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Intfroduction

1.1 Introduction

The ARM7TDMI is a member of the Advanced RISC Machines (ARM) family of
general purpose 32-bit microprocessors, which offer high performance for very low
power consumption and price.

The ARM architecture is based on Reduced Instruction Set Computer (RISC)
principles, and the instruction set and related decode mechanism are much simpler
than those of microprogrammed Complex Instruction Set Computers. This simplicity
results in a high instruction throughput and impressive real-time interrupt response
from a small and cost-effective chip.

Pipelining is employed so that all parts of the processing and memory systems can
operate continuously. Typically, while one instruction is being executed, its successor
is being decoded, and a third instruction is being fetched from memory.

—3.—.—‘8—-—0203 The ARM memory interface has been designed to allow the performance potential to

be realised without incurring high costs in the memory system. Speed-critical control
signals are pipelined to allow system control functions to be implemented in standard
low-power logic, and these control signals facilitate the exploitation of the fast local

access modes offered by industry standard dynamic RAMs.
This chapter introduces the ARM7TDMI architecture, and shows block, core, and

functional diagrams for the ARM7TDMI. 1.2 ARMT7TDMI Architecture
1.1  Introduction 1-2 The ARM7TDMI processor employs a unique architectural strategy known as THUMB,
X which makes it ideally suited to high-volume applications with memory restrictions, or
12 ARM7TDMI Architecture 12 applications where code density is an issue.
1.3 ARM7TDMI Block Diagram 1-4
1.4  ARM7TDMI Core Diagram 1-5 1.2.1 The THUMB Concept
1.5 ARM7TDMI Functional Diagram 1-6 The key idea behind THUMB is that of a super-reduced instruction set. Essentially, the
ARM7TDMI processor has two instruction sets:
« the standard 32-bit ARM set
¢ al16-bit THUMB set
The THUMB set's 16-bit instruction length allows it to approach twice the density of
standard ARM code while retaining most of the ARM'’s performance advantage over a
traditional 16-bit processor using 16-bit registers. This is possible because THUMB
code operates on the same 32-bit register set as ARM code.
THUMB code is able to provide up to 65% of the code size of ARM, and 160% of the
performance of an equivalent ARM processor connected to a 16-bit memory system.
ARM7TDMI Data Sheet o 12 ARM7TDMI Data Sheet
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1.2.2 THUMB's Advantages 1.3 ARM7TDMI Block Diagram
THUMB instructions operate with the standard ARM register configuration, allowing Scan Chain 2 Scan Chain 0
excellent interoperability between ARM and THUMB states. Each 16-bit THUMB
instruction has a corresponding 32-bit ARM instruction with the same effect on the
processor model.
The major advantage of a 32-bit (ARM) architecture over a 16-bit architecture is its RANGEQUTO «
ability to manipulate 32-bit integers with single instructions, and to address a large RANGEOUT1 «+— ICEBreaker
address space efficiently. When processing 32-bit data, a 16-bit architecture will take EXTERN1 —¥|
at least two instructions to perform the same task as a single ARM instruction. EXTERNO —|
However, not all the code in a program will process 32-bit data (for example, code that ::o%& * * A
performs character string handling), and some instructions, like Branches, do not MASI[1:0] A =l
process any data at all. NTRANS Core Al
NnMREQ Oz._mq
If a 16-bit architecture only has 16-bit instructions, and a 32-bit architecture only has A[31:0] A = Signals
32-bit instructions, then overall the 16-bit architecture will have better code density, .+
and better than one half the performance of the 32-bit architecture. Clearly 32-bit 1 .
performance comes at the cost of code density. - —,|  Scan Chain 1
p[z10] @ I 9
THUMB breaks this constraint by implementing a 16-bit instruction length on a 32-bit =
architecture, making the processing of 32-bit data efficient with a compact instruction DIN[3L:0] Qn.vr
coding. This provides far better performance than a 16-bit architecture, with better : "
code density than a 32-bit architecture. DOUT[31:0] nw
THUMB also has a major advantage over other 32-bit architectures with 16-bit
instructions. This is the ability to switch back to full ARM code and execute at full
speed. Thus critical loops for applications such as TAP controller
« fastinterrupts |
» DSP algorithms 1 1 T 1 v
can be coded using the full ARM instruction set, and linked with THUMB code. The TCK TMS nTRST TDI TDO TAPSM[3:0] IR[3:0] SCREG[3:0]
overhead of switching from THUMB code to ARM code is folded into sub-routine entry
time. Various portions of a system can be optimised for speed or for code density by Figure 1-1: ARM7TDMI block diagram

switching between THUMB and ARM execution as appropriate.

ARM7TDMI Data Sheet 1-3 1-4 ARM7TDMI Data Sheet
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1.4 ARM7TDMI Core Diagram 1.5 ARM7TDMI Functional Diagram
A[31:0] MCLK K
—_—
ALE ABE
+ : ° Control Bk «DTRST
. r TDO
I ——
_ Address Register e e niR TAPSM[30] Boundary
F———
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C v ﬁ |~ DBGRQI Interrupts — > nTDOEN
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b Incrementer e [+~ BREAKPTI ISYNC > | Toekr
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s > ECLK NRESET SCREG[3:0]
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b & le— NRESET 1 N~
u Control le— ABORT A E— DOUTI[31:0]
s Logic - NnTRANS DBE M
- NMRE! e "
Q TBE R Memory
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L, SEQ BUSDIS A Interface
> LOCK / ECAPCLK
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—
le TBE ___NMREQ
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—
A W —
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Figure 1-2: ARM7TDMI core « COMMTX | b
Figure 1-3: ARM7TDMI functional diagram
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Signal Description

2.1 Signal Description
The following table lists and describes all the signals for the ARM7TDMI.
Transistor sizes
For a 0.6 um ARM7TDMI:

INV4 driver has transistor sizes of p =22.32 ym/0.6 um
N = 12.6 um/0.6 um

INV8 driver has transistor sizes of p = 44.64 ym/0.6 um
N =25.2 um/0.6 pm

Key to signal types
IC Input CMOS thresholds

Signal Description O Outputwith NV drver

08 Output with INV8 driver

This chapter lists and describes the signals for the ARM7TDMI. Name Type | Description

A[31:0] 08 This is the processor address bus. If ALE (address latch enable)
Addresses is HIGH and APE (Address Pipeline Enable) is LOW, the
addresses become valid during phase 2 of the cycle before the
one to which they refer and remain so during phase 1 of the
referenced cycle. Their stable period may be controlled by ALE
or APE as described below.

2.1  Signal Description 2-2

ABE This is an input signal which, when LOW, puts the address bus
Address bus enable drivers into a high impedance state. This signal has a similar
effect on the following control signals: MAS[1:0] , nRW, LOCK,
nOPC and nTRANS. ABE must be tied HIGH when there is no
system requirement to turn off the address drivers.

ABORT This is an input which allows the memory system to tell the
Memory Abort processor that a requested access is not allowed.

ALE This input is used to control transparent latches on the address
Address latch enable. outputs. Normally the addresses change during phase 2 to the
value required during the next cycle, but for direct interfacing to
ROM s they are required to be stable to the end of phase 2.
Taking ALE LOW until the end of phase 2 will ensure that this
happens. This signal has a similar effect on the following control
signals: MAS[1:0], nRW, LOCK, nOPC and nTRANS. If the
system does not require address lines to be held in this way,
ALE must be tied HIGH. The address latch is static, so ALE may
be held LOW for long periods to freeze addresses.

Table 2-1: Signal Description

ARM7TDMI Data Sheet 21 2-2 ARM7TDMI Data Sheet
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Signal Descriplion

Name

Type

Description

APE
Address pipeline enable.

BIGEND
Big Endian configuration.

BL[3:0]
Byte Latch Control.

BREAKPT
Breakpoint.

BUSDIS
Bus Disable

BUSEN
Data bus configuration

COMMRX
Communications Channel
Receive

When HIGH, this signal enables the address timing pipeline. In
this state, the address bus plus MAS[1:0], nRW, nTRANS,
LOCK and nOPC change in the phase 2 prior to the memory
cycle to which they refer. When APE is LOW, these signals
change in the phase 1 of the actual cycle. Please refer to 2
Chapter 6, Memory Interface for details of this timing.

When this signal is HIGH the processor treats bytes in memory
as being in Big Endian format. When it is LOW, memory is
treated as Little Endian.

These signals control when data and instructions are latched
from the external data bus. When BL[3] is HIGH, the data on
D[31:24] is latched on the falling edge of MCLK. When BL[2] is
HIGH, the data on D[23:16] is latched and so on. Please refer
to D Chapter 6, Memory Interface for details on the use of
these signals.

This signal allows external hardware to halt the execution of the
processor for debug purposes. When HIGH causes the current
memory access to be breakpointed. If the memory access is an
instruction fetch, ARM7TDMI will enter debug state if the
instruction reaches the execute stage of the ARM7TDMI pipeline.
If the memory access is for data, ARM7TDMI will enter debug
state after the current instruction completes execution.This
allows extension of the internal breakpoints provided by the
ICEBreaker module. See 2 Chapter 9, ICEBreaker Module.

This signal is HIGH when INTEST is selected on scan chain 0 or
4 and may be used to disable external logic driving onto the
bidirectional data bus during scan testing. This signal changes on
the falling edge of TCK.

This is a static configuration signal which determines whether the
bidirectional data bus, D[31:0], or the unidirectional data busses,
DIN[31:0] and DOUT[31:0], are to be used for transfer of data
between the processor and memory. Refer also to 2 Chapter 6,
Memory Interface.

When BUSEN is LOW, the ectional data bus, D[31:0] is
used. In this case, DOUT[31:0] is driven to value 0x00000000,
and any data presented on DIN[31:0] is ignored.

When BUSEN is HIGH, the bidirectional data bus, D[31:0] is
ignored and must be left unconnected. Input data and
instructions are presented on the input data bus, DIN[31:0],
output data appears on DOUT[31:0] .

When HIGH, this signal denotes that the comms channel receive
buffer is empty. This signal changes on the g edge of MCLK.
See 29.11 Debug Communications Channel on page 9-14
for more information on the debug comms channel.

Table 2-1: Signal Description (Continued)
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Signal Description

Name Type Description

COMMTX o When HIGH, this signal denotes that the comms channel

Communications Channel transmit buffer is empty. This signal changes on the rising edge

Transmit of MCLK. See 29.11 Debug Communications Channel on
page 9-14 for more information on the debug comms channel.

CPA A coprocessor which is capable of performing the operation that

Coprocessor absent.

CPB
Coprocessor busy.

D[31:0]
Data Bus.

DBE
Data Bus Enable.

DBGACK
Debug acknowledge.

DBGEN
Debug Enable.

DBGRQ
Debug request.

IC
08

04

ARM7TDMI is requesting (by asserting nCPI) should take CPA
LOW immediately. If CPA is HIGH at the end of phase 1 of the
cycle in which nCPI went LOW, ARM7TDMI will abort the
coprocessor handshake and take the undefined instruction trap.
If CPA is LOW and remains LOW, ARM7TDMI will busy-wait un
CPB is LOW and then complete the coprocessor instruction.

A coprocessor which is capable of performing the operation
which ARM7TDMI is requesting (by asserting nCPI), but cannot
commit to starting it immediately, should indicate this by driving
CPB HIGH. When the coprocessor is ready to start it should take
CPB LOW. ARM7TDMI samples CPB at the end of phase 1 of
each cycle in which nCPI is LOW.

These are bidirectional signal paths which are used for data
transfers between the processor and external memory. During
read cycles (when nRW is LOW), the input data must be valid
before the end of phase 2 of the transfer cycle. During write
cycles (when nRW is HIGH), the output data become valid
during phase 1 and remain valid throughout phase 2 of the
transfer cycle.

Note that this bus is driven at all times, irrespective of whether
BUSEN is HIGH or LOW. When D[31:0] is not being used to
connect to the memory system it must be left unconnected. See
2 Chapter 6, Memory Interface.

This is an input signal which, when driven LOW, puts the data
bus D[31:0] into the high impedance state. Thi included for
test purposes, and should be tied HIGH at all times.

When HIGH indicates ARM is in debug state.

This input signal allows the debug features of ARM7TDMI to be
disabled. This signal should be driven LOW when debugging is
not required.

This is a level-sensitive input, which when HIGH causes
ARMT7TDMI to enter debug state after executing the current
instruction. This allows external hardware to force ARM7TDMI
into the debug state, in addition to the debugging features
provided by the ICEBreaker block. See 2 Chapter 9,
ICEBreaker Module for details.

Table 2-1: Signal Description (Continued)
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Signal Descriplion

Name

Type

Description

DBGRQI
Internal debug request

DIN[31:0]
Data input bus

DOUT[31:0]
Data output bus

DRIVEBS
Boundary scan
cell enable

ECAPCLK
Extest capture clock

ECAPCLKBS
Extest capture clock for
Boundary Scan

ECLK
External clock output.

EXTERNO
External input 0.

04

08

04

04

04

This signal represents the debug request signal which is
presented to the processor. This is the combination of external
DBGRQ), as presented to the ARM7TDMI macrocell, and bit 1 of
the debug control register. Thus there are two conditions where
this signal can change. Firstly, when DBGRQ changes, DBGRQI
will change after a propagation delay. When bit 1 of the debug
control register has been written, this signal will change on the
falling edge of TCK when the TAP controller state machine is in
the RUN-TEST/IDLE state. See 2 Chapter 9, ICEBreaker
Module for details.

This is the input data bus which may be used to transfer
instructions and data between the processor and memory.This
data input bus is only used when BUSEN is HIGH. The data on
this bus is sampled by the processor at the end of phase 2 during
read cycles (i.e. when nRW is LOW).

This is the data out bus, used to transfer data from the processor
to the memory system. Output data only appears on this bus
when BUSEN is HIGH. At all other times, this bus is driven to
value 0x00000000. When in use, data on this bus changes
during phase 1 of store cycles (i.e. when nRW is HIGH) and
remains valid throughout phase 2.

This signal is used to control the multiplexers in the scan cells of
an external boundary scan chain. This signal changes in the
UPDATE-IR state when scan chain 3 is selected and either the
INTEST, EXTEST, CLAMP or CLAMPZ instruction is loaded.
When an external boundary scan chain is not connected, this
output should be left unconnected.

This signal removes the need for the external logic in the test
chip which was required to enable the internal tristate bus during
scan testing. This need not be brought out as an external pin on
the test chip.

This is a TCK2 wide pulse generated when the TAP controller

e is in the CAPTURE-DR state, the current
instruction is EXTEST and scan chain 3 is selected. This is used
to capture the macrocell outputs during EXTEST. When an
external boundary scan chain is not connected, this output
should be left unconnected.

In normal operation, this is simply MCLK (optionally stretched
with nWAIT) exported from the core. When the core is being
debugged, this is DCLK. This allows external hardware to track
when the ARM7DM core is clocked.

This is an input to the ICEBreaker logic in the ARM7TDMI which
allows breakpoints and/or watchpoints to be dependent on an
external condition.

Table 2-1: Signal Description (Continued)
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Signal Description

Name

Type

Description

EXTERN1
External input 1.

HIGHZ

ICAPCLKBS
Intest capture clock

IR[3:0]
TAP controller Instruction
register

ISYNC
Synchronous interrupts.

LOCK
Locked operation.

MASI[1:0]
Memory Access Size.

04

04

04

08

08

This is an input to the ICEBreaker logic in the ARM7TDMI which
allows breakpoints and/or watchpoints to be dependent on an
external condition.

This signal denotes that the HIGHZ instruction has been loaded
into the TAP controller. See 2 Chapter 8, Debug Interface for
details.

This is a TCK2 wide pulse generated when the TAP controller
state machine is in the CAPTURE-DR state, the current
instruction is INTEST and scan chain 3 is selected. This is used
to capture the macrocell outputs during INTEST. When an
external boundary scan chain is not connected, this output
should be left unconnected.

These 4 bits reflect the current instruction loaded into the TAP
controller instruction register. The instruction encoding is as
described in 28.8 Public Instructions on page 8-9. These bits
change on the falling edge of TCK when the state machine i:
the UPDATE-IR state.

When LOW indicates that the nIRQ and nFIQ inputs are to be
synchronised by the ARM core. When HIGH disables this
synchronisation for inputs that are already synchronous.

When LOCK is HIGH, the processor is performing a “locked”
memory access, and the memory controller must wait until LOCK
goes LOW before allowing another device to access the memory.
LOCK changes while MCLK is HIGH, and remains HIGH for the
duration of the locked memory accesses. It is active only during
the data swap (SWP) instruction. The timing of this signal may be
modified by the use of ALE and APE ina s r way to the
address, please refer to the ALE and APE descriptions. This
signal may also be driven to a high impedance state by driving
ABE LOW.

These are output signals used by the processor to indicate to the
external memory system when a word transfer or a half-word or
byte length is required. The signals take the value 10 (binary) for
words, 01 for half-words and 00 for bytes. 11 is reserved. These
values are valid for both read and write cycles. The signals will

remain stable
throughout phase 1 of the transfer cycle. The timing of the
signals may be modified by the use of ALE and APE in a similar
way to the address, please refer to the ALE and APE
descriptions. The signals may also be driven to high impedance

Table 2-1: Signal Description (Continued)
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Signal Descriplion

Name

Type

Description

MCLK
Memory clock input.

nCPI
Not Coprocessor
instruction.

nENIN
NOT enable input.

NENOUT
Not enable output.

nENOUTI
Not enable output.

nEXEC
Not executed.

nFIQ
Not fast interrupt request.

nHIGHZ
Not HIGHZ

niIRQ
Not interrupt request.

nM[4:0]
Not processor mode.

04

04

04

04

04

This clock times all ARM7TDMI memory accesses and internal
operations. The clock has two distinct phases - phase 1 in which
MCLK is LOW and phase 2 in which MCLK (and nWAIT) is
HIGH. The clock may be stretched indefinitely in either phase to
allow access to slow peripherals or memory. Alternatively, the
NWAIT input may be used with a free running MCLK to achieve
the same effect.

When ARM7TDMI executes a coprocessor instruction, it will take
this output LOW and wait for a response from the coprocessor.
The action taken will depend on this response, which the
coprocessor signals on the CPA and CPB inputs.

This signal may be used in conjunction with nENOUT to control
the data bus during write cycles. See 2 Chapter 6, Memory
Interface.

During a data write cycle, this signal is driven LOW during phase
1, and remains LOW for the entire cycle. This may be used to aid
arbitration in shared bus applications. See 2 Chapter 6,
Memory Interface.

During a coprocessor register transfer C-cycle from the
ICEbreaker comms channel coprocessor to the ARM core, this
signal goes LOW during phase 1 and stays LOW for the entire
cycle. This may be used to aid arbitration in shared bus systems.

When HIGH indicates that the instruction in the execution unit is
not being executed, because for example it has failed its
condition code check.

This is an interrupt request to the processor which causes it to be
interrupted if taken LOW when the appropriate enable in the
processor is active. The signal is level-sensitive and must be
held LOW until a suitable response is received from the
processor. nFIQ may be synchronous or asynchronous,
depending on the state of ISYNC.

This signal is generated by the TAP controller when the current
instruction is HIGHZ. This is used to place the scan cells of that
scan chain in the high impedance state. When a external
boundary scan chain is not connected, this output should be left
unconnected.

As nFIQ, but with lower priority. May be taken LOW to interrupt
the processor when the appropriate enable is active. nIRQ may
be synchronous or asynchronous, depending on the state of
ISYNC.

These are output signals which are the inverses of the internal
status bits indicating the processor operation mode.

Table 2-1: Signal Description (Continued)
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Signal Description

Name Type Description

NMREQ 04 This signal, when LOW. ates that the processor requires

Not memory request. memory access during the following cycle. The signal becomes
valid during phase 1, remaining valid through phase 2 of the
cycle preceding that to which it refers.

nOPC 08 When LOW this signal indicates that the processor is fetching an

Not op-code fetch.

nRESET
Not reset.

nRW
Not read/write.

nTDOEN
Not TDO Enable.

nTRANS
Not memory translate.

nTRST
Not Test Reset.

08

04

08

instruction from memory; when HIGH, data (if present) is being
transferred. The signal becomes valid during phase 2 of the
previous cycle, remaining valid through phase 1 of the
referenced cycle. The timing of this signal may be modified by
the use of ALE and APE in a similar way to the address, please
refer to the ALE and APE descriptions. This signal may also be
driven to a high impedance state by driving ABE LOW.

This is a level sensitive input signal which is used to start the
processor from a known address. A LOW level will cause the
instruction being executed to terminate abnormally.
NRESET becomes HIGH for at least one clock cycle, the
processor will re-start from address 0. nRESET must remain
LOW (and nWAIT must remain HIGH) for at least two clock
cycles. During the LOW period the processor will perform dummy
instruction fetches with the address incrementing from the point
where reset was activated. The address will overflow to zero if
nRESET is held beyond the maximum address limit.

When HIGH this signal indicates a processor write cycle; when
LOW, a read cycle. It becomes valid during phase 2 of the cycle
before that to which it refers, and remains valid to the end of
phase 1 of the referenced cycle. The timing of this signal may be
modified by the use of ALE and APE in a similar way to the
address, please refer to the ALE and APE descriptions. This
signal may also be driven to a high impedance state by driving
ABE LOW.

When LOW, this signal denotes that serial data is being driven
out on the TDO output. nTDOEN would normally be used as an
output enable for a TDO pin in a packaged part.

When this signal is LOW it indicates that the processor is in user
mode. It may be used to tell memory management hardware
when translation of the addresses should be turned on, or as an
indicator of non-user mode activity. The timing of this signal may
be modified by the use of ALE and APE in a similar way to the
address, please refer to the ALE and APE description. This
signal may also be driven to a high impedance state by driving
ABE LOW.

Active-low reset signal for the boundary scan logic. This pin must
be pulsed or driven LOW to achieve normal device operation, in
addition to the normal device reset (NRESET). For more
information, see D Chapter 8, Debug Interface.

Table 2-1: Signal Description (Continued)
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Signal Descriplion

Name Type Description

nWAIT When accessing slow peripherals, ARM7TDMI can be made to

Not wait. wait for an integer number of MCLK cycles by driving nWAIT
LOW. Internally, nWAIT is ANDed with MCLK and must only
change when MCLK is LOW. If nWAIT is not used it must be tied
HIGH.

PCLKBS 04 This is a TCK2 wide pulse generated when the TAP controller

Boundary scan state machine is in the UPDATE-DR state and scan chain 3 is

update clock selected. This is used by an external boundary scan chain as the
update clock. When an external boundary scan chain is not
connected, this output should be left unconnected.

