ," &
 "138 (BC_1, ADDR(11), output3, X, 184, 1, Z) ," &
 "139 (BC_1, ADDR(10), output3, X, 184, 1, Z) ," &
 "140 (BC_1, ADDR(9), output3, X, 184, 1, Z) ," &
 "141 (BC_1, ADDR(8), output3, X, 184, 1, Z) ," &
 "142 (BC_1, ADDR(7), output3, X, 184, 1, Z) ," &
 "143 (BC_1, ADDR(6), output3, X, 184, 1, Z) ," &
 "144 (BC_1, ADDR(5), output3, X, 184, 1, Z) ," &
 "145 (BC_1, ADDR(4), output3, X, 184, 1, Z) ," &
 "146 (BC_1, ADDR(3), output3, X, 184, 1, Z) ," &
 "147 (BC_1, ADDR(2), output3, X, 184, 1, Z) ," &
 "148 (BC_1, ADDR(1), output3, X, 184, 1, Z) ," &

KS32C50100 RISC MICROCONTROLLER APPENDIX A

A-19

 "149 (BC_1, ADDR(0), output3, X, 184, 1, Z) ," &

 "150 (BC_1, ExtMACK, output2, X) ," &
 "151 (BC_2, ExtMREQ, input, X) ," &

 "152 (BC_1, nWBE(3), output3, X, 184, 1, Z) ," &
 "153 (BC_1, nWBE(2), output3, X, 184, 1, Z) ," &
 "154 (BC_1, nWBE(1), output3, X, 184, 1, Z) ," &
 "155 (BC_1, nWBE(0), output3, X, 184, 1, Z) ," &

 "156 (BC_1, nDWE, output3, X, 184, 1, Z) ," &

 "157 (BC_1, nCAS(3), output3, X, 184, 1, Z) ," &
 "158 (BC_1, nCAS(2), output3, X, 184, 1, Z) ," &
 "159 (BC_1, nCAS(1), output3, X, 184, 1, Z) ," &
 "160 (BC_1, nCAS(0), output3, X, 184, 1, Z) ," &

 "161 (BC_1, nRAS(3), output3, X, 184, 1, Z) ," &
 "162 (BC_1, nRAS(2), output3, X, 184, 1, Z) ," &
 "163 (BC_1, nRAS(1), output3, X, 184, 1, Z) ," &
 "164 (BC_1, nRAS(0), output3, X, 184, 1, Z) ," &

 "165 (BC_1, nRCS(5), output3, X, 184, 1, Z) ," &
 "166 (BC_1, nRCS(4), output3, X, 184, 1, Z) ," &
 "167 (BC_1, nRCS(3), output3, X, 184, 1, Z) ," &
 "168 (BC_1, nRCS(2), output3, X, 184, 1, Z) ," &
 "169 (BC_1, nRCS(1), output3, X, 184, 1, Z) ," &

 "170 (BC_2, CLKSEL, input, X) ," &
 "171 (BC_2, nRESET, input, X) ," &
 "172 (BC_4, MCLK, input, X) ," &
 "173 (BC_1, MCLKO, output2, X) ," &
 "174 (BC_2, CLKOEN, input, X) ," &

 "175 (BC_1, nRCS(0), output3, X, 184, 1, Z) ," &

 "176 (BC_2, B0SIZE(1), input, X) ," &
 "177 (BC_2, B0SIZE(0), input, X) ," &

 "178 (BC_1, nOE, output3, X, 184, 1, Z) ," &

 "179 (BC_2, nEWAIT, input, X) ," &

 "180 (BC_1, nECS(3), output3, X, 184, 1, Z) ," &
 "181 (BC_1, nECS(2), output3, X, 184, 1, Z) ," &
 "182 (BC_1, nECS(1), output3, X, 184, 1, Z) ," &
 "183 (BC_1, nECS(0), output3, X, 184, 1, Z) ," &

 "184 (BC_1, *, controlr, 1) ," & --DIS_BUS

 "185 (BC_2, UCLK, input, X) ," &
 "186 (BC_2, TMODE, input, X) ," &

APPENDIX A KS32C50100 RISC MICROCONTROLLER

A-20

 "187 (BC_1, MDC, output2, X) ," &
 "188 (BC_2, LITTLE, input, X) ," &

 "189 (BC_1, *, controlr, 1) ," & --MDIO_OE
 "190 (BC_1, MDIO, output3, X, 189, 1, Z) ," &
 "191 (BC_2, MDIO, input, X) ," &

 "192 (BC_1, TX_EN_TXEN_10M, output2, X) ," &
 "193 (BC_2, TX_CLK_TXCLK_10M, input, X) ," &
 "194 (BC_1, TX_ERR_PCOMP_10M, output2, X) ," &
 "195 (BC_1, TXD3, output2, X) ," &
 "196 (BC_1, TXD2, output2, X) ," &
 "197 (BC_1, TXD1_LOOP10, output2, X) ," &
 "198 (BC_1, TXD0_TXD_10M, output2, X) ," &
 "199 (BC_2, COL_COL_10M, input, X) ," &
 "200 (BC_2, RX_CLK_RXCLK_10M, input, X) ," &
 "201 (BC_2, RX_ERR, input, X) ," &
 "202 (BC_2, RXD3, input, X) ," &
 "203 (BC_2, RXD2, input, X) ," &
 "204 (BC_2, RXD1, input, X) ," &
 "205 (BC_2, RXD0_RXD_10M, input, X) ," &
 "206 (BC_2, RX_DV_LINK10, input, X) ," &
 "207 (BC_2, CRS_CRS_10M, input, X) ," &

 "208 (BC_1, *, controlr, 1) ," & --TXCBEN
 "209 (BC_1, TXCB, output3, X, 208, 1, Z) ," &
 "210 (BC_2, TXCB, input, X) ," &

 "211 (BC_1, nSYNCB, output2, X) ," &
 "212 (BC_2, RXCB, input, X) ," &
 "213 (BC_2, nDCDB, input, X) ," &
 "214 (BC_2, nCTSB, input, X) ," &
 "215 (BC_1, TXDB, output2, X) ," &
 "216 (BC_1, nRTSB, output2, X) ," &
 "217 (BC_2, RXDB, input, X) ," &
 "218 (BC_1, nDTRB, output2, X) ," &

 "219 (BC_1, *, controlr, 1), " & --TXCAEN
 "220 (BC_1, TXCA, output3, X, 219, 1, Z) ," &
 "221 (BC_2, TXCA, input, X) ," &

 "222 (BC_1, nSYNCA, output2, X) ," &
 "223 (BC_2, RXCA, input, X) ," &
 "224 (BC_2, nDCDA, input, X) ," &
 "225 (BC_2, nCTSA, input, X) ," &
 "226 (BC_1, TXDA, output2, X) ," &
 "227 (BC_1, nRTSA, output2, X) ," &
 "228 (BC_2, RXDA, input, X) ," &
 "229 (BC_1, nDTRA, output2, X) ," &
 "230 (BC_1, nUADSR1, output2, X) ," &
 "231 (BC_1, UATXD1, output2, X) ," &
 "232 (BC_2, nUADTR1, input, X) ";
 end KS32C50100;