RANGEOUTO 04 This signal indicates that ICEbreaker watchpoint register 0 has

ICEbreaker RangeoutO matched the conditions currently present on the address, data
and control busses. This signal is independent of the state of the
watchpoint's enable control bit. RANGEOUTO changes when
ECLK is LOW.

RANGEOUT1 04 As RANGEOUTO but corresponds to ICEbreaker's watchpoint

ICEbreaker Rangeoutl register 1.

RSTCLKBS o This signal denotes that either the TAP controller state machine

Boundary Scan is in the RESET state or that nTRST has been asserted. This

Reset Clock may be used to reset external boundary scan cells.

SCREG[3:0] [e] These 4 bits reflect the ID number of the scan chain currently

Scan Chain Register selected by the TAP controller. These bits change on the falling
edge of TCK when the TAP state machine is in the UPDATE-DR
state.

SDINBS o This signal contains the serial data to be applied to an external

Boundary Scan
Serial Input Data

SDOUTBS
Boundary scan serial
output data

o4

scan chain and is valid around the falling edge of TCK.

This control signal is provided to ease the connection of an
external boundary scan chain. This is the serial data out of the
boundary scan chain. It should be set up to the rising edge of
TCK. When an external boundary scan chain is not connected,
this input should be tied LOW.

This output signal become HIGH when the address of the
next memory cycle be related to that of the last memory
access. The new address will either be the same as the previous
one or 4 greater in ARM state, or 2 greater in THUMB state.

The signal becomes valid during phase 1 and remains so
through phase 2 of the cycle before the cycle whose address it
anticipates. It may be used, in combination with the low-order
address lines, to ate that the next cycle can use a fast
memory mode (for example DRAM page mode) and/or to bypass
the address translation system.

Table 2-1: Signal Description (Continued)
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Name Type Description

SHCLKBS 04 This control signal is provided to ease the connection of an

Boundary scan shift clock, external boundary scan chain. SHCLKBS is used to clock the

phase 1 master half of the external scan cells. When in the SHIFT-DR
state of the state machine and scan chain 3 is selected,
SHCLKBS follows TCK1. When not in the SHIFT-DR state or
when scan chain 3 is not selected, this clock is LOW. When an
external boundary scan chain is not connected, this output
should be left unconnected.

SHCLK2BS 04 This control signal is provided to ease the connection of an

Boundary scan shift clock, external boundary scan chain. SHCLK2BS is used to clock the

phase 2 master half of the external scan cells. When in the SHIFT-DR
state of the state machine and scan chain 3 is selected,
SHCLK2BS follows TCK2. When not in the SHIFT-DR state or
when scan chain 3 is not selected, this clock is LOW. When an
external boundary scan chain is not connected, this output
should be left unconnected.

TAPSM[3:0] 04 This bus reflects the current state of the TAP controller state

TAP controller machine, as shown in 28.4.2 The JTAG state machine on

state macl page 8-8. These bits change off the rising edge of TCK.

TBE
Test Bus Enable.

TBIT

TCK

TCK1
TCK, phase 1

TCK2
TCK, phase 2

TDI

TDO
Test Data Output.

T™S

04

IC
04

04

IC

04

When driven LOW, TBE forces the data bus D[31:0], the
Address bus A[31:0], plus LOCK, MAS[1:0], nRW, nTRANS
and nOPC to high impedance. This is as if both ABE and DBE
had both been driven LOW. However, TBE does not have an
associated scan cell and so allows external signals to be driven
high impedance during scan testing. Under normal operating
conditions, TBE should be held HIGH at all times.

When HIGH, this signal denotes that the processor is executing
the THUMB instruction set. When LOW, the processor is
executing the ARM instruction set. This signal changes in phase
2 in the first execute cycle of a BX instruction.

Test Clock.

This clock represents phase 1 of TCK. TCK1 is HIGH when TCK
is HIGH, although there is a slight phase lag due to the internal
clock non-overlap.

This clock represents phase 2 of TCK. TCK2 is HIGH when TCK
is LOW, although there is a slight phase lag due to the internal
clock non-overlap.TCK2 is the non-overlapping compliment of
TCK1.

Test Data Input.

Output from the boundary scan logic.

Test Mode Select.

Table 2-1: Signal Description (Continued)
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Signal Descriplion

Name Type

Description

VDD P
Power supply.

VSS P
Ground.

These connections provide power to the device.

These connections are the ground reference for all signals.

Table 2-1: Signal Description (Continued)
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Programmer’s Model

3.1 Processor Operating States
From the programmer’s point of view, the ARM7TDMI can be in one of two states:
ARM state which executes 32-bit, word-aligned ARM instructions.

THUMB state which operates with 16-bit, halfword-aligned THUMB
instructions. In this state, the PC uses bit 1 to select between
alternate halfwords.

Note Transition between these two states does not affect the processor mode or the
contents of the registers.

3.2 Switching State

Entering THUMB state

v—.oo—.gggm—.um goam— Entry into THUMB state can be achieved by executing a BXinstruction with the state

bit (bit 0) set in the operand register.

Transition to THUMB state will also occur automatically on return from an exception

(IRQ, FIQ, UNDEF, ABORT, SWI etc.), if the exception was entered with the processor

X i . in THUMB state.
This chapter describes the two operating states of the ARM7TDMI.

32 Entering ARM state
Entry into ARM state happens:

3.1 Processor Operating States

3.2 Switching State 3-2
3.3  Memory Formats 3.2 1 Wm_mwmmﬂocno: of the BXinstruction with the state bit clear in the operand
3.4 Instruction Length 3-3 ’
2 On the processor taking an exception (IRQ, FIQ, RESET, UNDEF, ABORT,
3.5 Data Types 3-3 SWiI etc.).
3.6 Operating Modes 3-4 In this case, the PC is placed in the exception mode’s link register, and
37 Registers 34 execution commences at the exception’s vector address.
3.8 The Program Status Registers 3-8 3.3 7\_m_.:o_.< Formats

3.9 Exceptions 3-10 ARM7TDMI views memory as a linear collection of bytes numbered upwards from

3.11 Reset 3-15 zero. Bytes 0 to 3 hold the first stored word, bytes 4 to 7 the second and so on.
ARM7TDMI can treat words in memory as being stored either in Big Endian or Little
Endian format.
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3.3.1 Big endian format

In Big Endian format, the most significant byte of a word is stored at the lowest
numbered byte and the least si cant byte at the highest numbered byte. Byte 0 of
the memory system is therefore connected to data lines 31 through 24.

Higher Address 31 24 23 16 15 8 7 0 Word Address
8 9 10 11 8
4 5 6 7 4
0 1 2 3 0
Lower Address « Most significant byte is at lowest address
« Word is addressed by byte address of most significant byte

Figure 3-1: Big endian addresses of bytes within words

3.3.2 Little endian format

In Little Endian format, the lowest numbered byte in a word is considered the word's
least significant byte, and the highest numbered byte the most significant. Byte 0 of
the memory system is therefore connected to data lines 7 through 0.

Higher Address 31 24 23 16 15 8 7 0 Word Address
11 10 9 8 8
7 6 5 4 4
3 2 1 0 0

Lower Address « Least significant byte is at lowest address
« Word is addressed by byte address of least significant byte

Figure 3-2: Little endian addresses of bytes within words

3.4 Instruction Length
Instructions are either 32 bits long (in ARM state) or 16 bits long (in THUMB state).

3.5 Data Types

ARM7TDMI supports byte (8-bit), halfword (16-bit) and word (32-bit) data types.
Words must be aligned to four-byte boundaries and half words to two-byte boundaries.

Programmer’s Model

3.6 Operating Modes

ARM7TDMI supports seven modes of operation:

User (usr): The normal ARM program execution state
FIQ (fig): Designed to support a data transfer or channel process
IRQ (irg): Used for general-purpose interrupt handling

Supervisor (svc):  Protected mode for the operating system

Abort mode (abt): Entered after a data or instruction prefetch abort
System (sys): A privileged user mode for the operating system
Undefined (und):  Entered when an undefined instruction is executed

Mode changes may be made under software control, or may be brought about by
external interrupts or exception processing. Most application programs will execute in
User mode. The non-user modes - known as privileged modes - are entered in order
to service interrupts or exceptions, or to access protected resources.

3.7 Registers

ARM7TDMI has a total of 37 registers - 31 general-purpose 32-bit registers and six
status registers - but these cannot all be seen at once. The processor state and
operating mode dictate which registers are available to the programmer.

3.7.1 The ARM state register set

In ARM state, 16 general registers and one or two status registers are visible at any
one time. In privileged (non-User) modes, mode-specific banked registers are

switched in. DFigure 3-3: Register organization in ARM state shows which registers
are available in each mode: the banked registers are marked with a shaded triangle.

The ARM state register set contains 16 directly accessible registers: RO to R15. All of
these except R15 are general-purpose, and may be used to hold either data or
address values. In addition to these, there is a seventeenth register used to store
status information

Register 14 is used as the subroutine link register. This receives a copy of
R15 when a Branch and Link (BL) instruction is executed. At
all other times it may be treated as a general-purpose
register. The corresponding banked registers R14_svc,
R14_irq, R14_fiq, R14_abt and R14_und are similarly used
to hold the return values of R15 when interrupts and
exceptions arise, or when Branch and Link instructions are
executed within interrupt or exception routines.

Register 15 holds the Program Counter (PC). In ARM state, bits [1:0] of
R15 are zero and bits [31:2] contain the PC. In THUMB state,
bit [0] is zero and bits [31:1] contain the PC.

Register 16 is the CPSR (Current Program Status Register). This
contains condition code flags and the current mode bits.

ARM7TDMI Data Sheet 3-3
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FIQ mode has seven banked registers mapped to R8-14 (R8_fig-R14_fig). In ARM
state, many FIQ handlers do not need to save any registers. User, IRQ, Supervisor,
Abort and Undefined each have two banked registers mapped to R13 and R14,
allowing each of these modes to have a private stack pointer and link registers.

ARM State General Registers and Program Counter

System & User FIQ Supervisor Abort IRQ Undefined
RO RO RO RO RO RO
R1 R1 R1 R1 R1 R1
R2 R2 R2 R2 R2 R2
R3 R3 R3 R3 R3 R3
R4 R4 R4 R4 R4 R4
RS RS RS RS RS R5
R6 R6 R6 R6 R6 R6
R7 R7 R7 R7 R7 R7
R8 R8_fiq R8 R8 R8 R8
R9 R9_fiq R9 R9 R9 R9
R10 R10_fiq R10 R10 R10 R10
R11 R11_fig R11 R11 R11 R11
R12 R12_fiq R12 R12 R12 R12
R13 R13_fiq R13_svc R13_abt R13_irq R13_und
R14 R14_fiq R14_svc R14_abt R14_irq R14_und
R15 (PC) R15 (PC) R15 (PC) R15 (PC) R15 (PC) R15 (PC)
ARM State Program Status Registers
CPSR CPSR 7 CPSR CPSR CPSR CPSR
SPSR_fig 7wuwxwm<n SPSR_abt SPSR_irq SPSR_und

7 = banked register

Figure 3-3: Register organization in ARM state
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3.7.2 The THUMB state register set

The THUMB state re a subset of the ARM state set. The programmer has
direct access to eight general registers, R0-R7, as well as the Program Counter (PC),
a stack pointer register (SP), a link register (LR), and the CPSR. There are banked

Stack Pointers, Link Registers and Saved Process Status Registers (SPSRs) for each
privileged mode. This is shown in 2Figure 3-4: Register organization in THUMB state

THUMB State General Registers and Program Counter

System & User FIQ Supervisor Abort IRQ Undefined
RO RO RO RO RO RO
R1 RL R1 R1 R1 R1
R2 R2 R2 R2 R2 R2
R3 R3 R3 R3 R3 R3
R4 R4 R4 R4 R4 R4
RS RS RS RS RS RS
R6 R6 R6 R6 R6 R6
R7 R7 R7 R7 R7 R7
sP SP_fig SP_sve SP_abt SP_irg SP_und
LR LR_fiq LR_sve LR_abt LR_irq LR_und
PC PC PC PC PC PC
THUMB State Program Status Registers
7 CPSR CPSR 7 CPSR CPSR CPSR CPSR
SPSR_fiq vawm\mé SPSR_abt SPSR_irq SPSR_und

V = banked register

Figure 3-4: Register organization in THUMB state

3.7.3 The relationship between ARM and THUMB state registers

The THUMB state registers relate to the ARM state registers in the following way:
« THUMB state RO-R7 and ARM state RO-R7 are identical

* THUMB state CPSR and SPSRs and ARM state CPSR and SPSRs are
identical

« THUMB state SP maps onto ARM state R13

3-6
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« THUMB state LR maps onto ARM state R14
« The THUMB state Program Counter maps onto the ARM state Program
Counter (R15)

This relationship is shown in DFigure 3-5: Mapping of THUMB state registers onto
ARM state registers.

THUMB state ARM state
RO —_— RO -
R1 ] R1
R2 _— R2
R3 _— R3 m
R4 . R4 2
RS _— R5 s
R6 _— R6 =
R7 _— R7 -
R8 7
R9
R10
R11 M
R12 2
Stack Pointer (SP) —| Stack Pointer (R13) vam
Link Register (LR) —— | Link Register (R14) T
Program Counter (PC) | ———®|Program Counter (R15) |
CPSR —_— CPSR
SPSR E— SPSR

Figure 3-5: Mapping of THUMB state registers onto ARM state registers

3.7.4 Accessing Hi registers in THUMB state

In THUMB state, registers R8-R15 (the Hi registers) are not part of the standard
register set. However, the assembly language programmer has limited access to
them, and can use them for fast temporary storage.

A value may be transferred from a register in the range RO-R7 (a Lo register) to a Hi
register, and from a Hi register to a Lo register, using special variants of the MOV
instruction. Hi register values can also be compared against or added to Lo register
values with the CMPand ADDinstructions. See 25.5 Format 5: Hi register operations/
branch exchange on page 5-13.
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3.8 The Program Status Registers

The ARM7TDMI contains a Current Program Status Register (CPSR), plus five Saved
Program Status Registers (SPSRs) for use by exception handlers. These registers

« hold information about the most recently performed ALU operation
« control the enabling and disabling of interrupts

« set the processor operating mode
The arrangement of bits is shown in DFigure 3-6: Program status register format.

condition code flags (reserved) control bits

T 1T il 1

31 30 29 28 27 26 25 24 23 8 7 6 5 4 3 2 1 0

727N707<77777 . .7_7ﬂ7._.7§57§w7>\_m7§i_<_07
7’ Overflow _H Mode bits

Carry / Borrow State bit
/Extend FIQ disable
Zero IRQ disable
Negative / Less Than

Figure 3-6: Program status register format

3.8.1 The condition code flags

The N, Z, C and V bits are the condition code flags. These may be changed as a result
of arithmetic and logical operations, and may be tested to determine whether an
instruction should be executed.

In ARM state, all instructions may be executed conditionally: see 24.2 The Condition
Field on page 4-5 for details.

In THUMB state, only the Branch instruction is capable of conditional execution: see
D5.17 Format 17: software interrupt on page 5-38
3.8.2 The control bits

The bottom 8 bits of a PSR (incorporating I, F, T and M[4:0]) are known collectively as
the control bits. These change when an exception arises. If the processor is
operating in a privileged mode, they can also be manipulated by software.

The T bit This reflects the operating state. When this bit is set, the
processor is executing in THUMB state, otherwise it is
executing in ARM state. This is reflected on the TBIT
external signal.

Note that the software must never change the state of the
TBIT in the CPSR. If this happens, the processor
enter an unpredictable state.
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Interrupt disable bits ~ The | and F bits are the interrupt disable bits. When set, 3.9 Exceptions

these disable the IRQ and FIQ interrupts respectively.
Exceptions arise whenever the normal flow of a program has to be halted temporal
for example to service an interrupt from a peripheral. Before an exception can be
handled, the current processor state must be preserved so that the original program
can resume when the handler routine has finished.

The mode bits The M4, M3, M2, M1 and MO bits (M[4:0]) are the mode
bits. These determine the processor’s operating mode,
as shown in DTable 3-1: PSR mode bit values on page
3-9. Not all combinations of the mode bits define a vali
processor mode. Only those explicitly described shall be Itis possible for several exceptions to arise at the same time. If this happens, they are

used. The user should be aware that if any illegal value dealt with in a fixed order - see 23.9.10 Exception priorities on page 3-14.
is programmed into the mode bits, M[4:0], then the

processor will enter an unrecoverable state. If this
occurs, reset should be applied.

3.9.1 Action on entering an exception

When handling an exception, the ARM7TDMI:

1 Preserves the address of the next instruction in the appropriate Link Register.
M[4:0] Mode Visible THUMB state Visible ARM state If the exception has been entered from ARM state, then the address of the
registers registers next instruction is copied into the Link Register (that is, current PC + 4 or PC
+ 8 depending on the exception. See DTable 3-2: Exception entry/exit on
10000 User R7.RO, R14..RO, page 3-11 for details). If the exception has been entered from THUMB state,
LR, SP PC, CPSR then the value written into the Link Register is the current PC offset by a value
PC, CPSR such that the program resumes from the correct place on return from the
exception. This means that the exception handler need not determine which
10001 FI R7..R R7..R h A
000 Q LR *_%_m_u fig R14 %g R8_fiq state the exception was entered from. For example, in the case of SWI, MOVS
uOlovmmlm_uwx fiq pC |o_uwx w_uw_x fiq PC,R14_svc will always return to the next instruction regardless of whether
' ! - ! ! - the SWI was executed in ARM or THUMB state.
10010 IRQ R7..RO, R12..RO, . . .
LR_irg, SP_irq R14_irq.R13_irq, 2 Copies the CPSR into the appropriate SPSR
PC, CPSR, SPSR_irq | PC, CPSR, SPSR_irq 3 Forces the CPSR mode bits to a value which depends on the exception
10011 Supervisor WM..MM_ o s MWM..MM R13 sve 4 Forces the PC to fetch the next instruction from the relevant exception vector
_uowon,_mx_ w_uwmulmé PC, m_um.n_ m_ulw_ul_m<O It may m_m.o set the interrupt disable flags to prevent otherwise unmanageable nestings
of exceptions.
10111 Abort R7..RO, R12..R0, L - . .
LR_abt, SP_abt, R14_abt.R13_abt, If Em processor is in THUMB state s.%m: an mxo.m_u:o: occurs, it will automatically
PC, CPSR, SPSR_abt | PC, CPSR, SPSR_abt switch into ARM state when the PC is loaded with the exception vector address.
11012 Undefined | R7..RO R12.RO, 3.9.2 Action on leaving an exception
LR_und, SP_und, R14_und..R13_und,
PC, CPSR, SPSR_und | PC, CPSR On completion, the exception handler:
A SySten W_M..MW_ WM»Wﬂ.om.x 1 Moves the Link Register, minus an offset where appropriate, to the PC. (The
no_ CPSR : offset vary depending on the type of exception.)

Table 3.1. PSR mode bit values 2 Copies the SPSR back to the CPSR

3 Clears the interrupt disable flags, if they were set on entry

Note An explicit switch back to THUMB state is never needed, since restoring the CPSR
from the SPSR automatically sets the T bit to the value it held immediately prior to the

Reserved bits The remaining bits in the PSRs are reserved. When
changing a PSR’s flag or control bits, you must ensure
that these unused bits are not altered. Also, your

program should not rely on them containing specific exception.
values, since in future processors they may read as one
or zero.
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3.9.3 Exception entry/exit summary

DTable 3-2: Exception entry/exit summarises the PC value preserved in the relevant
R14 on exception entry, and the recommended instruction for exiting the exception
handler.

Return Instruction Previous State Notes
ARM THUMB
R14_x R14_x
BL MOV PC, R14 PC+4 PC+2 1
Swi MOVS PC, R14_svc PC+4 PC+2 1
UDEF MOVS PC, R14_und PC+4 PC+2 1
FIQ SUBS PC, R14_fiq, #4 PC+4 PC+4 2
IRQ SUBS PC, R14_irq, #4 PC+4 PC+4 2
PABT SUBS PC, R14_abt, #4 PC+4 PC+4 1
DABT SUBS PC, R14_abt, #8 PC+8 PC+8 3
RESET NA - - 4
Table 3-2: Exception entry/exit
Notes
1 Where PCis the address of the BL/SWI/Undefined Instruction fetch which had
the prefetch abort.
2 Where PC is the address of the instruction which did not get executed since
the FIQ or IRQ took priority.
3 Where PC is the address of the Load or Store instruction which generated the
data abort.
4 The value saved in R14_svc upon reset is unpredictable.
3.9.4 FIQ

The FIQ (Fast Interrupt Request) exception is designed to support a data transfer or
channel process, and in ARM state has sufficient private registers to remove the need
for register saving (thus minimising the overhead of context switching).

FIQ is externally generated by taking the nFIQ input LOW. This input can except either
synchronous or asynchronous transitions, depending on the state of the ISYNC input
signal. When ISYNC is LOW, nFIQ and nIRQ are considered asynchronous, and a
cycle delay for synchronization is incurred before the interrupt can affect the processor
flow.

Irrespective of whether the exception was entered from ARM or Thumb state, a FIQ
handler should leave the interrupt by executing

SUBS PC,R14_fiq#4

Programmer’s Model

FIQ may be disabled by setting the CPSR’s F flag (but note that this is not possible
from User mode). If the F flag is clear, ARM7TDMI checks for a LOW level on the
output of the FIQ synchroniser at the end of each instruction.

The IRQ (Interrupt Request) exception is a normal interrupt caused by a LOW level on
the nIRQ input. IRQ has a lower priority than FIQ and is masked out when a FIQ
sequence is entered. It may be disabled at any time by setting the | bit in the CPSR,
though this can only be done from a privileged (non-User) mode.

Irrespective of whether the exception was entered from ARM or Thumb state, an IRQ
handler should return from the interrupt by executing

SUBS PC,R14_irq,#4

An abort indicates that the current memory access cannot be completed. It can be
signalled by the external ABORT input. ARM7TDMI checks for the abort exception
during memory access cycles.

There are two types of abort:
Prefetch abort occurs during an instruction prefetch.
Data abort occurs during a data access.

If a prefetch abort occurs, the prefetched instruction is marked as invalid, but the
exception will not be taken until the instruction reaches the head of the pipeline. If the
instruction is not executed - for example because a branch occurs while
pipeline - the abort does not take place.

If a data abort occurs, the action taken depends on the instruction type:

1 Single data transfer instructions (LDR, STR) write back modified base
registers: the Abort handler must be aware of this.

2 The swap instruction (SWP) is aborted as though it had not been executed.

3 Block data transfer instructions (LDM, STM) complete. If write-back is set, the
base is updated. If the instruction would have overwritten the base with data
(ie it has the base in the transfer list), the overwriting is prevented. All register
overwriting is prevented after an abort is indicated, which means in particular
that R15 (always the last register to be transferred) is preserved in an aborted
LDM instruction.
The abort mechanism allows the implementation of a demand paged virtual memory
system. In such a system the processor is allowed to generate arbitrary addresses.
When the data at an address is unavailable, the Memory Management Unit (MMU)
signals an abort. The abort handler must then work out the cause of the abort, make
the requested data available, and retry the aborted instruction. The application
program needs no knowledge of the amount of memory available to it, nor is its state
in any way affected by the abort.
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After fixing the reason for the abort, the handler should execute the following
irrespective of the state (ARM or Thumb):

SUBS PC,R14_abt,#4  for a prefetch abort, or
SUBS PC,R14_abt,#8  for a data abort
This restores both the PC and the CPSR, and retries the aborted instruction.

3.9.7 Software interrupt

The software interrupt instruction (SWI) is used for entering Supervisor mode, usually
to request a particular supervisor function. A SWI handler should return by executing
the following irrespective of the state (ARM or Thumb):

MOV PC, R14_svc
This restores the PC and CPSR, and returns to the instruction following the SWI.

3.9.8 Undefined instruction

When ARM7TDMI comes across an instruction which it cannot handle, it takes the
undefined instruction trap. This mechanism may be used to extend either the THUMB
or ARM instruction set by software emulation.

After emulating the failed instruction, the trap handler should execute the following
irrespective of the state (ARM or Thumb):

MOVS PC,R14_und

This restores the CPSR and returns to the instruction following the undefined
instruction.

3.9.9 Exception vectors

The following table shows the exception vector addresses.

Address Exception Mode on entry
0x00000000 Reset Supervisor
0x00000004 Undefined instruction Undefined
0x00000008 Software interrupt Supervisor
0x0000000C Abort (prefetch) Abort
0x00000010 Abort (data) Abort
0x00000014 Reserved Reserved
0x00000018 IRQ IRQ
0x0000001C FIQ FIQ

Table 3-3: Exception vectors
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3.9.10 Exception priorities

When multiple exceptions arise at the same time, a fixed p
the order in which they are handled:

ty system determines

Highest priority:
1 Reset
2 Data abort

3 FIQ

4 IRQ

5 Prefetch abort

Lowest priority:

6 Undefined Instruction, Software interrupt.

Not all exceptions can occur at once:

Undefined Instruction and Software Interrupt are mutually exclusive, since they each
correspond to particular (non-overlapping) decodings of the current instruction.

If a data abort occurs at the same time as a FIQ, and FIQs are enabled (ie the CPSR’s
F flag is clear), ARM7TDMI enters the data abort handler and then immediately
proceeds to the FIQ vector. A normal return from FIQ will cause the data abort handler
to resume execution. Placing data abort at a higher priority than FIQ is necessary to
ensure that the transfer error does not escape detection. The time for this exception
entry should be added to worst-case FIQ latency calculations.

3.10 Interrupt Latencies

The worst case latency for FIQ, assuming that it is enabled, consists of the longest
time the request can take to pass through the synchroniser (Tsyncmax if
asynchronous), plus the time for the longest instruction to complete (T/dm, the longest
instruction is an LDM which loads all the registers including the PC), plus the time for
the data abort entry (Texc), plus the time for FIQ entry (Tfig). At the end of this ti
ARM7TDMI will be executing the instruction at 0x1C.

Tsyncmax is 3 processor cycles, Tldm is 20 cycles, Texcis 3 cycles, and Tfig is 2
cycles. The total time is therefore 28 processor cycles. This is just over 1.4
microseconds in a system which uses a continuous 20 MHz processor clock. The
maximum IRQ latency calculation is similar, but must allow for the fact that FIQ has
higher priority and could delay entry into the IRQ handling routine for an arbitrary
length of time. The minimum latency for FIQ or IRQ consists of the shortest time the
request can take through the synchroniser (Tsyncmin) plus Tfig. This is 4 processor
cycles.
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3.11 Reset

When the nRESET signal goes LOW, ARM7TDMI abandons the executing instruction
and then continues to fetch instructions from incrementing word addresses.

When nRESET goes HIGH again, ARM7TDMI:

1 Overwrites R14_svc and SPSR_svc by copying the current values of the PC
and CPSR into them. The value of the saved PC and SPSR is not defined.

2 Forces M[4:0] to 10011 (Supervisor mode), sets the | and F bits in the CPSR,

and clears the CPSR's T bit.

3 Forces the PC to fetch the next instruction from address 0x00.

4 Execution resumes in ARM state.
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4.1 Instruction Set Summary

4.1.1 Format summary

The ARM instruction set formats are shown below.

313029282726252423222120191817161514131211109 8 7 6 5 4 3 2 1 0
Cond |0|0|!I| Opcode |S Rn Rd Operand 2 Data Processing /
PSR Transfer
Cond |0[0{0[0[0|0[A|S| Rd Rn Rs [1[0[0[1] Rm | Mulply
- Cond |0|0|0|0[1|U|A|S| RdHi RdLo Rn 1|0(0(1 Rm Multiply Long
>zg —:m*q=0=°= mm* Cond |0|0|O(1|{0[B|O|O Rn Rd ofjojo|o|1|{0|0|L Rm Single Data Swap
Cond ooowooHoHTTT HTTTHHHHQOQH Rn | Branch and Exchange
Cond |0|0|O(P{U|OW|L Rn Rd 0(0[0|0|1|S|H|1 Rm Halfword Data Transfer:
register offset
This chapter describes the ARM instruction set. Cond |0[0|0|P[U[LW|L| Rn Rd Offset |1|S|H|1| Offset | Halfword Data Transfer:
; immediate offset
4.1 Instruction Set Summary 4-2
" . Cond |0|1|1|P|UIBW|L Rn Rd Offset Single Data Transfer
4.2 The Condition Field 4-5 X
Cond |0f1|1 Undefined
43 Branch and mXOJWJQm wav 4-6 Cond [1|0(0|P cim?\i L Rn 7 Register List Block Data Transfer
4.4 Branch and Branch with Link (B, BL) 4-8 Cond 11lolTIL Offset Branch
4.5 Data Processing 4-10 cond |1]1]o[P[U[NW[L] Rn CRd cP# Offset Coprocessor Data
4.6 PSR Transfer (MRS, MSR) 4-18 Transfer
4.7 Multiply and Multiply-Accumulate (MUL, MLA) 4-23 Cond |1|1|1|0| CP Opc CRn CRd CP# CP |0 CRm Coprocessor Data
Operation
4.8 Multiply Long and Multiply-Accumulate Long (MULL.MLAL) ~ 4-25 Cond [1|1|1]0|CPOpc[L| CRn Rd CP# CP |1| CRm | Coprocessor Register
4.9  Single Data Transfer (LDR, STR) 4-28 Transfer
4.10 Halfword and Signed Data Transfer 4-34 Cond |1|1|1(1 Ignored by processor Software Interrupt
411 W_OO—A _UWAW .ﬂﬂmjwqm_‘ A_VU—,\_ w._|—<_v hnho 313029282726252423222120191817161514131211109 8 7 6 5 4 3 2 1 0
4.12 Single Data Swap (SWP) 4-47
4.13 Software Interrupt (SWI) 4-49 Figure 4-1: ARM instruction set formats
4.14 Coprocessor Data Operations (CDP) 4-51 Note Some instruction codes are not defined but do not cause the Undefined instruction trap
to be taken, for instance a Multiply instruction with bit 6 changed to a 1. These
4.15 Coprocessor Data Transfers (LDC, STC 4-53 . 3 ’ ! 3 .
P ( ) instructions should not be used, as their action may change in future ARM
4.16 Coprocessor Register Transfers (MRC, MCR) 4-57 implementations.
4.17 Undefined Instruction 4-60
4.18 Instruction Set Examples 4-61
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4.1.2 Instruction summary

Mnemonic | Instruction Action See Section:
ADC Add with carry Rd := Rn + Op2 + Carry 4.5
ADD Add Rd := Rn + Op2 4.5
AND AND Rd := Rn AND Op2 4.5
B Branch R15 := address 4.4
BIC Bit Clear Rd := Rn AND NOT Op2 4.5
BL Branch with Link R14 := R15, R15 := address 4.4
BX Branch and Exchange R15 :=Rn, 4.3
T bit := Rn[0]
CDP Coprocesor Data Processing | (Coprocessor-specific) 4.14
CMN Compare Negative CPSR flags := Rn + Op2 4.5
CMP Compare CPSR flags := Rn - Op2 4.5
EOR Exclusive OR Rd := (Rn AND NOT Op2) 45
OR (0p2 AND NOT Rn)
LDC Load coprocessor from Coprocessor load 4.15
memory
LDM Load multiple registers Stack manipulation (Pop) 411
LDR Load register from memory Rd := (address) 4.9,4.10
MCR Move CPU register to cRn := rRn {<op>cRm} 4.16
coprocessor register
MLA Multiply Accumulate Rd := (Rm * Rs) + Rn 47,48
MOV Move register or constant Rd : = Op2 45
MRC Move from coprocessor Rn := cRn {<op>cRm} 4.16
register to CPU register
MRS Move PSR status/flags to Rn:= PSR 4.6
register
MSR Move register to PSR PSR :=Rm 4.6
status/flags
MUL Multiply Rd :=Rm * Rs 47,48
MVN Move negative register Rd := OXFFFFFFFF EOR Op2 | 4.5
ORR OR Rd := Rn OR Op2 4.5

Table 4-1: The ARM Instruction set
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Mnemonic | Instruction Action See Section:

RSB Reverse Subtract Rd :=0p2-Rn 4.5

RSC Reverse Subtract with Carry | Rd := Op2 - Rn - 1 + Carry 4.5

SBC Subtract with Carry Rd :=Rn-0p2 -1+ Carry 45

STC Store coprocessor registerto | address := CRn 4.15
memory

ST™M Store Multiple Stack manipulation (Push) 4.11

STR Store register to memory <address> := Rd 4.9,4.10

suB Subtract Rd := Rn - Op2 4.5

Swi Software Interrupt OS call 4.13

SwpP Swap register with memory Rd :=[Rn], [Rn] := Rm 4.12

TEQ Test bitwise equality CPSR flags := Rn EOR Op2 4.5

TST Test bits CPSR flags := Rn AND Op2 4.5

Table 4-1: The ARM Instruction set (Continued)
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4.2 The Condition Field

In ARM state, nstructions are conditionally executed according to the state of the
CPSR condition codes and the instruction’s condition field. This field (bits 31:28)
determines the circumstances under which an instruction is to be executed. If the state
of the C, N, Z and V flags fu the conditions encoded by the field, the instruction is
executed, otherwise it is ignored.

There are sixteen possible conditions, each represented by a two-character suffix that
can be appended to the instruction’s mnemonic. For example, a Branch (Bin assembly
language) becomes BEQfor “Branch if Equal”, which means the Branch will only be
taken if the Z flag is set.

In practice, fifteen different conditions may be used: these are listed in D Table 4-2:
Condition code summary. The sixteenth (1111) is reserved, and must not be used.

In the absence of a suffix, the condition field of most instructions is set to "Always"
(sufix AL). This means the instruction will always be executed regardless of the CPSR

Code Suffix Flags Meaning

0000 EQ Z set equal

0001 NE Z clear not equal

0010 CS] C set unsigned higher or same
0011 cc C clear unsigned lower

0100 MI N set negative

0101 PL N clear positive or zero

0110 Vs V set overflow

0111 vC V clear no overflow

1000 HI C setand Z clear unsigned higher

1001 LS C clear or Z set unsigned lower or same
1010 GE N equals V greater or equal

1011 LT N not equal to V less than

1100 GT Z clear AND (N equals V) greater than

1101 LE Z set OR (N not equal to V) less than or equal

1110 AL (ignored) always

Table 4-2: Condition code summary
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4.3 Branch and Exchange (BX)

This instruction is only executed if the condition is true. The various conditions are
defined in D Table 4-2: Condition code summary on page 4-5.

This instruction performs a branch by copying the contents of a general register, Rn,
into the program counter, PC. The branch causes a pipeline flush and refill from the
address specified by Rn. This instruction also permits the instruction set to be
exchanged. When the instruction is executed, the value of Rn[0] determines whether
the instruction stream will be decoded as ARM or THUMB instructions.

31 28 27 24 23 20 19 1615 12 11 8 7 43 0
— Cond —o 00 H—o 01 o—u 11 H—H 11 H—H 11 H—o 00 H— Rn —
[

Operand register

If bit 0 of Rn = 1, subsequent instructions decoded as THUMB instructions
If bit 0 of Rn = 0, subsequent instructions decoded as ARM instructions

Condition Field

Figure 4-2: Branch and Exchange instructions

4.3.1 Instruction cycle times

The BX instruction takes 2S + 1N cycles to execute, where S and N are as defined in
6.2 Cycle Types on page 6-2.

4.3.2 Assembler syntax
BX - branch and exchange.
BX{cond} Rn

{cond} Two character condition mnemonic. See D Table 4-2: Condition code
summary on page 4-5.

Rn is an expression evaluating to a valid register number.
4.3.3 Using R15 as an operand

If R15 is used as an operand, the behaviour is undefined.
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4.3.4 Examples

ADR RO, Into_THUMB + 1 ; Generate branch target address
; and set bit 0 high - hence
; arrive in THUMB state.

BX RO ; Branch and change to THUMB
; state.
CODE16 ; Assemble subsequent code as
Into_THUMB ; THUMB instructions
ADR R5, Back_to_ARM : Generate branch target to word
: aligned ; address - hence bit 0
;islow and so change back to ARM
; state.
BX R5 ; Branch and change back to ARM
; state.
ALIGN ; Word align
CODE32 ; Assemble subsequent code as ARM
Back_to_ARM ; instructions
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4.4 Branch and Branch with Link (B, BL)

The instruction is only executed if the condition is true. The various conditions are
defined D Table 4-2: Condition code summary on page 4-5. The instruction encoding
is shown in DFigure 4-3: Branch instructions, below.

31 28 27 25 24 23 0

_ Cond _ 101 __._ offset

7’ Link bit

Figure 4-3: Branch instructions

Branch instructions contain a signed 2's complement 24 bit offset. This is shifted left
two bits, sign extended to 32 bits, and added to the PC. The instruction can therefore
specify a branch of +/- 32Mbytes. The branch offset must take account of the prefetch
operation, which causes the PC to be 2 words (8 bytes) ahead of the current
instruction.

Branches beyond +/- 32Mbytes must use an offset or absolute destination which has
been previously loaded into a register. In this case the PC should be manually saved
in R14 if a Branch with Link type operation is required.

4.4.1 The link bit

Branch with Link (BL) writes the old PC into the link register (R14) of the current bank.
The PC value written into R1 adjusted to allow for the prefetch, and contains the
address of the instruction following the branch and link instruction. Note that the CPSR
is not saved with the PC and R14[1:0] are always cleared.

To return from a routine called by Branch with Link use MOV PC,R14 if the link register
is still valid or LDM R PC} if the link register has been saved onto a stack pointed
to by Rn.

4.4.2 Instruction cycle times

Branch and Branch with Link instructions take 2S + 1N incremental cycles, where S
and N are as defined in 26.2 Cycle Types on page 6-2.
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4.4.3 Assembler syntax 4.5 Data Processing

Items in {} are optional. Items in <> must be present. The data processing instruction is only executed if the condition is true. The conditions
X are defined in DTable 4-2: Condition code summary on page 4-5.

B{LHcond} <expression>
The instruction encoding is shown in DFigure 4-4: Data processing instructionsbelow.

{L} is used to request the Branch with Link form of the instruction.
If absent, R14 will not be affected by the instruction.

{cond} is a two-character mnemonic as shown in 2 Table 4-2: 2 22 e e o T 2 2
Condition code summary on page 4-5. If absent then AL _ Cond _ 00 __ _ OpCode _m_ RN _ Rd _ Operand 2
(ALways) will be used.

<expression> is the destination. The assembler calculates the offset. h

4.4.4 _mxm_.:U_mm Destination register
1st operand register

here BAL here ; assembles to OXEAFFFFFE (note effect of
; PC offset).
B there ; Always condition used as default. Operation Code
CMP  R1#0 ; Compare R1 with zero and branch to fred fresietoi e
R1 was zero, otherwise con 02 Sue - Ra=Opl-On2
BEQ fred ; continue to next instruction. 0100 = ADD - Rd:= Op1 + Op2
0101 = ADC - Rd= Op1 + Op2 + C
) 102 RaC - Rz ot -t 24
BL sub+ROM ; Call subroutine at computed address.  set condition codes on Op1 AND Op2
ADDS R1#1 ; Add 1 to register 1, setting CPSR flags
gl 1011 = CMN - et condition codes on OpL + 02
; on the result then call subroutine if 1100 = ORR - Rd:= Op1 OR Op2
BLCC sub ; the C flag is clear, which will be the 1105 blo- R opy ANDNOT g2

1111 = MVN - Rd:= NOT Op2

; case unless R1 held OxFFFFFFFF.

Immediate Operand
1 0= operand 2is a regiter ‘s N

[ [ = [

T
7 2nd operand register
shift applied to Rm

1= operand 2 is an immediate value
11 5 7 0

_ Rotate _ Imm T

T
7 Unsigned 8 bit immediate value

shift applied to Imm

Condition field

Figure 4-4: Data processing instructions

The instruction produces a result by performing a specified arithmetic or logical
operation on one or two operands. The first operand is always a register (Rn).
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The second operand may be a shifted register (Rm) or a rotated 8 bitimmediate value The arithmetic operations (SUB, RSB, ADD, ADC, SBC, RSC, CMP, CMN) treat each
(Imm) according to the value of the I bit in the instruction. The condition codes in the operand as a 32 bit integer (either unsigned or 2's complement signed, the two are

CPSR may be preserved or updated as a result of this instruction, according to the equivalent). If the S bit is set (and Rd is not R15) the V flag in the CPSR will be set if
value of the S bit in the instruction. an overflow occurs into bit 31 of the result; this may be ignored if the operands were

considered unsigned, but warns of a possible error if the operands were 2's
complement signed. The C flag will be set to the carry out of bit 31 of the ALU, the Z
flag will be set if and only if the result was zero, and the N flag will be set to the value
of bit 31 of the result (indicating a negative result if the operands are considered to be
2's complement signed).

Certain operations (TST, TEQ, CMP, CMN) do not write the result to Rd. They are used
only to perform tests and to set the condition codes on the result and always have the
S bit set. The instructions and their effects are listed in DTable 4-3: ARM Data
processing instructions on page 4-11.

45.1 CPSR flags

4.5.2 Shifts

The data processing operations may be classified as logical or arithmetic. The logical . " . . .
operations (AND, EOR, TST, TEQ, ORR, MOV, BIC, MVN) perform the logical action When the second operand is specified to be a shifted register, the operation of the

. X . barrel shifter is controlled by the Shift field in the instruction. This field indicates the
on all corresponding bits of the operand or operands to produce the result. If the S bit " ; X N - N
X . X p type of shift to be performed (logical left or right, arithmetic right or rotate right). The
is set (and Rd is not R15, see below) the V flag in the CPSR will be unaffected, the C . N . . N N .

X X amount by which the register should be shifted may be contained in an immediate field

flag will be set to the carry out from the barrel shifter (or preserved when the shift N K N . .

L . . N . in the instruction, or in the bottom byte of another register (other than R15). The
operation is LSL #0), the Z flag will be set if and only if the result is all zeros, and the encoding for the different shift types is shown in SFEigure 4-5: ARM shift operations.
N flag will be set to the logical value of bit 31 of the result. 9 P 9 . P )

Assembler 1 76 5 4
Mnemonic OpCode Action
AND 0000 operandl AND operand2
EOR 0001 operand1 EOR operand2 ,I_L’
SuB 0010 operand1 - operand2 Shift type
00= ical left
RSB 0011 operand2 - operand1l o= el
11 = rot
ADD 0100 operand1 + operand2 Shift amount Shift register
5 bit unsigned integer ‘Shift amount specified in

ADC 0101 operandl + operand?2 + carry bottom byte of Rs
SBC 0110 operandl - operand2 + carry - 1 Figure 4-5: ARM shift operations
RSC 0111 d2 - d1 -1 . . .

operanaz - eperandi + carry Instruction specified shift amount
TST 1000 as AND, but result is not written When the shift amount is specified in the instruction, it is contained in a 5 bit field which
TEQ 1001 as EOR, but result is not written may take any <m_c¢ from0 :.u .wH A logical shift left ?.mC. jmxmm the contents of Rm and

moves each bit by the specified amount to a more significant position. The least

CMP 1010 as SUB, but result is not written significant bits of the result are filled with zeros, and the high bits of Rm which do not
CMN 1011 ADD, but result is not written map into the result are discarded, except that the least significant discarded bit

as » butresultis no e becomes the shifter carry output which may be latched into the C bit of the CPSR when
ORR 1100 operand1 OR operand2 the ALU operation is in the logical class (see above). For example, the effect of LSL #5

is shown in DFigure 4-6: Logical shift left.

MOV 1101 operand2 (operand1 is ignored)
BIC 1110 operandl AND NOT operand2 (Bit clear)
MVN 1111 NOT operand2 (operand1 is ignored)

Table 4-3: ARM Data processing instructions
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31 27 26 0

_ contents of Rm _

nEE\

_ value of operand 2 0000 o_

Figure 4-6: Logical shift left
Note LSL #0 is a special case, where the shifter carry out is the old value of the CPSR C
flag. The contents of Rm are used directly as the second operand.

A logical shift right (LSR) is similar, but the contents of Rm are moved to less
significant positions in the result. LSR #5 has the effect shown in DFigure 4-7: Logical

shift right.
31 5 4 0
_ contents of Rm _
/Evos
_o 0000 value of operand 2 _

Figure 4-7: Logical shift right
The form of the shift field which might be expected to correspond to LSR #0 is used to
encode LSR #32, which has a zero result with bit 31 of Rm as the carry output. Logical
shift right zero is redundant as it is the same as logical shift left zero, so the assembler
will convert LSR #0 (and ASR #0 and ROR #0) into LSL #0, and allow LSR #32 to be
specified.

An arithmetic shift right (ASR) is similar to logical shift right, except that the high bits
are filled with bit 31 of Rm instead of zeros. This preserves the sign in 2's complement
notation. For example, ASR #5 is shown in DFigure 4-8: Arithmetic shift right.
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31 30 5 4 0

_ contents of Rm _
/Eos

_ value of operand 2 _

Figure 4-8: Arithmetic shift right

The form of the shift field which might be expected to give ASR #0 is used to encode
ASR #32. Bit 31 of Rm is again used as the carry output, and each bit of operand 2 is
also equal to bit 31 of Rm. The result is therefore all ones or all zeros, according to the
value of bit 31 of Rm.

Rotate right (ROR) operations reuse the bits which “overshoot” in a logical shift right
operation by reintroducing them at the high end of the result, in place of the zeros used
to fill the high end in logical right operations. For example, ROR #5 is shown in DFigure
4-9: Rotate right on page 4-14.

contents of Rm

carry out

value of operand 2

Figure 4-9: Rotate right

The form of the shift field which might be expected to give ROR #0 is used to encode
a special function of the barrel shifter, rotate right extended (RRX). This is a rotate right
by one bit position of the 33 bit quantity formed by appending the CPSR C flag to the
most significant end of the contents of Rm as shown in DFigure 4-10: Rotate right
extended.
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31 10
_ contents of Rm _
] carry
in \ out
_ value of operand 2 _

Figure 4-10: Rotate right extended

Register specified shift amount
Only the least significant byte of the contents of Rs is used to determine the shift
amount. Rs can be any general register other than R15.

If this byte is zero, the unchanged contents of Rm will be used as the second operand,
and the old value of the CPSR C flag will be passed on as the shifter carry output.

If the byte has a value between 1 and 31, the shifted result will exactly match that of
an instruction specified shift with the same value and shift operation.

If the value in the byte is 32 or more, the result will be a logical extension of the shift
described above:

1 LSL by 32 has result zero, carry out equal to bit 0 of Rm.
LSL by more than 32 has result zero, carry out zero.

31 of Rm.

LSR by 32 has result zero, carry out equal to

ASR by 32 or more has result filled with and carry out equal to bit 31 of Rm.

2

3

4 LSR by more than 32 has result zero, carry out zero.
5

6 ROR by 32 has result equal to Rm, carry out equal to bit 31 of Rm.
7

ROR by n where n is greater than 32 will give the same result and carry out
as ROR by n-32; therefore repeatedly subtract 32 from n until the amount is
in the range 1 to 32 and see above.
Note The zero in bit 7 of an instruction with a register controlled shift is compulsory; a one
in this bit will cause the instruction to be a multiply or undefined instruction.

4.5.3 Immediate operand rotates

The immediate operand rotate field is a 4 bit unsigned integer which specifies a shift
operation on the 8 bitimmediate value. This value is zero extended to 32 bits, and then
subject to a rotate right by twice the value in the rotate field. This enables many
common constants to be generated, for example all powers of 2.
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4.5.4 Writing to R15

When Rd is a register other than R15, the con
updated from the ALU flags as described above.

on code flags in the CPSR may be

When Rd is R15 and the S flag in the instruction is not set the result of the operation
is placed in R15 and the CPSR is unaffected.

When Rd is R15 and the S flag is set the result of the operation is placed in R15 and
the SPSR corresponding to the current mode is moved to the CPSR. This allows state
changes which atomically restore both PC and CPSR. This form of instruction should
not be used in User mode.

4.5.5 Using R15 as an operand

If R15 (the PC) is used as an operand in a data processing instruction the register is
used directly.

The PC value will be the address of the instruction, plus 8 or 12 bytes due to instruction
prefetching. If the shift amount is specified in the instruction, the PC will be 8 bytes
ahead. If a register is used to specify the shift amount the PC be 12 bytes ahead.

45.6 TEQ, TST, CMP and CMN opcodes

Note TEQ, TST, CMP and CMN do not write the result of their operation but do set flags in
the CPSR. An assembler should always set the S flag for these instructions even if this
is not specified in the mnemonic.

The TEQP form of the TEQ instruction used in earlier ARM processors must not be
used: the PSR transfer operations should be used instead.

The action of TEQP in the ARM7TDMI is to move SPSR_<mode> to the CPSR if the
processor is in a privileged mode and to do nothing if in User mode.

4.5.7 Instruction cycle times

Data Processing instructions vary in the number of incremental cycles taken as

follows:
Processing Type Cycles
Normal Data Processing 1s
Data Processing with register specifi 1S + 1l
Data Processing with PC written 2S + 1N

Data Processing with register specified shift and PC written 2S+1IN+1l

Table 4-4: Incremental cycle times

S, N and | are as defined in 26.2 Cycle Types on page 6-2.
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4.5.8 Assembler syntax
1 MOV,MVN (single operand instructions.)
<opcode>{cond}{S} Rd,<Op2>
2 CMP,CMN,TEQ,TST (instructions which do not produce a result.)
<opcode>{cond} Rn,<Op2>
3 AND,EOR,SUB,RSB,ADD,ADC,SBC,RSC,ORR,BIC
<opcode>{cond}{S} Rd,Rn,<Op2>

where:
<Op2> is Rm{,<shift>} or,<#expression>
{cond} is a two-character condition mnemonic. See 2 Table 4-2:
Condition code summary on page 4-5.
{S} 4m.mmﬁ._mvoza_:% codes if S present (implied for CMP, CMN, TEQ,

Rd, Rn and Rm are expressions evaluating to a register number.

<#texpression> if this is used, the assembler will attempt to generate a shifted
immediate 8-bit field to match the expression. If this is
impossible, it will give an error.

<shift> is <shiftname> <register> or <shiftname> #expression, or
RRX (rotate right one bit with extend).

<shiftname>s are: ASL, LSL, LSR, ASR, ROR. (ASL is a synonym for LSL,
they assemble to the same code.)

4.5.9 Examples

ADDEQR2,R4,R5 ; If the Z flag is set make R2:=R4+R5
TEQS R4#3 ; test R4 for equality with 3.
; (The Sisinfactredundant as the
; assembler inserts it automatically.)
SUB R4,R5R7,LSRR2 ;Logical right shift R7 by the number in
; the bottom byte of R2, subtract result
; from R5, and put the answer into R4.
MOV PC,R14 ; Return from subroutine.
MOVS PC,R14 ; Return from exception and restore CPSR
; from SPSR_mode.
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4.6 PSR Transfer (MRS, MSR)

The instruction is only executed if the condition is true. The various conditions are
defined in D Table 4-2: Condition code summary on page 4-5.

The MRS and MSR instructions are formed from a subset of the Data Processing
operations and are implemented using the TEQ, TST, CMN and CMP instructions
without the S flag set. The encoding is shown in DFigure 4-11: PSR transfer on page
4-19.

These instructions allow access to the CPSR and SPSR registers. The MRS
instruction allows the contents of the CPSR or SPSR_<mode> to be moved to a
general register. The MSR instruction allows the contents of a general register to be
moved to the CPSR or SPSR_<mode> register.

The MSR instruction also allows an immediate value or register contents to be
transferred to the condition code flags (N,Z,C and V) of CPSR or SPSR_<mode>
without affecting the control bits. In this case, the top four bits of the specified register
contents or 32 bit immediate value are written to the top four bits of the relevant PSR.

4.6.1 Operand restrictions

« InUser mode, the control bits of the CPSR are protected from change, so only
the condition code flags of the CPSR can be changed. In other (privileged)
modes the entire CPSR can be changed.

Note that the software must never change the state of the T bit in the CPSR.

If this happens, the processor will enter an unpredictable state.

« The SPSR register which is accessed depends on the mode at the time of
execution. For example, only SPSR_fiq is accessible when the processor is in
FIQ mode.

« You must not specify R15 as the source or destination register.

« Also, do not attempt to access an SPSR in User mode, since no such register
exists.

4-18

ARM7TDMI Data Sheet

ARM DDI 0029E




ARM Inshruction Set - MRS, MSR ARM Instruction Set - MRS, MSR

4.6.2 Reserved bits

MRS (transfer PSR contents to a register
( gisten) Only twelve bits of the PSR are defined in ARM7TDMI (N,Z,C,V,I,F, T & M[4:0]); the

31 28 27 23 22 21 16 15 12 11 0 o . . .
remaining bits are reserved for use in future versions of the processor. Refer to
_ Cond _ 00010 _m_ 001111 _ Rd _ 000000000000 _ DFigure 3-6: Program status register format on page 3-8 for a full description of the
PSR bits.
! T pestination regi i
7 Destination register To ensure the maximum compatibility between ARM7TDMI programs and future
Source PSR processors, the following rules should be observed:
memm <current mode> * The reserved bits should be preserved when changing the value in a PSR.
Condition field « Programs should not rely on specific values from the reserved bits when
MSR (transfer register contents to PSR) checking the PSR status, since they may read as one or zero in future
31 28 27 23 2 21 12 11 4 3 0 processors.
Cond 00010 A read-modify-write strategy should therefore be used when altering the control bits of
R 1010011111 00000000 Rm any PSR register; this involves transferring the appropriate PSR register to a general
| register using the MRS instruction, changing only the relevant bits and then
transferring the modified value back to the PSR register using the MSR instruction.
Source register
Destination PSR Example
0=CPSR The following sequence performs a mode change:
1=SPSR_<current mode>
Cond field MRS RO,CPSR ; Take a copy of the CPSR.
MSR (transfer register contents or immdiate value to ﬂ_wzwm ﬂ_w _m_gm onl BIC RO,RO#0X1F ; Clear the mode bits.
2 28 mﬂ @Nm ” . 9 y) o ORR  RO,RO,#new_mode ; Select new mode
2 Z MSR  CPSR,RO ; Write back the modified
_ Cond _ oo_ I _ 10 _ ug_ 1010001111 _ Source operand _ i CPSR.
When the aim is simply to change the condition code flags in a PSR, a value can be
(. | ,|_H written directly to the flag bits without disturbing the control bits. The following
instruction sets the N,Z,C and V flags:
Destination PSR MSR  CPSR_flg,#0xF0000000 ; Set all the flags
0=CPSR ; regardless of their
1=SPSR_<current mode> ; previous state (does not
Immediate Operand ; affect any control bits)
O=source operand is a register ' .
1 4 3 0 No attempt should be made to write an 8 bitimmediate value into the whole PSR since
such an operation cannot preserve the reserved bits.
00000000 Rm
] 4.6.3 Instruction cycle times
1=source operand is an hmedinng e PSR Transfers take 1S incremental cycles, where S is as defined in 26.2 Cycle Types
11 8 7 0 on page 6-2.

_xoﬁmﬁm _ Imm T

I
i Unsigned 8 bit immediate value
shift applied to Imm

Condition field

Figure 4-11: PSR transfer
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4.6.4 Assembler syntax
1 MRS - transfer PSR contents to a register
MRS{cond} Rd,<psr>
2 MSR - transfer register contents to PSR
MSR{cond} <psr>,Rm
3 MSR - transfer register contents to PSR flag bits only
MSR{cond} <psrf>Rm
The most significant four bits of the register contents are written to the N,Z,C
&V flags respectively.
4 MSR - transfer immediate value to PSR flag bits only
MSR{cond} <psrf>,<#expression>

The expression should symbolise a 32 bit value of which the most significant
four bits are written to the N,Z,C and V flags respectively.

Key:

{cond} two-character condition mnemonic. See DTable 4-2:
Condition code summary on page 4-5.

Rd and Rm are expressions evaluating to a register number other than
R15

<psr> is CPSR, CPSR_all, SPSR or SPSR_all. (CPSR and
CPSR_all are synonyms as are SPSR and SPSR_all)

<psrf> is CPSR_flg or SPSR_flg

<#expression> where this is used, the assembler will attempt to generate a
shifted immediate 8-bit field to match the expression. If this is
impossible, it will give an error.
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4.6.5 Examples

In User mode the instructions behave as follows:

MSR
MSR
MSR

MRS

CPSR_flg,Rm

CPSR_flg,#0xA0000000

Rd,CPSR

; CPSR[31:28] <- Rm[31:28]
; CPSR[31:28] <- Rm[31:28]
; CPSR[31:28] <- OXA

;(set N,C; clear Z,V)

; Rd[31:0] <- CPSR[31:0]

In privileged modes the instructions behave as follows:

MSR
MSR
MSR

MRS
MSR
MSR
MSR

MRS

CPSR_all,Rm
CPSR_flg,Rm
CPSR_flg,#0x50000000

Rd,CPSR

SPSR_all,Rm
SPSR_flg,Rm
SPSR_flg,#0xC0000000

Rd,SPSR

; CPSR[31:0] <- Rm[31:0]

; CPSR[31:28] <- Rm[31:28]

; CPSR[31:28] <- 0x5

;(set Z,V; clear N,C)

; Rd[31:0] <- CPSR[31:0]
;SPSR_<mode>[31:0]<- Rm[31:0]

; SPSR_<mode>[31:28] <- Rm[31:28]
; SPSR_<mode>[31:28] <- 0xC

;(set N,Z; clear C,V)

; Rd[31:0] <- SPSR_<mode>[31:0]

4-22
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4.7 Multiply and Multiply-Accumulate (MUL, MLA) 4.7.1 Operand restrictions
The instruction is only executed if the condition is true. The various conditions are The destination register Rd must not be the same as the operand re
defined in 2 Table 4-2: Condition code summaryon page 4-5 The instruction encoding must not be used as an operand or as the destination register.

is shown in DFigure 4-12: Multiply instructions. . L -
All other register combinations will give correct results, and Rd, Rn and Rs may use
The multiply and multiply-accumulate instructions use an 8 bit Booth's algorithm to the same register when required.

perform integer multiplication.
4.7.2 CPSR flags

31 28 27 22 21 20 19 16 15 12 11 8 7 4 3 0 Setting the CPSR flags is optional, and is controlled by the S bit in the instruction. The
N (Negative) and Z (Zero) flags are set correctly on the result (N is made equal to bit
Cond — 000O0OO0OO — A — S — Rd — R — R — 100 p— R — . b b . .
_ on " N m 31 of the result, and Z is set if and only if the result is zero). The C (Carry) flag is set
L |

{ to a meaningless value and the V (oVerflow) flag is unaffected.
7’ Operand registers

4.7.3 Instruction cycle times

Destination register
Set condition code

0= do not alter condition codes MUL takes 1S + ml and MLA 1S + (m+1)I cycles to execute, where S and | are as
A 1= ma_o%%e_ codes defined in 26.2 Cycle Types on page 6-2.
ccumulate
O oy o accumuiate m is the number of 8 bit multiplier array cycles required to complete the
Condition Field multiply, which is controlled by the value of the multiplier operand
specified by Rs. Its possible values are as follows
Figure 4-12: Multiply instructions 1 if bits [32:8] of the multiplier operand are all zero or all one.
The multiply form of the instruction gives Rd:=Rm*Rs. Rn is ignored, and should be 2 a cam Emmpm_ of the mu u_.m- operand are all zero or
set to zero for compatibility with possible future upgrades to the instruction set. 3 if bits [32:24] of the multiplier operand are all zero or all one.
4 in all other cases.
The multiply-accumulate form gives Rd:=Rm*Rs+Rn, which can save an explicit ADD
instruction in some circumstances. 4.7.4 Assembler syntax
Both forms of the instruction work on operands which may be considered as signed
(2's complement) or unsigned integers. MUL{cond}{S} Rd,Rm,Rs
The results of a signed multiply and of an unsigned multiply of 32 bit operands differ MLA{cond}{S} Rd,Rm,Rs,Rn
only in the upper 32 bits - the low 32 bits of the signed and unsigned results are {cond} two-character condition mnemonic. See DTable 4-2:
identical. As these instructions only produce the low 32 bits of a multiply, they can be Condition code summary on page 4-5.
used for both signed and unsigned muilt s set condition codes f S present

For example consider the multiplication of the operands:

Rd, Rm, Rs and Rn are expressions evaluating to a register number other
Operand A Operand B Result than R15.

OXFFFFFFF6 0x0000001 OxFFFFFF38
4.7.5 Examples
If the operands are interpreted as signed

Operand A has the value -10, operand B has the value 20, and the result is -200 which
is correctly represented as OXFFFFFF38

MUL R1,R2,R3 ; R1:=R2*R3

MLAEQS R1,R2,R3,R4 ; Conditionally R1:=R2*R3+R4,
; setting condition codes.

If the operands are interpreted as unsigned

Operand A has the value 4294967286, operand B has the value 20 and the result is

85899345720, which is represented as 0x13FFFFFF38, so the least significant 32 bits

are OXFFFFFF38.
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4.8 Multiply Long and Multiply-Accumulate Long (MULL,MLAL)

The instruction is only executed if the condition is true. The various conditions are
defined in 2 Table 4-2: Condition code summaryon page 4-5 The instruction encoding
is shown in DFigure 4-13: Multiply long instructions.

The multiply long instructions perform integer multiplication on two 32 bit operands
and produce 64 bit results. Signed and unsigned multiplication each with optional
accumulate give rise to four variations.

31 28 27 23 22 21 20 19 16 15 12 11 3 0

8 7 4
=
— Cond —o 000 H—c—>—w— RdHi — RdLo — Rs —p 00 p— Rm —
L L L ]

m Operand registers

Source destination registers

Set condition code
0= do not alter condition codes
1= set condition codes
Accumulate
0= mul

1 = multiply and accumulate
Unsigned

0= unsigned

1= signed

Figure 4-13: Multiply long instructions

The multiply forms (UMULL and SMULL) take two 32 bit numbers and multiply them
to produce a 64 bit result of the form RdHi,RdLo := Rm * Rs. The lower 32 bits of the
64 bit result are written to RdLo, the upper 32 bits of the result are written to RdHi.

The multiply-accumulate forms (UMLAL and SMLAL) take two 32 bit numbers, multiply
them and add a 64 bit number to produce a 64 bit result of the form RdHi,RdLo := Rm
* Rs + RdHi,RdLo. The lower 32 bits of the 64 bit number to add is read from RdLo.
The upper 32 bits of the 64 bit number to add is read from RdHi. The lower 32 bits of
the 64 bit result are written to RdLo. The upper 32 bits of the 64 bit result are written
to RdHi.

The UMULL and UMLAL instructions treat all of their operands as unsigned binary
numbers and write an unsigned 64 bit result. The SMULL and SMLAL instructions
treat all of their operands as two's-complement signed numbers and write a two's-
complement signed 64 bit result.

4.8.1 Operand restrictions
« R15 must not be used as an operand or as a destination register.

* RdHi, RdLo, and Rm must all specify different registers.
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4.8.2 CPSR flags

Setting the CPSR flags is optional, and is controlled by the S bit in the instruction. The
N and Z flags are set correctly on the result (N is equal to bit 63 of the result, Z is set
if and only if all 64 bits of the result are zero). Both the C and V flags are set to
meaningless values.

4.8.3 Instruction cycle times

MULL takes 1S + (m+1)l and MLAL 1S + (m+2)I cycles to execute, where m s the
number of 8 bit multiplier array cycles required to complete the multiply, which is
controlled by the value of the multiplier operand specified by Rs.

Its possible values are as follows:

For signed instructions SMULL, SMLAL:
1 if bits [31:8] of the multiplier operand are all zero or all one.
2 if bits [31:16] of the multiplier operand are all zero or all one.
3 if bits [31:24] of the multiplier operand are all zero or all one.
4 in all other cases.

For unsigned instructions UMULL, UMLAL:

1 if bits [31:8] of the multiplier operand are all zero.
2 if bits [31:16] of the multiplier operand are all zero.
3 if bits [31:24] of the multiplier operand are all zero.
4 in all other cases.

S and | are as defined in 26.2 Cycle Types on page 6-2.

4.8.4 Assembler syntax

Mnemonic Description Purpose

UMULL{cond}{S} RdLo,RdHi,Rm,Rs Unsigned Multiply Long 32x32=64
UMLAL{condKS} RdLo,RdHi,Rm,Rs Unsigned Multiply & Accumulate Long 32x32+64=64
SMULL{cond¥S} RdLo,RdHi,Rm,Rs Signed Multiply Long 32x32=64
SMLAL{cond}{S} RdLo,RdHi,Rm,Rs Signed Multiply & Accumulate Long 32x32+64=64

Table 4-5: Assembler syntax descriptions
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where:

{cond}

{s}
RdLo, RdHi, Rm, Rs

4.8.5 Examples

two-character condition mnemonic. See DTable 4-2:
Condition code summary on page 4-5.

set condition codes if S present

are expressions evaluating to a register number other
than R15.

UMULL R1,R4,R2,R3 ;R4,R1:=R2*R3
UMLALS R1,R5,R2,R3 ; R5,R1:=R2*R3+R5,R1 also setting

; condition codes
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4.9 Single Data T ransfer (LDR, STR)

The instruction is only executed if the condition is true. The various conditions are
defined in DTable 4-2: Condition code summaryon page 4-5 The instruction encoding
is shown in DFigure 4-14: Single data transfer instructions on page 4-28.

The single data transfer instructions are used to load or store single bytes or words of
data. The memory address used in the transfer is calculated by adding an offset to or
subtracting an offset from a base register.

The result of this calculation may be written back into the base register if auto-indexing
is required.

31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 0

_ Cond _8. ____u_c_m_<<__:_ Rn _ Rd _ Offset
L J

| |1 |
i’
Source/Destination register
Base register
Load/Store bit

0= Store to memory
1= Load from memory

Write-back bit
fad

= back
1= write address into base

Byte/Word bit
0=
1= wansfer byte quantiy

Cu\ﬂoéz bit

0= down; sul

t offset from base
(0 base

Pre/Post indexing bit
0= post; add off
1= pre; add offs

Immediate offset

41 0= offsetis an immediate value 0

_ Immediate offset _’

T
Unsigned 12 bit immediate offset
1y 1= offsetis aregister P 0

_ Shift

Offset register
shift applied to Rm

Condition field

Figure 4-14: Single data transfer instructions
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4.9.1 Offsets and auto-indexing

The offset from the base may be either a 12 bit unsigned binary immediate value in
the instruction, or a second register (possibly shifted in some way). The offset may be
added to (U=1) or subtracted from (U=0) the base register Rn. The offset modification
may be performed either before (pre-indexed, P=1) or after (post-indexed, P=0) the
base is used as the transfer address.

The W bit gives optional auto increment and decrement addressing modes. The
modified base value may be written back into the base (W=1), or the old base value
may be kept (W=0). In the case of post-indexed addressing, the write back bit is
redundant and is always set to zero, since the old base value can be retained by
setting the offset to zero. Therefore post-indexed data transfers always write back the
modified base. The only use of the W bit in a post-indexed data transfer is in privileged
mode code, where setting the W bit forces non-privileged mode for the transfer,
allowing the operating system to generate a user address in a system where the
memory management hardware makes suitable use of this hardware.

4.9.2 Shifted register offset

The 8 shift control bits are described in the data processing instructions section.
However, the register specified shift amounts are not available in this instruction class.
See 24.5.2 Shifts on page 4-12.

4.9.3 Bytes and words

This instruction class may be used to transfer a byte (B=1) or a word (B=0) between
an ARM7TDMI register and memory.

The action of LDR(B) and STR(B) instructions is influenced by the BIGEND control
signal. The two possible configurations are described below.

Little endian configuration

A byte load (LDRB) expects the data on data bus inputs 7 through 0 if the supplied
address is on a word boundary, on data bus inputs 15 through 8 if it is a word address
plus one byte, and so on. The selected byte is placed in the bottom 8 bits of the
destination register, and the remaining bits of the register are filled with zeros. Please
see DFigure 3-2: Little endian addresses of bytes within words on page 3-3.

A byte store (STRB) repeats the bottom 8 bits of the source register four times across
data bus outputs 31 through 0. The external memory system should activate the
appropriate byte subsystem to store the data.

A word load (LDR) will normally use a word aligned address. However, an address
offset from a word boundary will cause the data to be rotated into the register so that
the addressed byte occupies bits 0 to 7. This means that half-words accessed at
offsets 0 and 2 from the word boundary will be correctly loaded into bits 0 through 15
of the register. Two shift operations are then required to clear or to sign extend the
upper 16 bits. This is illustrated in DFigure 4-15: Little endian offset addressing on
page 4-30.
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memory register

A > | A

A+3 f—o 24 — 24
B » | B

A+2 f—o 16 — 16
C » | C

A+l f——o 8 — 8
D » | D

A L—o0 L—1 0

LDR from word aligned address

A A
A+3 —— 24 — 24
B B
A+2 f—o 16 — 16
C Cc
A+l f——o 8 — 8
D D
A L—o0 L—10

LDR from address offset by 2

Figure 4-15: Little endian offset addressing

A word store (STR) should generate a word aligned address. The word presented to
the data bus is not affected if the address is not word aligned. That is, bit 31 of the
register being stored always appears on data bus output 31.

Big endian configuration

A byte load (LDRB) expects the data on data bus inputs 31 through 24 if the supplied
address is on a word boundary, on data bus inputs 23 through 16 if it is a word address
plus one byte, and so on. The selected byte is placed in the bottom 8 bits of the
destination register and the remaining bits of the register are filled with zeros. Please
see DFigure 3-1: Big endian addresses of bytes within words on page 3-3.

A byte store (STRB) repeats the bottom 8 bits of the source register four times across
data bus outputs 31 through 0. The external memory system should activate the
appropriate byte subsystem to store the data.

A word load (LDR) should generate a word aligned address. An address offset of 0 or
2 from a word boundary will cause the data to be rotated into the register so that the
addressed byte occupies bits 31 through 24. This means that half-words accessed at
these offsets will be correctly loaded into bits 16 through 31 of the register. A shift
operation is then required to move (and optionally sign extend) the data into the
bottom 16 bits. An address offset of 1 or 3 from a word boundary will cause the data
to be rotated into the register so that the addressed byte occupies bits 15 through 8.
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A word store (STR) should generate a word aligned address. The word presented to
the data bus is not affected if the address is not word aligned. That is, bit 31 of the
register being stored always appears on data bus output 31.

4.9.4 Use of R15

Write-back must not be specified if R15 is specified as the base register (Rn). When
using R15 as the base register you must remember it contains an address 8 bytes on
from the address of the current instruction.

R15 must not be specified as the register offset (Rm).

When R15 is the source register (Rd) of a register store (STR) instruction, the stored
value will be address of the instruction plus 12.

4.9.5 Restriction on the use of base register

When configured for late aborts, the following example code is difficult to unwind as
the base register, Rn, gets updated before the abort handler starts. Sometimes it may
be impossible to calculate the initial value.

After an abort, the following example code is difficult to unwind as the base register,
Rn, gets updated before the abort handler starts. Sometimes it may be impossible to
calculate the initial value.

Example:
LDR  RO,[R1],R1

Therefore a post-indexed LDR or STR where Rm is the same register as Rn should
not be used.

4.9.6 Data aborts

A transfer to or from a legal address may cause problems for a memory management
system. For instance, in a system which uses virtual memory the required data may
be absent from main memory. The memory manager can signal a problem by taking
the processor ABORT input HIGH whereupon the Data Abort trap will be taken. It is
up to the system software to resolve the cause of the problem, then the instruction can
be restarted and the original program continued.

4.9.7 Instruction cycle times

Normal LDR instructions take 1S + 1N + 1l and LDR PC take 2S + 2N +1I incremental
cycles, where S,N and | are as defined in 26.2 Cycle Types on page 6-2.

STR instructions take 2N incremental cycles to execute.
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4.9.8 Assembler syntax
<LDR|STR>{cond{B}{T} Rd,<Address>

where:

LDR load from memory into a register

STR store from a register into memory

{cond} two-character condition mnemonic. See DTable 4-2: Condition code
summary on page 4-5.

{B} if B is present then byte transfer, otherwise word transfer

{T} if T is present the W bit will be set in a post-indexed instruction, forcing

leged mode for the transfer cycle. T is not allowed when a

pre-indexed addressing mode is speci i

Rd is an expression evaluating to a valid re

Rn and Rm are expressions evaluating to a register number. If Rn is R15 then the
assembler will subtract 8 from the offset value to allow for ARM7TDMI
pipelining. In this case base write-back should not be specified.

<Address> can be:

1 An expression which generates an address:

<expression>

The assembler will attempt to generate an instruction using
the PC as a base and a corrected immediate offset to address
the location given by evaluating the expression. This will be a
PC relative, pre-indexed address. If the address is out of
range, an error will be generated.

2 A pre-indexed addressing specification:
[Rn] offset of zero
[Rn,<#expression>]{!} offset of <expression>
bytes
[Rn,{+/-}Rm{,<shift>}]{} offset of +/- contents of

index register, shifted
by <shift>

3 A post-indexed addressing specification:

[Rn],<#expression> offset of <expression>
bytes

[Rn],{+/-}Rm{,<shif

>} offset of +/- contents of
index register, shifted
as by <shift>.
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<shift>  general shift operation (see data processing instructions) but 4.10 Halfword and Signed Data T ransfer
you cannot specify the shift amount by a register.
{1} writes back the base register (set the W bit) if! is present. A_I_U_NI\M._-_NI\:U_NMW\:U_NMIV

The instruction is only executed if the condition is true. The various conditions are
defined in DTable 4-2: Condition code summaryon page 4-5 The instruction encoding
is shown in DFigure 4-16: Halfword and signed data transfer with register offset,
below, and DFigure 4-17: Halfword and signed data transfer with immediate offset on

4.9.9 Examples

STR R1,[R2,R4]! ; Store R1 at R2+R4 (both of which are
" R page 4-35.
; registers) and write back address to
i R2. These instructions are used to load or store half-words of data and also load
STR R1,R2],R4 ; Store R1 at R2 and write back sign-extended bytes or half-words of data. The memory address used in the transfer
; R2+R4 to R2. is calculated by adding an offset to or subtracting an offset from a base register. The
LDR R1,[R2,#16] ; Load R1 from contents of R2+16, but result of this calculation may be written back into the base register if auto-indexing is
; don't write back. required.
LDR R1,[R2,R3,LSL#2] ; Load R1 from contents of R2+R3*4.
LDREQBRL,[R6,#5] ; Conditionally load byte at R6+5 into
- R1 bits 0 to 7, fi @U:wmﬁowH 31 28 27 25 24 23 22 21 20 19 16 15 12 11 8 7 6 5 4 3 0
; with zeros. — Cond —o 0 o—_u—c—o—<<—_.— Rn — Rd —o 00 o—“_.—m—I—H— Rm —
STR R1,PLACE ; Generate PC relative offset to ] | ™ ]
; address PLACE.
¢ Offset register
PLACE SH
00 = SWP instruction
01 = Unsigned halfwords
10 = Signed byte
11 = Signed halfwords
Source/Destination
register
Base register
Load/Store
0 = store to memory
1 = load from memory
Write-back
0 = no write-back
1 = write address into base
Up/Down
0 = down: subtract offset from
base
1=up: add offset to base
Pre/Post indexing
0= post: addisubtract offset
after transfer
1= pre; add/subtract offset
before transfer
Condition field
Figure 4-16: Halfword and signed data transfer with register offset
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28 27 25 24 23 22 21 20 19 16 15 12 11 8 7 6 5 4

N—

31 3 0
— Cond —o 0 o—n—c—p—s\—_.— Rn — Rd — Offset —H—w—I—H— Offset —
[ L L )L ]

Immediate Offset
(Low nibble)

SH

00 = SWP instruction

01 = Unsigned halfwords

10 = Signed byte

11 = Signed halfwords
Immediate Offset
(High nibble)
Source/Destination
register

Base register

Load/Store
0 = store to memory
1= load from memory
Write-back

0 = no write-back
1 = write address into base

Up/Down
0 = down: subtract offset from
base
1 = up: add offset to base

Pre/Post indexing
0 = post: add/subtract offset
after transfer
1 = pre: add/subtract offset
before transfer

Condition field

Figure 4-17: Halfword and signed data transfer with immediate offset

4.10.1 Offsets and auto-indexing

The offset from the base may be either a 8-bit unsi inary immediate value in the
instruction, or a second register. The 8-bit offset is formed by concatenating bits 11 to
8 and bits 3 to 0 of the instruction word, such that bit 11 becomes the MSB and bit 0
becomes the LSB. The offset may be added to (U=1) or subtracted from (U=0) the
base register Rn. The offset modification may be performed either before (pre-
indexed, P=1) or after (post-indexed, P=0) the base register is used as the transfer
address.

The W bit gives optional auto-increment and decrement addressing modes. The
modified base value may be written back into the base (W=1), or the old base may be
kept (W=0). In the case of post-indexed addressing, the write back bit is redundant and
is always set to zero, since the old base value can be retained if necessary by setting
the offset to zero. Therefore post-indexed data transfers always write back the
modified base.

The Write-back bit should not be set high (W=1) when post-indexed addressing is
selected.
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4.10.2 Halfword load and stores

Setting S=0 and H=1 may be used to transfer unsigned Half-words between an
ARM7TDMI register and memory.

The action of LDRH and STRH instructions is influenced by the BIGEND control
signal. The two possible configurations are described in the section below.

4.10.3 Signed byte and halfword loads

The S bit controls the loading of sign-extended data. When S=1 the H bit selects
between Bytes (H=0) and Half-words (H=1). The L bit should not be set low (Store)
when Signed (S=1) operations have been selected.

The LDRSB instruction loads the selected Byte into bits 7 to 0 of the destination
register and bits 31 to 8 of the destination register are set to the value of bit 7, the sign
bit.

The LDRSH instruction loads the selected Half-word into bits 15 to 0 of the destination
register and bits 31 to 16 of the destination register are set to the value of bit 15, the
sign
The action of the LDRSB and LDRSH instructions is influenced by the BIGEND control
signal. The two possible configurations are described in the following section.

4.10.4 Endianness and byte/halfword selection

Little endian configuration

A signed byte load (LDRSB) expects data on data bus inputs 7 through to 0 if the
supplied address is on a word boundary, on data bus inputs 15 through to 8 if it is a
word address plus one byte, and so on. The selected byte is placed in the bottom 8 bit
of the destination register, and the remaining bits of the register are filled with the sign
bit, bit 7 of the byte. Please see DFigure 3-2: Little endian addresses of bytes within
words on page 3-3

A halfword load (LDRSH or LDRH) expects data on data bus inputs 15 through to O if
the supplied address is on a word boundary and on data bus inputs 31 through to 16
if it is a halfword boundary, (A[1]=1).The supplied address should always be on a
halfword boundary. If bit 0 of the supplied address is HIGH then the ARM7TDMI will
load an unpredictable value. The selected halfword is placed in the bottom 16 bits of
the destination register. For unsigned half-words (LDRH), the top 16 bits of the register
are filled with zeros and for signed half-words (LDRSH) the top 16 bits are filled with
the sign bit, bit 15 of the halfword.

A halfword store (STRH) repeats the bottom 16 bits of the source register twice across
the data bus outputs 31 through to 0. The external memory system should activate the
appropriate halfword subsystem to store the data. Note that the address must be
halfword aligned, if bit 0 of the address is HIGH this will cause unpredictable
behaviour.
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Big endian configuration

A signed byte load (LDRSB) expects data on data bus inputs 31 through to 24 if the
supplied address is on a word boundary, on data bus inputs 23 through to 16 if it is a
word address plus one byte, and so on. The selected byte is placed in the bottom 8 bit
of the destination register, and the remaining bits of the register are filled with the sign
bit, bit 7 of the byte. Please see DFigure 3-1: Big endian addresses of bytes within
words on page 3-3

A halfword load (LDRSH or LDRH) expects data on data bus inputs 31 through to 16
if the supplied address is on a word boundary and on data bus inputs 15 through to 0
if it is a halfword boundary, (A[1]=1). The supplied address should always be on a
halfword boundary. If bit O of the supplied address is HIGH then the ARM7TDMI will
load an unpredictable value. The selected halfword is placed in the bottom 16 bits of
the destination register. For unsigned half-words (LDRH), the top 16 bits of the register
ed with zeros and for signed half-words (LDRSH) the top 16 bits are filled with
the sign bit, bit 15 of the halfword.

A halfword store (STRH) repeats the bottom 16 bits of the source register twice across
the data bus outputs 31 through to 0. The external memory system should activate the
appropriate halfword subsystem to store the data. Note that the address must be
halfword aligned, if bit 0 of the address is HIGH this will cause unpredictable
behaviour.

4.10.5 Use of R15

Write-back should not be specified if R15 is specified as the base register (Rn). When
using R15 as the base register you must remember it contains an address 8 bytes on
from the address of the current instruction.

R15 should not be specified as the register offset (Rm).
When R15 is the source register (Rd) of a Half-word store (STRH) instruction, the
stored address will be address of the instruction plus 12.

4.10.6 Data aborts

A transfer to or from a legal address may cause problems for a memory management
system. For instance, in a system which uses virtual memory the required data may
be absent from the main memory. The memory manager can signal a problem by
taking the processor ABORT input HIGH whereupon the Data Abort trap will be taken.
Itis up to the system software to resolve the cause of the problem, then the instruction
can be restarted and the original program continued.

4.10.7 Instruction cycle times

Normal LDR(H,SH,SB) instructions take 1S + 1IN + 11
LDR(H,SH,SB) PC take 2S + 2N + 1l incremental cycles.
S,N and | are defined in26.2 Cycle Types on page 6-2.

STRH instructions take 2N incremental cycles to execute.
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<LDR|STR>{cond}<H|SH|SB> Rd,<address>

LDR load from memory into a register

STR Store from a register into memory

{cond} two-character condition mnemonic. See DTable 4-2: Condition code
summary on page 4-5.

H Transfer halfword quantity

SB Load sign extended byte (Only valid for LDR)

SH Load sign extended halfword (Only valid for LDR)

Rd is an expression evaluating to a valid register number.

<address> can be:

1 An expression which generates an address:

<expression>

The assembler will attempt to generate an instruction using
the PC as a base and a corrected immediate offset to address
the location given by evaluating the expression. This will be a
PC relative, pre-indexed address. If the address is out of
range, an error will be generated.

2 A pre-indexed addressing specification:
[Rn] offset of zero
[Rn,<#expression>}{!} offset of <expression> bytes
[Rn,{+/-}Rm]{!} offset of +/- contents of

index register

3 A post-indexed addressing specification:
[Rn],<#expression> offset of <expression> bytes
[Rn],{+/-}Rm offset of +/- contents of

index register.

Rn and Rm are expressions evaluating to a register number.
If Rnis R15 then the assembler will subtract 8 from the offset
value to allow for ARM7TDMI pipelining. In this case base
write-back should not be specified.

{1} writes back the base register (set the W bi

present.
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4.10.9 Examples

LDRH R1,[R2,-R3]!

STRH R3,[R4,#14]

LDRSB R8,[R2],#-223

LDRNESH R11,[R0]

HERE

; Load R1 from the contents of the

; halfword address contained in

; R2-R3 (both of which are registers)
; and write back address to R2

; Store the halfword in R3 at R14+14
; but don't write back.

; Load R8 with the sign extended

; contents of the byte address

; contained in R2 and write back

; R2-223 to R2.

; conditionally load R11 with the sign

; extended contents of the halfword

; address contained in RO.

; Generate PC relative offset to

; address FRED.

; Store the halfword in R5 at address
; FRED.

STRH R5, [PC, #(FRED-HERE-8)]

FRED
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4.11 Block Data T ransfer (LDM, STM)

The instruction is only executed if the condition is true. The various conditions are
defined in DTable 4-2: Condition code summaryon page 4-5 The instruction encoding
is shown in DFigure 4-18: Block data transfer instructions.

Block data transfer instructions are used to load (LDM) or store (STM) any subset of
the currently visible registers. They support all possible stacking modes, maintaining
full or empty stacks which can grow up or down memory, and are very efficient
instructions for saving or restoring context, or for moving large blocks of data around
main memory.

4.11.1 The register list

The instruction can cause the transfer of any registers in the current bank (and
non-user mode programs can also transfer to and from the user bank, see below). The
register list is a 16 bit field in the instruction, with each bit corresponding to a re:
A 1in bit 0 of the register field will cause RO to be transferred, a 0 cause it not to
be transferred; similarly bit 1 controls the transfer of R1, and so on.

Any subset of the registers, or all the registers, may be specified. The only restriction
is that the register list should not be empty.

Whenever R15 is stored to memory the stored value is the address of the STM
instruction plus 12.

31

28 27

25 24 23 22 21 20 19 16 15 0

[ [ o0 [J[M]] = |

Register list

L

—

,|_L| Base register

Load/Store bit
0= Store to memory
1= Load from memory
Writs k bit
o te-back
1= write address into base
PSR & force user
0= do not load PSR or force user mode
1= load PSR or force user mode

Up/Down bit

0= down; sul

Pre/Post indexing bit
0 = post; add offset after transfer
1= pre; add offset before transfer

Figure 4-18: Block data transfer instructions
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4.11.2 Addressing modes

The transfer addresses are determined by the contents of the base register (Rn), the
pre/post bit (P) and the up/down bit (U). The registers are transferred in the order
lowest to highest, so R15 (if in the list) will always be transferred last. The lowest
register also gets transferred to/from the lowest memory address. By way of
illustration, consider the transfer of R1, R5 and R7 in the case where Rn=0x1000 and
write back of the modified base is required (W=1). DFigure 4-19: Post-increment
addressing, DFigure 4-20: Pre-increment addressing, DFigure 4-21: Post-decrement
addressing and DFigure 4-22: Pre-decrement addressing show the sequence of
register transfers, the addresses used, and the value of Rn after the instruction has
completed.

In all cases, had write back of the modified base not been required (W=0), Rn would
have retained its initial value of 0x1000 unless it was also in the transfer list of a load
multiple register instruction, when it would have been overwritten with the loaded
value.

4.11.3 Address alignment

The address should normally be a word aligned quantity and non-word aligned
addresses do not affect the instruction. However, the bottom 2 bits of the address will
appear on A[1:0] and might be interpreted by the memory system.

0x100C 0x100C
Rn —» 0x1000 R1 0x1000
OxOFF4 OxOFF4

1 2
0x100C Rn —-» 0x100C

R7

R5 RS
R1 0x1000 R1 0x1000
OxOFF4 Ox0FF4

3 4

Figure 4-19: Post-increment addressing

ARM Instruction Set - LDM, STM

0x100C 0x100C

R1
Rn —» 0x1000 0x1000
OXOFF4 OxOFF4

1 2
0x100C RN —» R7 0x100C

R5 R5

R1 R1
0x1000 0x1000
OxOFF4 OXOFF4

3 4
Figure 4-20: Pre-increment addressing
0x100C 0x100C
RN —» 0x1000 0x1000

R1
O0xOFF4 0xOFF4

1 2

0x100C 0x100C
0x1000 R7 0x1000

R5 R5

R1 R1
O0xOFF4 Rn —» 0xOFF4

3 4

Figure 4-21: Post-decrement addressing
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0x100C 0x100C
Rn —» 0x1000 0x1000
OxOFF4 R1 OxOFF4
1 2
0x100C 0x100C
0x1000 0x1000
R7
R5 R5
R1 OxOFF4 Rn —» R1 OxOFF4
3 4

Figure 4-22: Pre-decrement addressing

4.11.4 Use of the S bit

When the S bit is setin a LDM/STM instruction its meaning depends on whether or not
R15 is in the transfer list and on the type of instruction. The S bit should only be set if
the instruction is to execute in a privileged mode.

LDM with R15 in transfer list and S bit set (Mode changes)
If the instruction is a LDM then SPSR_<mode> is transferred to CPSR at the same
time as R15 is loaded.

STM with R15 in transfer list and S bit set (User bank transfer)

The registers transferred are taken from the User bank rather than the bank
corresponding to the current mode. This is useful for saving the user state on process
switches. Base write-back should not be used when this mechanism is employed.

R15 not in list and S bit set (User bank transfer)

For both LDM and STM instructions, the User bank registers are transferred rather
than the register bank corresponding to the current mode. This is useful for saving the
user state on process switches. Base write-back should not be used when this
mechanism is employed.

When the instruction is LDM, care must be taken not to read from a banked register
during the following cycle (inserting a dummy instruction such as MOV RO, RO after
the LDM will ensure safety).
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4.11.5 Use of R15 as the base

R15 should not be used as the base register in any LDM or STM instruction.

4.11.6 Inclusion of the base in the register list

When write-back is specified, the base is written back at the end of the second cycle
of the instruction. During a STM, the first register is written out at the start of the
second cycle. A STM which includes storing the base, with the base as the first register
to be stored, therefore store the unchanged value, whereas with the base second
or later in the transfer order, will store the modified value. A LDM will always overwrite
the updated base if the base is in the list.

4.11.7 Data aborts

Some legal addresses may be unacceptable to a memory management system, and
the memory manager can indicate a problem with an address by taking the ABORT
signal HIGH. This can happen on any transfer during a multiple register load or store,
and must be recoverable if ARM7TDMI is to be used in a virtual memory system.

Aborts during STM instructions

If the abort occurs during a store multiple instruction, ARM7TDMI takes little action
until the instruction completes, whereupon it enters the data abort trap. The memory
manager is responsible for preventing erroneous writes to the memory. The only
change to the internal state of the processor will be the modification of the base
register if write-back was specified, and this must be reversed by software (and the
cause of the abort resolved) before the instruction may be retried.

Aborts during LDM instructions

When ARM7TDMI detects a data abort during a load multiple instruction, it modifies
the operation of the instruction to ensure that recovery is possible.

1 Overwriting of registers stops when the abort happens. The aborting load will
not take place but earlier ones may have overwritten registers. The PC is
always the last register to be written and so will always be preserved.

2 The base register is restored, to its modified value if write-back was
requested. This ensures recoverability in the case where the base register is
also in the transfer list, and may have been overwritten before the abort
occurred.

The data abort trap is taken when the load multiple has completed, and the system
software must undo any base modification (and resolve the cause of the abort) before
restarting the instruction.

4.11.8 Instruction cycle times

Normal LDM instructions take nS + 1N + 1l and LDM PC takes (n+1)S + 2N + 11
incremental cycles, where S,N and | are as defined in 26.2 Cycle Typeson page 6-2.
STM instructions take (n-1)S + 2N incremental cycles to execute, where nis the
number of words transferred.
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4.11.9 Assembler syntax 4.11.10Examples
<LDM|STM>{cond}<FD|ED|FA|EA|IA|IB|DA|DB> Rn{!},<Rlist>{"} LDMFD SP! {R0O,R1,R2} ; Unstack 3 registers.
where: STMIA RO,{R0-R15} ; Save all registers.
' LDMFD SP! {R15} ; R15 <- (SP),CPSR unchanged.
{cond} two character condition mnemonic. See 2 Table 4-2: Condition code LDMFD SP! {R15}* ; R15 <- (SP), CPSR <- SPSR_mode
summary on page 4-5. ; (allowed only in pi ged modes).
R . . Juating t lid regist b STMFD R13,{R0-R14}* ; Save user mode regs on stack
n is an expression evaluating to a valid register number : (allowed only in privileged modes).
<Rlist> is a list of registers and register ranges enclosed in {} (e.g. {RO,R2- These instructions may be used to save state on subroutine entry, and restore it
R7,R10}). efficiently on return to the calling routine:
{1} if present requests write-back (W=1), otherwise W=0 STMED SP!{R0-R3,R14} ; Save RO to R3 to use as workspace
. . . ; and R14 for returning.
{" if present set S bit to load the CPSR along with the PC, or force i -
P BL somewhere This nested call overwrite R14
transfer of user bank when in privileged mode :
p 9 LDMED SP!{R0-R3,R15} ; restore workspace and return.
Addressing mode names
There are different assembler mnemonics for each of the addressing modes,
depending on whether the instruction is being used to support stacks or for other
purposes. The equivalence between the names and the values of the bits in the
instruction are shown in the following table:
Name Stack Other L bit P bit U bit
pre-increment load LDMED LDMIB 1 1 1
post-increment load LDMFD LDMIA 1 [o] 1
pre-decrement load LDMEA LDMDB 1 1 0
post-decrement load LDMFA LDMDA 1 0 0
pre-increment store STMFA STMIB 0 1 1
post-increment store STMEA STMIA 0 0 1
pre-decrement store STMFD STMDB 0 1 0
post-decrement store STMED STMDA 0 0 0
Table 4-6: Addressing mode names
FD, ED, FA, EA define pre/post indexing and the up/down bit by reference to the form
of stack required. The F and E refer to a “full” or “empty” stack, i.e. whether a pre-index
has to be done (full) before storing to the stack. The A and D refer to whether the stack
is ascending or descending. If ascending, a STM will go up and LDM down, if
descending, vice-versa.
IA, 1B, DA, DB allow control when LDM/STM are not being used for stacks and simply
mean Increment After, Increment Before, Decrement After, Decrement Before.
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4.12 Single Data Swap (SWP)

31 28 27 23 22 21 20 19 16 15 12 11 8 7 4 3 0

_ Cond _ 00010 _m_ oo_ Rn _ Rd _ 0000 _ 1001 _ Rm _

7’ Source register
Destination register
Base register
Byte/Word bit

0 = swap word quant

1= swap byte quanti

Condition field

Figure 4-23: Swap instruction

The instruction is only executed if the condition is true. The various conditions are
defined in D Table 4-2: Condition code summaryon page 4-5 The instruction encoding
is shown in DFigure 4-23: Swap instruction.

The data swap instruction is used to swap a byte or word quantity between a register
and external memory. This instruction is implemented as a memory read followed by
a memory write which are “locked” together (the processor cannot be interrupted until
both operations have completed, and the memory manager is warned to treat them as
inseparable). This class of instruction is particularly useful for implementing software
semaphores.

The swap address is determined by the contents of the base register (Rn). The
processor first reads the contents of the swap address. Then it writes the contents of
the source register (Rm) to the swap address, and stores the old memory contents in
the destination register (Rd). The same register may be specified as both the source
and destination.

The LOCK output goes HIGH for the duration of the read and write operations to signal
to the external memory manager that they are locked together, and should be allowed
to complete without interruption. This is important in multi-processor systems where
the swap instruction is the only indivisible instruction which may be used to implement
semaphores; control of the memory must not be removed from a processor whi i
performing a locked operation.

4.12.1 Bytes and words

This instruction class may be used to swap a byte (B=1) or a word (B=0) between an
ARM7TDMI register and memory. The SWP instruction is implemented as a LDR
followed by a STR and the action of these is as described in the section on single data
transfers. In particular, the description of Big and Little Endian configuration applies to
the SWP instruction.
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4.12.2 Use of R15

Do not use R15 as an operand (Rd, Rn or Rs) in a SWP instruction.

4.12.3 Data aborts

If the address used for the swap is unacceptable to a memory management system,
the memory manager can flag the problem by driving ABORT HIGH. This can happen
on either the read or the write cycle (or both), and in either case, the Data Abort trap
be taken. It is up to the system software to resolve the cause of the problem, then
the instruction can be restarted and the o al program continued.

4.12.4 Instruction cycle times

Swap instructions take 1S + 2N +1I incremental cycles to execute, where S,N and |
are as defined in 26.2 Cycle Types on page 6-2.

4.12.5 Assembler syntax
<SWP>{cond}{B} Rd,Rm,[Rn]

{cond} two-character condition mnemonic. See DTable 4-2:
Condition code summary on page 4-5.

{B} if B is present then byte transfer, otherwise word transfer
Rd,Rm,Rn are expressions evaluating to valid register numbers
4.12.6 Examples
SWP RO,R1,[R2] ;Load ROwiththeword addressed by R2,and
; store R1 at R2.
SWPB R2,R3,[R4] ; Load R2 with the byte addressed by R4, and
; store bits 0 to 7 of R3 at R4.
SWPEQRO,RO,[R1] ; Conditionally swap the contents of the

; word addressed by R1 with RO.
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4.13 Software Interrupt (SWI)

The instruction is only executed if the condition is true. The various conditions are
defined in 2 Table 4-2: Condition code summaryon page 4-5 The instruction encoding
is shown in DFigure 4-24: Software interrupt instruction, below.

31 28 27 24 23 0

_ Cond _ 1111 _ Comment field (ignored by Processor)

Condition field

Figure 4-24: Software interrupt instruction

The software interrupt instruction is used to enter Supervisor mode in a controlled
manner. The instruction causes the software interrupt trap to be taken, which effects
the mode change. The PC is then forced to a fixed value (0x08) and the CPSR is
saved in SPSR_svc. If the SWI vector address is suitably protected (by external
memory management hardware) from modification by the user, a fully protected
operating system may be constructed.

4.13.1 Return from the supervisor

The PC is saved in R14_svc upon entering the software interrupt trap, with the PC
adjusted to point to the word after the SWI instruction. MOVS PC,R14_svc will return
to the calling program and restore the CPSR.

Note that the link mechanism is not re-entrant, so if the supervisor code wishes to use
software interrupts within itself it must first save a copy of the return address and
SPSR.

4.13.2 Comment field

The bottom 24 bits of the instruction are ignored by the processor, and may be used
to communicate information to the supervisor code. For instance, the supervisor may
look at this field and use it to index into an array of entry points for routines which
perform the various supervisor functions.

4.13.3 Instruction cycle times

Software interrupt instructions take 2S + 1N incremental cycles to execute, where S
and N are as defined in 26.2 Cycle Types on page 6-2.
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4.13.4 Assembler syntax

4.13.5 Examples

SWI{cond} <expression>

{cond} two character condition mnemonic, 2 Table 4-2: Condition
code summary on page 4-5.

<expression> evaluated and placed in the comment field (which is

nored by ARM7TDMI).

SwWI ReadC ; Get next character from read stream.
Swi Writel+"k” ; Output a “k” to the write stream.
SWINE 0 ; Conditionally call supervisor

; with 0 in comment field.

Supervisor code
The previous examples assume that suitable supervisor code exists, for instance:

0x08 B Supervisor ; SWI entry point

EntryTable ; addresses of supervisor routines
DCD ZeroRtn
DCD ReadCRtn
DCD WritelRtn

Zero EQU 0

ReadC EQU 256

Writel EQU 512

Supervisor

; SWI has routine required in bits 8-23 and data (if any) in
; bits 0-7.

; Assumes R13_svc points to a suitable stack

STMFD R13,{R0-R2,R14} ; Save work registers and return
; address.

LDR  RO,[R14,#-4] ; Get SWI instruction.

BIC RO0,R0,#0xFF000000 ; Clear top 8 bits.

MOV R1,R0,LSR#8 ; Get routine offset.

ADR  R2,EntryTable ; Get start address of entry table.
LDR  R15,[R2,R1,LSL#2] ; Branch to appropriate routine.

WriteIRtn ; Enter with character in RO bits 0-7.

LDMFD R13,{R0-R2,R15}* ; Restore workspace and return,
; restoring processor mode and flags.
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4.14 Coprocessor Data Operations (CDP)

The instruction is only executed if the condition is true. The various conditions are
defined in 2 Table 4-2: Condition code summaryon page 4-5 The instruction encoding
is shown in DFigure 4-25: Coprocessor data operation instruction.

This class of instruction is used to tell a coprocessor to perform some internal
operation. No result is communicated back to ARM7TDMI, and it will not wait for the
operation to complete. The coprocessor could contain a queue of such instructions
ng execution, and their execution can overlap other a y, allowing the
coprocessor and ARM7TDMI to perform independent tasks in parallel.

31 28 27 24 23 20 19 16 15 12 11 8 7 5 4 3 0

_ Cond _ 1110 _O_UOUn_ CRn _ CRd _ CP# _ cP _o_ CRm _

Coprocessor operand register
Coprocessor information
Coprocessor number
Coprocessor destination register
Coprocessor operand register
Coprocessor operation code
Condition field

Figure 4-25: Coprocessor data operation instruction

4.14.1 The coprocessor fields

Only bit 4 and bits 24 to 31 are significant to ARM7TDMI. The remaining bits are used
by coprocessors. The above field names are used by convention, and particular
coprocessors may redefine the use of all fields except CP# as appropriate. The CP#
field is used to contain an identifying number (in the range 0 to 15) for each
coprocessor, and a coprocessor will ignore any instruction which does not contain its
number in the CP# field.

The conventional interpretation of the instruction is that the coprocessor should
perform an operation specified in the CP Opc field (and possibly in the CP field) on the
contents of CRn and CRm, and place the result in CRd.

4.14.2 Instruction cycle times

Coprocessor data operations take 1S + bl incremental cycles to execute, where bis
the number of cycles spent in the coprocessor busy-wait loop.

S and | are as defined in 26.2 Cycle Types on page 6-2.
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4.14.3 Assembler syntax

CDP{cond} p#,<expression1>,cd,cn,cm{,<expression2>}

{cond} two character condition mnemonic. See DTable 4-2:
Condition code summary on page 4-5.
p# the unique number of the required coprocessor
<expressionl> evaluated to a constant and placed in the CP Opc field
cd, cnand cm evaluate to the valid coprocessor register numbers CRd, CRn
and CRm respectively
<expression2> where present is evaluated to a constant and placed in the
CP field
4.14.4 Examples
CDP p1,10,c1,c2,c3 ; Request coproc 1 to do operation 10
;on CR2 and CR3, and put the result
;in CR1.
CDPEQp2,5,c1,c2,c3,2 ; If Z flag is set request coproc 2

; to do operation 5 (type 2) on CR2
; and CR3,and put the result in CR1.
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4.15 Coprocessor Data Transfers (LDC, STC)

31

28 27

The instruction is only executed if the condition is true. The various conditions are
defined in 2 Table 4-2: Condition code summaryon page 4-5 The instruction encoding
is shown in DFigure 4-26: Coprocessor data transfer instructions.

This class of instruction is used to load (LDC) or store (STC) a subset of a
coprocessors’s registers directly to memory. ARM7TDMI is responsible for supplying
the memory address, and the coprocessor supplies or accepts the data and controls
the number of words transferred.

25 24 23 22 21 20 19 16 15 12 11 8 7 0

_ Cond _

[—

—

110 __u _ C_Z _<<_ L _ Rn _ CRd _ CP# _ Offset _
L J

L

Unsigned 8 bit immediate offset
Coprocessor number

Coprocessor source/destination register
Base register

Load/Store bit

0= Store to memory
1= Load from memory
Write-back bit
0=no -back
1= write address into base

Transfer length
Up/Down bit

0= down; subiract offset from base
1= up; add offset o base

Pre/Post indexing
0= post; add offset after transfer
1= pre; add offset before transfer

Condition field

Figure 4-26: Coprocessor data transfer instructions

4.15.1 The coprocessor fields

The CP# field is used to identify the coprocessor which is required to supply or accept
the data, and a coprocessor will only respond if its number matches the contents of
this field.

The CRd field and the N bit contain information for the coprocessor which may be
interpreted in different ways by different coprocessors, but by convention CRd is the
register to be transferred (or the first register where more than one is to be
transferred), and the N bit is used to choose one of two transfer length options. For
instance N=0 could select the transfer of a single register, and N=1 could select the
transfer of all the registers for context switching.
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4.15.2 Addressing modes

ARM7TDMI is responsible for providing the address used by the memory system for
the transfer, and the addressing modes available are a subset of those used in single
data transfer instructions. Note, however, that the immediate offsets are 8 bits wide
and specify word offsets for coprocessor data transfers, whereas they are 12 bits wide
and specify byte offsets for single data transfers.

The 8 bit unsigned immediate offset is shifted left 2 bits and either added to (U=1) or
subtracted from (U=0) the base register (Rn); this calculation may be performed either
before (P=1) or after (P=0) the base is used as the transfer address. The modified
base value may be overwritten back into the base register (if W=1), or the old value of
the base may be preserved (W=0). Note that post-indexed addressing modes require
explicit setting of the W bit, unlike LDR and STR which always write-back when post-
indexed.

The value of the base register, modified by the offset in a pre-indexed instruction, is
used as the address for the transfer of the first word. The second word (if more than
one is transferred) will go to or come from an address one word (4 bytes) higher than
the first transfer, and the address will be incremented by one word for each
subsequent transfer.

4.15.3 Address alignment

The base address should normally be a word aligned quantity. The bottom 2 bits of the
address will appear on A[1:0] and might be interpreted by the memory system.

4.15.4 Use of R15

If Rn is R15, the value used will be the address of the instruction plus 8 bytes. Base
write-back to R15 must not be specified.

4.15.5 Data aborts

If the address is legal but the memory manager generates an abort, the data trap will
be taken. The write-back of the modified base will take place, but all other processor
state will be preserved. The coprocessor is partly responsible for ensuring that the
data transfer can be restarted after the cause of the abort has been resolved, and must
ensure that any subsequent actions it undertakes can be repeated when the
instruction is retried.

4.15.6 Instruction cycle times

Coprocessor data transfer instructions take (n-1)S + 2N + bl incremental cycles to
execute, where:

n is the number of words transferred.
b is the number of cycles spent in the coprocessor busy-wait loop.
S, N and | are as defined in 26.2 Cycle Types on page 6-2.
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4.15.7 Assembler syntax

<LDC|STC>{cond}{L} p#,cd,<Address>

LDC load from memory to coprocessor
STC store from coprocessor to memory
{L} when present perform long transfer (N=1), otherwise perform short

transfer

(N=0)

{cond} two character condition mnemonic. See DTable 4-2: Condition code
summary on page 4-5.

p# the unique number of the required coprocessor
cd is an expression evaluating to a valid coprocessor register number
that is placed in the CRd field

<Address> can be:

1

Note If Rn is R15, the assembl
pipelining.

An expression which generates an address:

<expression>

The assembler attempt to generate an instruction using
the PC as a base and a corrected immediate offset to address
the location given by evaluating the expression. This will be a
PC relative, pre-indexed address. If the address is out of
range, an error will be generated.

A pre-indexed addressing specification:

[Rn] offset of zero
[Rn,<#expression>]{!} offset of <expression> bytes
A post-indexed addressing specification:
[Rn],<#expression> offset of <expression> bytes

{1} write back the base register
(set the W bit) if! is present

Rn is an expression evaluating
to a valid ARM7TDMI
register number.

ler will subtract 8 from the offset value to allow for ARM7TDMI
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4.15.8 Examples

Note

LDC pl,c2,table ; Load c2 of coproc 1 from address
able, using a PC relative address.
STCEQL p2,c3,[R5,#24]!; Conditionally store c3 of coproc 2

nto an address 24 bytes up from R5,

; write this address back to R5, and use
long transfer option (probably to

; store multiple words).

Although the address offset is expressed in bytes, the instruction offset field is in
words. The assembler will adjust the offset appropriately.
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4.16 Coprocessor Register T ransfers (MRC, MCR)

31

28 27

The instruction is only executed if the condition is true. The various conditions are
defined in 2 Table 4-2: Condition code summaryon page 4-5 The instruction encoding
is shown in DFigure 4-27: Coprocessor register transfer instructions.

This class of instruction is used to communicate information directly between
ARM7TDMI and a coprocessor. An example of a coprocessor to ARM7TDMI register
transfer (MRC) instruction would be a FIX of a floating point value held in a
coprocessor, where the floating point number is converted into a 32 bit integer within
the coprocessor, and the result is then transferred to ARM7TDMI register. A FLOAT of
a 32 bit value in ARM7TDMI register into a floating point value within the coprocessor
illustrates the use of ARM7TDMI register to coprocessor transfer (MCR).

An important use of this instruction is to communicate control information directly from
the coprocessor into the ARM7TDMI CPSR flags. As an example, the result of a
comparison of two floating point values within a coprocessor can be moved to the
CPSR to control the subsequent flow of execution.

24 23 21 20 19 16 15 12 11 8 7 5 4 3 0

_ Cond _ 1110 _O_uOun__._ CRn _ Rd _ CP# _ cp _H_ CRm _

[—

—

[ R | |1 J

Coprocessor operand register
Coprocessor information
Coprocessor number
ARM source/destination register
Coprocessor source/destination register
Load/Store bit

0= Store to Co-Processor

1= Load from Co-Processor

Coprocessor operation mode

Condition field

Figure 4-27: Coprocessor register transfer instructions

4.16.1 The coprocessor fields

The CP#field is used, as for all coprocessor instructions, to specify which coprocessor
is being called upon.

The CP Opc, CRn, CP and CRm fields are used only by the coprocessor, and the
interpretation presented here is derived from convention only. Other interpretations
are allowed where the coprocessor functionality is incompatible with this one. The
conventional interpretation is that the CP Opc and CP fields specify the operation the
coprocessor is required to perform, CRn is the coprocessor register which is the

ARM Instruction Set - MRC, MCR

source or destination of the transferred information, and CRm is a second coprocessor
register which may be involved in some way which depends on the particular operation
specified.

4.16.2 Transfers to R15

When a coprocessor register transfer to ARM7TDMI has R15 as the destination, bits
31, 30, 29 and 28 of the transferred word are copied into the N, Z, C and V flags
respectively. The other bits of the transferred word are ignored, and the PC and other
CPSR bits are unaffected by the transfer.

4.16.3 Transfers from R15

A coprocessor register transfer from ARM7TDMI with R15 as the source register will
store the PC+12.

4.16.4 Instruction cycle times

MRC instructions take 1S + (b+1)I +1C incremental cycles to execute, where S, | and
C are as defined in 26.2 Cycle Types on page 6-2.

MCR instructions take 1S + bl +1C incremental cycles to execute, where b is the
number of cycles spent in the coprocessor busy-wait loop.

4.16.5 Assembler syntax

<MCR|MRC>{cond} p#,<expression1>,Rd,cn,cm{,<expression2>}

MRC move from coprocessor to ARM7TDMI register (L=1)
MCR move from ARM7TDMI register to coprocessor (L=0)
{cond} two character condition mnemonic. See DTable 4-2:

Condition code summary on page 4-5.
p# the unique number of the required coprocessor

<expressionl> evaluated to a constant and placed in the CP Opc field

Rd is an expression evaluating to a valid ARM7TDMI register
number

cnand cm are expressions evaluating to the valid coprocessor register
numbers CRn and CRm respectively

<expression2> where present is evaluated to a constant and placed in the
CP field
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4.16.6 Examples

MRC  p2,5,R3,c5,c6

MCR p6,0,R4,c5,c6

MRCEQp3,9,R3,¢5,c6,2

; Request coproc 2 to perform operation 5
;on c5 and c6, and transfer the (single
; 32 bit word) result back to R3.

; Request coproc 6 to perform operation 0
; on R4 and place the result in c6.

; Conditionally request coproc 3 to
; perform operation 9 (type 2) on c5 and
; €6, and transfer the result back to R3.
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4.17 Undefined Instruction

The instruction is only executed if the condition is true. The various conditions are
defined in D Table 4-2: Condition code summary on page 4-5. The instruction format
is shown in DFigure 4-28: Undefined instruction.

31 28 27 25 24 5 4 3 0

_ Cond _ 011 _ XXXXXXXXXXXXXXXXXXXX _H_ XXXX _

Figure 4-28: Undefined instruction
If the condition is true, the undefined instruction trap will be taken.

Note that the undefined instruction mechanism involves offering this instruction to any
coprocessors which may be present, and all coprocessors must refuse to accept it by
driving CPA and CPB HIGH.

4.17.1 Instruction cycle times

This instruction takes 2S + 11 + 1N cycles, where S, N and | are as defined in 26.2
Cycle Types on page 6-2.

4.17.2 Assembler syntax

The assembler has no mnemonics for generating this instruction. If it is adopted in the
future for some specified use, suitable mnemonics will be added to the assembler.
Until such time, this instruction must not be used.
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4.18 Instruction Set Examples

The following examples show ways in which the basic ARM7TDMI instructions can
combine to give efficient code. None of these methods saves a great deal of execution
time (although they may save some), mostly they just save code.

4.18.1 Using the conditional instructions

Using conditionals for logical OR

CMP  Rn/#p ; If Rn=p OR Rm=q THEN GOTO Label.
BEQ Label

CMP  Rm#q

BEQ Label

This can be replaced by

CMP  Rn/#p

CMPNERmM,#q ; If condition not satisfied try
; other test.

BEQ Label

Absolute value

TEQ Rn#0 ; Test sign

RSBMI Rn,Rn,#0 ; and 2's complement if necessary.

Multiplication by 4, 5 or 6 (run time)

MOV  Rc,Ra,LSL#2 ; Multiply by 4,

CMP Rb#5 ; test value,

ADDCSRc,Rc,Ra ; complete mul

ADDHI Rc,Rc,Ra ; complete multiply by 6.

Combining discrete and range tests

TEQ Rc,#127 ; Discrete test,

CMPNERc,#" "-1 ; range test

MOVLSRc #".” ; IF Rc<="" OR Rc=ASCII(127)
; THEN Rc:=""

Division and remainder

A number of divide routines for specific applications are provided in source form as
part of the ANSI C library provided with the ARM Cross Development Toolkit, available
from your supplier. A short general purpose divide routine follows.

; Enter with numbersin Raand Rb.

MOV  Rent#1 Bit to control the division.
Divi CMP Rb,#0x80000000 ; Move Rb until greater than Ra.
CMPCCRb,Ra

MOVCCRb,Rb,ASL#1
MOVCCRcent,Rent, ASL#1

BCC Divi
MOV  Rc#0
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Div2 CMP RaRb ; Test for possible subtraction.
SUBCSRa,Ra,Rb ; Subtract if ok,
ADDCSRc,Rc,Rent ; put relevant bit into result
MOVS Rcnt,Rent,LSR#1 ; shift control bit
MOVNERDb,Rb,LSR#1 ; halve unless finished.

BNE Div2

; Divide result in Rc,
; remainder in Ra.

Overflow detection in the ARM7TDMI

1 Overflow in unsigned multiply with a 32 bit result

UMULL Rd,Rt,Rm,Rn ;310 6 cycles
TEQ Rt,#0 ;+1 cycle and a register
BNE overflow

2 Overflow in signed multiply with a 32 bit result

SMULL Rd,Rt,Rm,Rn ;310 6 cycles
TEQ Rt,Rd ASR#31 ;+1 cycle and a register
BNE overflow

3 Overflow in unsigned multiply accumulate with a 32 bit result

UMLAL Rd,Rt,Rm,Rn ;410 7 cycles
TEQ Rt,#0 ;+1 cycle and a register
BNE overflow

4 Overflow in signed multiply accumulate with a 32 bit result
SMLAL Rd,Rt,Rm,Rn ;410 7 cycles
TEQ Rt,Rd, ASR#31 ;+1 cycle and a register
BNE overflow

5 Overflow in unsigned multiply accumulate with a 64 bit result

UMULL RI,Rh,Rm,Rn ;310 6 cycles

ADDS RI,RI,Ral ;lower accumulate
ADC Rh,Rh,Ra2 ;upper accumulate
BCS overflow ;1 cycle and 2 registers

6  Overflow in signed multiply accumulate with a 64 bit result

SMULL RI,Rh,Rm,Rn ;310 6 cycles

ADDS RI,RI,Ral ;lower accumulate
ADC Rh,Rh,Ra2 ;upper accumulate
BVS overflow ;1 cycle and 2 registers

Note Overflow checking is not applicable to unsigned and signed multiplies with a 64-bit
result, since overflow does not occur in such calculations.

4-62 ARM7TDMI Data Sheet

ARM DDI 0029E




ARM Instruction Set - Examples

4.18.2 Pseudo-random binary sequence generator

It is often necessary to generate (pseudo-) random numbers and the most efficient
algorithms are based on shift generators with exclusive-OR feedback rather like a
cyclic redundancy check generator. Unfortunately the sequence of a 32 bit generator
needs more than one feedback tap to be maximal length (i.e. 2/32-1 cycles before
repetition), so this example uses a 33 bit register with taps at bits 33 and 20. The basic
algorithm is newbit:=bit 33 eor bit 20, shift left the 33 bit number and put in newbit at
the bottom; this operation is performed for all the newbits needed (i.e. 32 bits). The
entire operation can be done in 5 S cycles:

; Enter with seed in Ra (32 bits),
Rb (1 bitin Rb Isb), uses Rc.

TST Rb,Rb,LSR#1 ; Top bit into carry
MOVS Rc,Ra,RRX ; 33 bit rotate right
ADC  Rb,Rb,Rb ; carry into Isb of Rb
EOR Rc,Rc,Ra,LSL#12 ; (involved!)
EOR Ra,Rc,Rc,LSR#20 ; (similarly involved!)
; new seed in Ra, Rb as before

4.18.3 Multiplication by constant using the barrel shifter

Multiplication by 2”n (1,2,4,8,16,32..)
MOV  Ra, Rb, LSL #n
Multiplication by 2*n+1 (3,5,9,17..)
ADDRa,Ra,Ra,LSL #n
Multiplication by 2”n-1 (3,7,15..)
RSB Ra,Ra,Ra,LSL #n
Multiplication by 6
ADD Ra,Ra,Ra,LSL #1; multiply by 3
MOV Ra,Ra,LSL#1; and then by 2
Multiply by 10 and add in extra number
ADD Ra,Ra,Ra,LSL#2; multiply by 5
ADD  Ra,Rc,Ra,LSL#1; multiply by 2 and add in next digit

General recursive method for Rb := Ra*C, C a constant:

1 If Ceven, say C =2"n*D, D odd:
D=1: MOV Rb,Ra,LSL #n
D<>1: {Rb := Ra*D}
MOV Rb,Rb,LSL #n
2 IfCMOD4=1,sayC=2"n*D+1, D odd, n>1:
D=1: ADD Rb,Ra,Ra,LSL #n
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D<>1: {Rb := Ra*D}
ADD Rb,Ra,Rb,LSL #n
3 IfCMOD 4 =3, say C =2*n*D-1, D odd, n>1:
D=1: RSB Rb,Ra,Ra,LSL #n
D<>1: {Rb := Ra*D}
RSB Rb,Ra,Rb,LSL #n

This is not quite optimal, but close. An example of its non-optimality is multiply
by 45 which is done by:

RSB Rb,Ra,Ra,LSL#2 ; multiply by 3

RSB Rb,Ra,Rb,LSL#2 ; multiply by 4*3-1 =11

ADD Rb,Ra,Rb,LSL# 2; multiply by 4*11+1 = 45

rather than by:

ADD Rb,Ra,Ra,LSL#3 ; multiply by 9
ADD Rb,Rb,Rb,LSL#2 ; multiply by 5*9 = 45

4.18.4 Loading a word from an unknown alignment

; enter with address in Ra (32 bits)
; uses Rb, Rc; result in Rd.
; Note d must be less than c e.g. 0,1

BIC Rb,Ra,#3 ; get word aligned address
LDMIA Rb{Rd,Rc} ; get 64 bits containing answer
AND Rb,Ra#3 ; correction factor in bytes
MOVS Rb,Rb,LSL#3 ;...now in bits and test if aligned

MOVNERd,Rd,LSR Rb ; produce bottom of result word
; (if not aligned)

RSBNE Rb,Rb,#32 ; get other shift amount

ORRNERd,Rd,Rc,LSL Rb; combine two halves to get result
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6.1 Overview
ARM7TDMI's memory interface consists of the following basic elements:
¢ 32-bit address bus
This specifies to memory the location to be used for the transfer.
¢ 32-bit data bus

Instructions and data are transferred across this bus. Data may be word,
halfword or byte wide in size.

ARM7TDMI includes a bidirectional data bus, D[31:0], plus separate
unidirectional data busses, DIN[31:0] and DOUT[31:0] . Most of the text in this
chapter describes the bus behaviour assuming that the bidirectional is in use.
However, the behaviour applies equally to the unidirectional busses.

« Control signals

gmgoq ——.—.—.m:Qom These specify, for example, the size of the data to be transferred, and the
direction of the transfer together with providing privileged information.

This collection of signals allow ARM7TDMI to be simply interfaced to DRAM, SRAM

and ROM. To fully exploit page mode access to DRAM, information is provided on

whether or not the memory accesses are sequential. In general, interfacing to static

This chapter describes the ARM7TDMI memory interface. memories is much simpler than interfacing to dynamic memory.
6.1 Overview 6-2 6.2 O<o_m ._.<Umm
6.2 Cycle Types 62 All memory transfer cycles can be placed in one of four categories:
6.3  Address Timing 6-4
. 1 Non-sequential cycle. ARM7TDMI requests a transfer to or from an address

6.4  Data Transfer Size 6-9 which is unrelated to the address used in the preceding cycle.
6.5 Instruction Fetch 6-10 2 Sequential cycle. ARM7TDMI requests a transfer to or from an address which
6.6 Memory Management 6-12 is either the same as the .mn%mmw in the preceding cycle, or is one word or
6.7 Locked Operations 6-12 halfword after the preceding address.
6.8  Stretching Access Times 612 3 Internal cycle. ARM7TDMI does not require a transfer, as it is performing an

! internal function and no useful prefetching can be performed at the same time.
6.9 The ARM Data Bus 6-13

4 Coprocessor register transfer. ARM7TDMI wishes to use the data bus to
6.10 The External Data Bus 6-15 communicate with a coprocessor, but does not require any action by the

memory system.
These four classes are distinguishable to the memory system by inspection of the
nMREQ and SEQ control lines (see DTable 6-1: Memory cycle types). These control
lines are generated during phase 1 of the cycle before the cycle whose characteristics
they forecast, and this pipelining of the control information gives the memory system
sufficient time to decide whether or not it can use a page mode access.

ARM7TDMI Data Sheet 61 6-2 ARM7TDMI Data Sheet

ARM DDI 0029E ARM DDI 0029E




Memory Interface

NMREQ SEQ Cycle type

Non-sequential (N-cycle)

0 1 Sequential (S-cycle)
1 0 Internal (I-cycle)
1 1 Coprocessor register transfer (C-cycle)

Table 6-1: Memory cycle types

DFigure 6-1: ARM memory cycle timing on page 6-3 shows the pipelining of the control
signals, and suggests how the DRAM address strobes (NRAS and nCAS) might be
timed to use page mode for S-cycles. Note that the N-cycle is longer than the other
cycles. This is to allow for the DRAM precharge and row access time, and is not an
ARM7TDMI requirement.

N-cycle S-cycle I-cycle C-cycle
MCLK
A[31:0] a a+4 a+8

nMREQ | i
w0 ]| | | |
nRAS 1]

D[31:0]

Figure 6-1: ARM memory cycle timing

When an S-cycle follows an N-cycle, the address will always be one word or halfword
greater than the address used in the N-cycle. This address (marked “a” in the above
diagram) should be checked to ensure that it is not the last in the DRAM page before
the memory system commits to the S-cycle. If it is at the page end, the S-cycle cannot
be performed in page mode and the memory system will have to perform a full access.

The processor clock must be stretched to match the full access. When an S-cycle
follows an I-cycle, the address will be the same as that used in the I-cycle. This fact
may be used to start the DRAM access during the preceding cycle, which enables the
S-cycle to run at page mode speed whilst performing a full DRAM access. This is
shown in DFigure 6-2: Memory cycle optimization.
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I-cycle S-cycle

A3L:0]

NMREQ

SEQ

nRAS [
nCAS L]

D[31:0]

Figure 6-2: Memory cycle optimization

6.3 Address T iming

Note

ARM7TDMI’s address bus can operate in one of two configurations - pipelined or
depipelined, and this is controlled by the APE input signal. The configurability is
provided to ease the design in of ARM7TDMI to both SRAM and DRAM based
systems.

Itis a requirement SRAMs and ROMs that the address be held stable throughout the
memory cycle. In a system containing SRAM and ROM only, APE may be tied
permanently LOW, producing the desired address timing. This is shown in

DFigure 6-3: ARM7TDMI de-pipelined addresses.

APE effects the timing of the address bus A[31:0], plus nRW, MAS[1:0], LOCK,
nOPC and nTRANS.
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MCLK

APE

nMREQ 7
SEQ

A[31:0] 7

D[31:0]

Figure 6-3: ARM7TDMI de-pipelined addresses

In a DRAM based system, it is desirable to obtain the address from ARM7TDMI as
early as possible. When APE is HIGH, ARM7TDMI's address becomes valid in the
MCLK high phase before the memory cycle to which it refers. This timing allows longer
for address decoding and the generation of DRAM control signals. DFigure 6-4:
ARM7TDMI pipelined addresses on page 6-5 shows the effect on the timing when
APE is HIGH.

MCLK

APE

nMREQ 7

SEQ

A[31:0] 7

D[31:0]

Figure 6-4: ARM7TDMI pipelined addresses

ARM7TDMI Data Sheet 65

ARM DDI 0029E

Memory Interface

Many systems will contain a mixture of DRAM and SRAM/ROM. To cater for the
different address timing requirements, APE may be safely changed during the low
phase of MCLK. Typically, APE would be held at one level during a burst of sequential
accesses to one type of memory. When a non-sequential access occurs, the timing
of most systems enforce a wait state to allow for address decoding. As a result of the
address decode, APE can be driven to the correct value for the particular bank of
memory being accessed. The value of APE can be held until the memory control
signals denote another non-sequential access.

By way of an example, DFigure 6-5: Typical system timing, shows a combination of
accesses to a mixed DRAM / SRAM system. Here, the SRAM has zero wait states,
and the DRAM has a 2:1 N-cycle / S-cycle ratio. A single wait state is inserted for
address decode when a non-sequential access occurs. Typical, externally generated
DRAM control signals are also shown.
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Figure 6-5: Typical system timing
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Previous ARM processors included the ALE signal, and this is retained for backwards
compatibility. This signal also allows the address timing to be modified to achieve the
same results as APE, but in an asynchronous manner. To obtain clean MCLK low
timing of the address bus by this mechanism, ALE must be driven HIGH with the falling
edge of MCLK, and LOW with the rising edge of MCLK. ALE can simply be the inverse
of MCLK but the delay from MCLK to ALE must be carefully controlled such that the
Tald timing constraint is achieved. DFigure 6-6: SRAM compatible address timing
shows how ALE can be used to achieve SRAM compatible address timing. Refer to
DChapter 12, AC Parameters for details of the exact timing constraints.
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Figure 6-6: SRAM compatible address timing
Note If ALE is to be used to change address timing, then APE must be tied HIGH. Similarly,
if APE is to be used, ALE must be tied HIGH.
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6.4 Data Transfer Size

In an ARM7TDMI system, words, halfwords or bytes may be transferred between the
processor and the memory. The size of the transaction taking place is determined by
the MAS[1:0] pins. These are encoded as follows:

MAS[1:0] 00  Byte

01 halfword
10 word
11 reserved

The processor always produces a byte address, but instructions are either words (4
bytes) or halfwords (2 bytes), and data can be any size. Note that when word
instructions are fetched from memory, A[1:0] are undefined and when halfword
instructions are fetched, A[0] is undefined. The MAS[1:0] outputs share the same
timing as the address bus and thus can be modified by the use of ALE and APE as
described in 26.3 Address Timing on page 6-4.

When a data read of byte or halfword size is performed (eg LDRB), the memory
system may safely ignore the fact that the request is for a sub-word sized quantity and
present the whole word. ARM7TDMI will always correctly extract the addressed byte
or halfword from the data. The memory system may also choose just to supply the
addressed byte or halfword. This may be desirable in order to save power or to simplify
the decode logic.

When a byte or halfword write occurs (eg STRH), ARM7TDMI broadcast the byte
or halfword across the whole of the bus. The memory system must then decode A[1:0]
to enable writing only to the addressed byte or halfword.

One way of implementing the byte decode in a DRAM system is to separate the 32-bit
wide block of DRAM into four byte wide banks, and generate the column address
strobes independently as shown in DFigure 6-7: Decoding byte accesses to memory
on page 6-11.

When the processor is configured for Little Endian operation, byte 0 of the memory
system should be connected to data lines 7 through 0 (D[7:0] ) and strobed by nCASO.
nCASL1 drives the bank connected to data lines 15 though 8, and so on. This has the
added advantage of reducing the load on each column strobe driver, which improves
the precision of this time-critical-signal.

In the Big Endian case, byte 0 of the memory system should be connected to data lines
31 through 24.
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6.5

Instruction Fetch

ARM7TDMI will perform 32- or 16-bit instruction fetches depending on whether the
processor is in ARM or THUMB state. The processor state may be determined
externally by the value of the TBIT signal. When this is LOW, the processor is in ARM
state and 32-bit instructions are fetched. When TBIT is HIGH, the processor is in
THUMB state and 16-bit instructions are fetched. The size of the data being fetched is
also indicated on the MAS[1:0] bits, as described above.

When the processor is in ARM state, 32-bit instructions are fetched on D[31:0]. When
the processor is in THUMB state, 16-bit instructions are fetched from either the upper,
D[31:16], or the lower D[15:0] half of the bus. This is determined by the endianism of
the memory system, as configured by the BIGEND input, and the state of A[1]. D Table
6-2: Endianism effect on instruction position shows which half of the data bus is
sampled in the different configurations.

Endianism
ittle Big
BIGEND =0 BIGEND =1

Al1]=0 D[15:0] D[31:16]
AlL]=1 D[31:16] D[15:0]

Table 6-2: Endianism ef fect on instruction position

When a 16-bit instruction is fetched, ARM7TDMI ignores the unused half of the data
bus.

DTable 6-2: Endianism effect on instruction position describes instructions fetched
from the bidirectional data bus (i.e. BUSEN is LOW). When the unidirectional data
busses are in use (i.e. BUSEN is HIGH), data will be fetched from the corresponding
half of the DIN[31:0] bus.

6-10
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Figure 6-7: Decoding byte accesses to memory
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6.6 Memory Management

The ARM7TDMI address bus may be processed by an address translation unit before
being presented to the memory, and ARM7TDMI is capable of running a virtual
memory system. The ABORT input to the processor may be used by the memory
manager to inform ARM7TDMI of page faults. Various other signals enable different
page protection levels to be supported:

1 nRW can be used by the memory manager to protect pages from being
written to.

2 nTRANS indicates whether the processor is in user or a privileged mode, and
may be used to protect system pages from the user, or to support completely
separate mappings for the system and the user.

Address translation will normally only be necessary on an N-cycle, and this fact may
be exploited to reduce power consumption in the memory manager and avoid the
translation delay at other times. The times when translation is necessary can be
deduced by keeping track of the cycle types that the processor uses.

6.7 Locked Operations

The ARM instruction set of ARM7TDMI includes a data swap (SWP) instruction that
allows the contents of a memory location to be swapped with the contents of a
processor register. This instruction is implemented as an uninterruptable pair of
accesses; the first access reads the contents of the memory, and the second writes
the register data to the memory. These accesses must be treated as a contiguous
operation by the memory controller to prevent another device from changing the
affected memory location before the swap is completed. ARM7TDMI drives the LOCK
signal HIGH for the duration of the swap operation to warn the memory controller not
to give the memory to another device.

6.8 Stretching Access T imes

All memory timing is defined by MCLK, and long access times can be accommodated
by stretching this clock. It is usual to stretch the LOW period of MCLK, as this allows
the memory manager to abort the operation if the access is eventually unsuccessful.

Either MCLK can be stretched before it is applied to ARM7TDMI, or the nWAIT input
can be used together with a free-running MCLK. Taking nWAIT LOW has the same
effect as stretching the LOW period of MCLK, and nWAIT must only change when
MCLK is LOW.

ARM7TDMI does not contain any dynamic logic which relies upon regular clocking to
maintain its internal state. Therefore there is no limit upon the maximum period for
which MCLK may be stretched, or n\WAIT held LOW.

6-12
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6.9 The ARM Data Bus

Note

To ease the connection of ARM7TDMI to sub-word sized memory systems, input data
and instructions may be latched on a byte by byte basis. This is achieved by use of the
BL[3:0] input signals where BL[3] controls the latching of the data present on
D[31:24] of the data bus and so on.

In @ memory system containing word wide memory only, BL[3:0] may be tied HIGH.
For sub word wide memory systems, BL[3:0] are used to latch the data as it is read
out of memory. For example, a word access to halfword wide memory must take place
in two memory cycles. In the first cycle, the data for D[15:0] is obtained from the
memory and latched into the processor on the falling edge of MCLK when BL[1:0] are
both HIGH. In the second cycle, the data for D[31:16] is latched into the processor on
the falling edge of MCLK when BL[3:2] are both HIGH.

A memory access like this is shown in DFigure 6-8: Memory access on page 6-14.
Here, aword access is performed from halfword wide memory in two cycles.In the first,
the data read is applied to the lower half of the bus, in the second cycle the read data
is applied to the upper half of the bus. Since two memory cycles were required, N\WAIT
is used to stretch the internal processor clock. However, nWAIT does not effect the
operation of the data latches. In this way, data may be extracted from memory word,
halfword or byte at a time, and the memory may have as many wait states as required.
In any multi-cycle memory access, nWAIT is held LOW until the final quantum of data
is latched.

In this example, BL[3:0] were driven to value 0x3 in the first cycle so that only the

latches on D[15:0] were opened. In fact, BL[3:0] could have been driven to value OxF
and all the latches opened. Since in the second cycle, the latches on D[31:16] were
written with the correct data, this would not have effected the processor's operation.

BL[3:0] should all be HIGH during store cycles.
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nMREQ 7
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A[31:0] 7

nWAIT

DI[15:0]

D[31:16]

[]
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BL[3:0]

Figure 6-8: Memory access

As a further example, a halfword load from 2-wait state byte wide memory is shown in
DFigure 6-9: Two-cycle Memory access on page 6-15. Here, each memory access
takes two cycles. In the first, access, BL[3:0] are driven to value OxF. The correct data
is latched from D[7:0] whilst unknown data is latched from D[31:8]
access, the byte for D[15:8] is latched and so the halfword on D[15:0] has been
correctly read from the memory. The fact that internally D[31:16] are unknown does
not matter because internally the processor will extract only the halfword it is
interested in.
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Figure 6-9: Two-cycle Memory access

6.10 The External Data Bus

ARM7TDMI has a bidirectional data bus, D[31:0]. However, since some ASIC design
methodologies prohibit the use of bidirectional buses, unidirectional data in,
DIN[31:0], and data out, DOUT[31:0], busses are also provided. The logical
arrangement of these buses is shown in2Figure 6-10: ARM7TDMI external bus
arrangement on page 6-16

Memory Interface
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Figure 6-10: ARM7TDMI external bus arrangement
When the bidirectional data bus is being used, the unidirectional busses must be
disabled by driving BUSEN LOW. The timing of the bus for three cycles,
load-store-load, is shown in DFigure 6-11: Bidirectional bus timing.
| | |
d Cycle ——» Cycle ——»|+«———Read Cycle ——»
|
MCLK ] [
D[31:0] u u
Figure 6-11: Bidirectional bus timing
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Figure 6-12: Unidirectional bus timing

6.10.1 The unidirectional data bus

When the unidirectional data busses are being used, (i.e. when BUSEN is HIGH), the
bidirectional bus, D[31:0], must be left unconnected.

When BUSEN is HIGH, all instructions and input data are presented on the input data
bus, DIN[31:0]. The timing of this data is similar to that of the bidirectional bus when
in input mode. Data must be set up and held to the falling edge of MCLK. For the exact
timing requirements refer to DChapter 12, AC Parameters.

In this configuration, all output data is presented on DOUT[31:0]. The value on this
bus only changes when the processor performs a store cycle. Again, the timing of the
data is similar to that of the bidirectional data bus. The value on DOUT[31:0] changes
off the falling edge of MCLK.

The bus timing of a read-write-read cycle combination is shown in DFigure 6-12:
Unidirectional bus timing on page 6-17.

When BUSEN is LOW, the buffer between DIN[31:0] and D[31:0] is disabled. Any
data presented on DIN[31:0] is ignored. Also, when BUSEN is low, the value on
DOUTI[31:0] is forced to 0x00000000.

Typically, the unidirectional busses would be used internally in ASIC embedded
applications. Externally, most systems still require a bidirectional data bus to interface
to external memory. DFigure 6-13: External connection of unidirectional busses on
page 6-18, shows how the unidirectional busses may be joined up at the pads of an
ASIC to connect to an external bidirectional bus.
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Figure 6-13: External connection of unidirectional busses

6.10.2 The bidirectional data bus

ARM7TDMI has a bidirectional data bus, D[31:0]. Most of the time, the ARM reads
from memory and so this bus is configured to input. During write cycles however, the
ARM7TDMI must output data. During phase 2 of the previous cycle, the signal nRW
is driven HIGH to indicate a write cycle. During the actual cycle, NENOUT is driven
LOW to indicate that the ARM7TDMI is driving D[31:0] as an output. DFigure 6-14:
Data write bus cycle shows this bus timing (DBE has been tied HIGH in this example).
DFigure 6-15: ARM7TDMI data bus control circuit on page 6-21 shows the circuit
which exists in ARM7TDMI for controlling exactly when the external bus is driven out.
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Figure 6-14: Data write bus cycle

The ARM7TDMI macrocell has an additional bus control signal, nENIN, which allows
the external system to manually tristate the bus. In the simplest systems, nENIN can
be tied LOW and nENOUT can be ignored. However, in many applications when the
external data bus is a shared resource, greater control may be required. In this

situation, NnENIN can be used to delay when the external bus is driven. Note that for
backwards compatibility, DBE is also included. At the macrocell level, DBE and nENIN
have almost identical functionality and in most applications one can be tied off.

Section 26.10.3 Example system: The ARM7TDMI Testchip on page 6-21 describes
how ARM7TDMI may be interfaced to an external data bus, using ARM7TDMI
Testchip as an example.

ARM7TDMI has another output control signal called TBE. This signal is normally only
used during test and must be tied HIGH when not in use. When driven LOW, TBE
forces all three-stateable outputs to high impedance. It is as if both DBE and ABE
have been driven LOW, causing the data bus, the address bus, and all other signals
normally controlled by ABE to become high impedance. Note, however, that there is
no scan cell on TBE. Thus, TBE is completely independent of scan data and may be
used to put the outputs into a high impedance state while scan testing takes place.

DTable 6-3: Output enable control summary, below, shows the tri-state control of
ARM7TDMI's outputs.
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Signals without ¢ in the ABE, DBE or TBE column cannot be driven to the high

impedance state:

ARM7TDMI output

DBE TBE

Al31:0]
D[31:0]
nRW
LOCK
MAS[1:0]
noPC
NTRANS
DBGACK
ECLK
nCPI
NENOUT
nEXEC
nM[4:0]
TBIT
nMREQ
SDOUTMS
SDOUTDATA
SEQ
DOUT[31:0]

AN

R R R <

R R < <

Table 6-3: Output enable control summary
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Figure 6-15: ARM7TDMI data bus control circuit

6.10.3 Example system: The ARM7TDMI T estchip

Connecting ARM7TDMI’s data bus, D[31:0] to an external shared bus requires some
simple additional logic. This will vary from application to application. As an example,
the following describes how the ARM7TDMI macrocell was connected to the
bi-directional data bus pads of the ARM7TDMI testchip.

In this application, care must be taken to prevent bus clash on D[31:0] when the data
bus drive changes direction. The timing of nENIN, and the pad control signals must be
arranged so that when the core starts to drive out, the pad drive onto D[31:0] switches
off before the core starts to drive. Similarly, when the bus switches back to input, the
core must stop driving before the pad switches on.

All this can be achieved using a simple non-overlapping clock generator. The actual
circuit implemented in the ARM7TDMI testchip is shown in DFigure 6-16: The

ARM7TDMI Testchip data bus circuit on page 6-22. Note that at the core level, TBE
and DBE are tied HIGH (inactive). This is because in a packaged part, there is no need

Memory Interface

ARM7TDMI
Core

to ever manually force the internal buses into a high impedance state. Note also that
at the pad level, the signal EDBE is factored into the bus control logic. This allows the
external memory controller to arbitrate the bus and asynchronously disable
ARM7TDMI testchip if required.

ARM7TDMI testchip

o {3 EDBE

nENOUT

N\ nEN2

nEN1

T

Vdd

Pad

. XD[31:0]
D[31:0] N

Figure 6-16: The ARM7TDMI Testchip data bus circuit

DFigure 6-17: Data bus control signal timing on page 6-23 shows how the various
control signals interact. Under normal conditions, when the data bus is configured as
input, NENOUT is HIGH, nEN1 is LOW, and nEN2/nENIN is HIGH. Thus the pads
drive XD[31:0] onto D[31:0].

When a write cycle occurs, nRW is driven HIGH to indicate a write during phase 2 of
the previous cycle, (ie, with the address). During phase 1 of the actual cycle, NENOUT
is driven LOW to indicate that ARM7TDMI is about to drive the bus. The falling edge
of this signal makes nEN1 go HIGH, which disables the input half pad from driving
D[31:0]. This in turn makes nEN2 go LOW, which enables the output half of the pad
so that the ARM7TDMI is now driving the external data bus, XD[31:0]. nEN2 is then
buffered and driven back into the core on nENIN, so that finally the ARM7TDMI
macrocell drives D[31:0]. The delay between all the signals ensures that there is no
clash on the data bus as it changes direction from input to output.
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Figure 6-17: Data bus control signal timing

When the bus turns around to the other direction at the end of the cycle, the various
control signals switch the other way. Again, the non-overlap ensures that there is
never a bus clash. This time, nENOUT is driven HIGH to denote that ARM7TDMI no
longer needs to drive the bus and the core’s output is immediately switched off. This
causes nEN2 to disable the output half of the pad which in turn causes nEN1 to switch
on the input half. Thus, the bus is back to its original input configuration.

Note that the data out time of ARM7TDMI is not directly determined by nENOUT and
nENIN, and so delaying exactly when the bus is driven not affect the propagation
delay. Please refer to DChapter 11, DC Parameters for timing details.
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Instruction Cycle Operations

10.1 Introduction

In the following tables nMREQ and SEQ (which are pipelined up to one cycle ahead
of the cycle to which they apply) are shown in the cycle in which they appear, so they
predict the type of the next cycle. The address, MAS[1:0], nRW, nOPC, nTRANS and
TBIT (which appear up to half a cycle ahead) are shown in the cycle to which they

apply. The address is incremented for prefetching of instructions in most cases. Since

(4 bytes in ARM state and 2 bytes in THUMB state). Similarly, MAS[1:0] wi
the width of the instruction fetch, i=2 in ARM state and i=1 in THUMB state
representing word and halfword accesses respectively.

10.2 Branch and Branch with Link

——Jm._.—.:o._.mo: Qo_m 08—.0.:0:% A branch instruction calculates the branch destination in the first cycle, whilst

performing a prefetch from the current PC. This prefetch is done in all cases, since by
the time the decision to take the branch has been reached it is already too late to
prevent the prefetch.

This chapter describes the ARM7TDMI instruction cycle operations. During the second cycle a fetch is performed from the branch destination, and the
return address is stored in register 14 if the link bit is set.

10.1 Introduction 10-2
L ~ The third cycle performs a fetch from the destination + L, refilling the instruction
102 Branch and Branch with Link 102 pipeline, and if the branch is with link R14 is modified (4 is subtracted from it) to
10.3 THUMB Branch with Link 10-3 simplify return from SUB PC,R14,#4 to MOV PC,R14 . This makes the
10.4 Branch and Exchange (BX) 10-3 STM..{R14} _._.uz_:ﬁuov type of mchS_:m. work correctly. .._.:m cycle timings are
105 Data O i 104 shown below in DTable 10-1: Branch instruction cycle operations:
. ata Operations -
10.6 Multiply and Multiply Accumulate 10-6 Cycle | Address MAS[1:0] | nRW | Data nMREQ | SEQ | nOPC
10.7 Load Register 10-8 1 pe+2L i 0 (pc+2L) | 0 0 0
10.8 Store Register 10-9 5 alu i 0 @ o 1 0
10.9 Load Multiple Registers 10-9 2 o 8 Fman) || & 2 %
alu+| I alu +
10.10 Store Multiple Registers 10-11
lu+2L
10.11 Data Swap 10-11 o
10.12 Software Interrupt and Exception Entry 10-12 Table 10-1: Branch instruction cycle operations
10.13 Coprocessor Data Operation 10-13 pc is the address of the branch instruction
10.14 Coprocessor Data Transfer (from memory to coprocessor) 10-14 alu is an address calculated by ARM7TDMI
10.15 Coprocessor _umr.u., Transfer (from coprocessor to memory)  10-15 (@lu) are the contents of that address
10.16 Coprocessor Register Transfer (Load from coprocessor) 10-16 Note This applies to branches in ARM and THUMB state, and to Branch with Link in ARM
10.17 Coprocessor Register Transfer (Store to coprocessor) 10-17 state only.
10.18 Undefined Instructions and Coprocessor Absent 10-18
10.19 Unexecuted Instructions 10-18
10.20 Instruction Speed Summary 10-19
ARM7TDMI Data Sheet 101 102 ARM7TDMI Data Sheet

ARM DDI 0029E ARM DDI 0029E




Instruction Cycle Operations

10.3 THUMB Branch with Link

A THUMB Branch with Link operation consists of two consecutive THUMB
instructions, see 25.19 Format 19: long branch with link on page 5-40.

The first instruction acts like a simple data operation, taking a single cycle to add the
PC to the upper part of the offset, storing the result in Register 14 (LR).

The second instruction acts in a similar fashion to the ARM Branch with Link
instruction, thus its first cycle calculates the final branch destination whilst performing
a prefetch from the current PC.

The second cycle of the second instruction performs a fetch from the branch
destination and the return address is stored in R14.

The third cycle of the second instruction performs a fetch from the destination +2,
refilling the instruction pipeline and R14 is modified (2 subtracted from it) to simplify
the return to MOV PC, R14 . This makes the PUSH {..,LR} ; POP {..,PC} type
of subroutine work correctly.

The cycle timings of the complete operation are shown in 2 Table 10-2: THUMB Long
Branch with Link

Cycle Address MAS[1:0] | nRW Data NMREQ SEQ nOPC

1 pc+4 1 0 (pc + 4) 0 1 0

2 pc+6 1 0 (pc + 6) 0 0 0

3 alu 1 0 (alu) 0 1 0

4 alu+2 1 0 (@u+2) |o 1 0
alu+4

Table 10-2: THUMB Long Branch with Link

pc is the address of the first instruction of the operation.

10.4 Branch and Exchange (BX)
A Branch and Exchange operation takes 3 cycles and is similar to a Branch.

In the first cycle, the branch destination and the new core state are extracted from the
register source, whilst performing a prefetch from the current PC. This prefetch is
performed in all cases, since by the time the decision to take the branch has been
reached, it is already too late to prevent the prefetch.

During the second cycle, a fetch is performed from the branch destination using the
new instruction width, dependent on the state that has been selected.

The third cycle performs a fetch from the destination +2 or +4 dependent on the new
specified state, refilling the instruction pipeline. The cycle timings are shown in D Table
10-3: Branch and Exchange instruction cycle operations on page 10-4.
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Cycle Address MAS [1:0] | nRW Data NMREQ | SEQ noPC TBIT
1 pc + 2W 1 0 (pC + 2W) 0 0 0 T
2 alu i 0 (alu) 0 1 0 t
3 alu+w i 0 (alu+w) 0 1 0 t
alu + 2w
Table 10-3: Branch and Exchange instruction cycle operations
Notes:

1 W and w represent the instruction width before and after the BX respectively.
In ARM state the width equals 4 bytes and in THUMB state the width equals
2 bytes. For example, when changing from ARM to THUMB state, W would
equal 4 and w would equal 2.

2 landirepresentthe memory access size before and after the BX respectively.
In ARM state, the MAS[1:0] is 2 and in THUMB state MAS[1:0] is 1. When
changing from THUMB to ARM state, | would equal 1 and i would equal 2.

3 Tand trepresent the state of the TBIT before and after the BX respectively.
In ARM state TBIT is 0 and in THUMB state TBIT is 1. When changing from
ARM to THUMB state, T would equal 0 and t would equal 1.

10.5 Data Operations

A data operation executes in a single datapath cycle except where the shift is
determined by the contents of a register. A register is read onto the A bus, and a
second register or the immediate field onto the B bus. The ALU combines the A bus
source and the shifted B bus source according to the operation specified in the
instruction, and the result (when required) is written to the destination register.
(Compares and tests do not produce results, only the ALU status flags are affected.)

An instruction prefetch occurs at the same time as the above operation, and the
program counter is incremented.

When the shift length is specified by a register, an additional datapath cycle occurs
before the above operation to copy the bottom 8 bits of that register into a holding latch
in the barrel shifter. The instruction prefetch will occur during this first cycle, and the
operation cycle will be internal (ie will not request memory). This internal cycle can be
merged with the following sequential access by the memory manager as the address
remains stable through both cycles.

The PC may be one or more of the register operands. When it is the destination,
external bus activity may be affected. If the result is written to the PC, the contents of
the instruction pipeline are invalidated, and the address for the next instruction
prefetch is taken from the ALU rather than the address incrementer. The instruction
pipeline is refilled before any further execution takes place, and during this time
exceptions are locked out.

10-4
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PSR Transfer operations exhibit the same timing characteristics as the data 10.6 7\_C_ZU_< and _<_C_:U_< Accumulate
operations except that the PC is never used as a source or destination register. The . . . o .
cycle timings are shown below 2 Table 10-4: Data Operation instruction cycle The multiply instructions make use of special hardware which implements integer
operations. multiplication with early termination. All cycles except the first are internal.
The cycle timings are shown in the following four tables, where m is the number of
Cycle | Address | MAS[1:0] nRW | Data nMREQ | SEQ | nOPC cycles required by the multiplication algorithm; see 210.20 Instruction Speed
- Summary on page 10-19.
normal 1 pc+2L i 0 (pc+2L) | O 1 0
pc+3L
Cycle Address nRW MASJ[1:0] Data NMREQ SEQ nOPC
dest=pc | 1 pes2L | i 0 (pc+2L) | o 0 0 2 el || © ! (per2) |1 g Y
2 alu i 0 (alu) o 1 0 2 pesk 10 ! . L 0 L
3 alusL i 0 (@u+l) |0 1 0 : persL 10 ! . ! ° 1
alus2l m pc+3L 0 i - 1 0 1
m+1 pc+3L 0 i - 0 1 1
shiftRs) | 1 pe+2L i 0 (pctaL) | 1 0 0 pe+sL
2 pe+aL i 0 ; o 1 1 Table 10-5: Multiply instruction cycle operations
pc+3L Cycle Address | nRW MAS[1:0] | Data NMREQ SEQ | noPC
1 pc+8 0 2 (pc+8) 1 0 0
shift(Rs) | 1 pc+8 2 0 (pc+8) | 1 0 0 2 pc+8 0 2 N 1 0 1
dest=pc 2 pc+12 2 0 - 0 0 1 o pc+12 0 2 - 1 0 1
3 alu 2 0 (alu) 0 1 0 m pc+12 0 2 B 1 o 1
4 alu+4 2 0 (alu+4) | 0 1 0 m+1 pc+12 0 D) - 1 0 1
alu+8 m+2 pc+12 0 2 - 0 1 1
Table 10-4: Data Operation instruction cycle operations pc+12
Note  Shifted registed with destination equals PC is not possible in THUMB state. Table 10-6: Multiply-Accumulate instruction cycle operations
ARM7TDMI Data Sheet 10-5 10-6 ARM7TDMI Data Sheet

ARM DDI 0029E ARM DDI 0029E




Instruction Cycle Operations

Cycle

Address nRW MAS[1:0] | Data NMREQ SEQ nOPC

m+1

m+2

-

pc+2L i (pc+2L)
pc+3L
pc+3L

pc+3L

[
©o o o o o
-

pc+3L

o o o o o o

pc+3L

pc+3L

Table 10-7: Multiply Long instruction cycle operations

Cycle

Address nRW MASJ[1:0] Data nMREQ SEQ nOPC

m+1
m+2

m+3

pc+8 2 (pc+8) 1 0

pc+8 2 - 1
pc+12
pc+12

pc+12

-
© © o o o o
-

pc+12

© ©o o o o o o
NONN NN
=

pc+12

pc+12

Table 10-8: Multiply-Accumulate Long instruction cycle operations

Note Multiply-Accumulate is not possible in THUMB state.
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10.7 Load Register

The first cycle of a load register instruction performs the address calculation. The data
is fetched from memory during the second cycle, and the base register modification is
performed during this cycle (if required). During the third cycle the data is transferred
to the destination register, and external memory is unused. This third cycle may

normally be merged with the following prefetch to form one memory N-cycle. The cycle
timings are shown below in 2 Table 10-9: Load Register instruction cycle operations.

ther the base or the destination (or both) may be the PC, and the prefetch sequence
will be changed if the PC is affected by the instruction.

The data fetch may abort, and in this case the destination modification is prevented.

Cycle Address MAS[1:0] nRW | Data NMREQ | SEQ | nOPC | nTRANS
normal 1 pc+2L i 0 (pc+2L) | O 0 0 c
2 alu b/hiw 0 (alu) 1 0 1 d
3 pc+3L i 0 = 0 1 1 c
pc+3L
dest=pc 1 pc+8 2 0 (pc+8) 0 0 0 c
2 alu 0 pc’ 1 0 1 d
3 pc+l12 2 0 - 0 0 1 c
4 pc’ 2 0 (pc’) 0 1 0 @
5 pc'+4 2 0 (pc'+4) | O 1 0 c
pc'+8
Table 10-9: Load Register instruction cycle operations
b, h and w are byte, halfword and word as defined in D Table 9-2: MAS[1:0] signal
encoding on page 9-5.
c represents current mode-dependent value.
d will either be 0 if the T bit has been specified in the instruction (eg. LDRT), or c at all
other times.
Note Destination equals PC is not possible in THUMB state.
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10

8 Store Register

The first cycle of a store register is similar to the first cycle of load register. During the
second cycle the base modification is performed, and at the same time the data is
written to memory. There is no third cycle.

The cycle timings are shown below in 2 Table 10-10: Store Register instruction cycle
operations.

Cycle Address MASJ[1:0] nRW Data NMREQ SEQ nOPC | nTRANS
1 pc+2L i 0 (pc+2L) 0 0 0 c
2 alu b/hiw 1 Rd 0 0 1 d

pc+3L

Table 10-10: Store Register instruction cycle operations

b, h and w are byte, halfword and word as defined in D Table 9-2: MAS[1:0] signal
encoding on page 9-5.
c represents current mode-dependent value

d will either be 0 if the T bit has been specifi
other times.

n (eg. SDRT), or c at

10.9 Load Multiple Registers

The first cycle of LDM is used to calculate the address of the first word to be
transferred, whilst performing a prefetch from memory. The second cycle fetches the
first word, and performs the base modification. During the third cycle, the first word is
moved to the appropriate destination register while the second word is fetched from
memory, and the modified base is latched internally in case it is needed to patch up
after an abort. The third cycle is repeated for subsequent fetches until the last data
word has been accessed, then the final (internal) cycle moves the last word to its
destination register. The cycle timings are shown in DTable 10-11: Load Multiple
Registers instruction cycle operations on page 10-10.

The last cycle may be merged with the next instruction prefetch to form a single
memory N-cycle.

If an abort occurs, the instruction continues to completion, but all register writing after
the abort is prevented. The final cycle is altered to restore the modified base register
(which may have been overwritten by the load activity before the abort occurred).

When the PC is in the list of registers to be loaded the current instruction pipeline must
be invalidated.

Note The PC is always the last register to be loaded, so an abort at any point will prevent
the PC from being overwritten.

Note LDM with destination = PC cannot be executed in THUMB state. However
POP{RIist,PC}  equates to an LDM with destination=PC.
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Cycle Address MASI[1:0] nRW | Data NnMREQ | SEQ | nOPC

1 register 1 pc+2L i 0 (pc+2L) | O 0 0
2 alu 2 0 (alu) 1 0 1
3 pc+3L i 0 - 0 1 i

pc+3L
1 register 1 pc+2L i 0 (pc+2L) | O 0 0
dest=pc 2 alu 2 0 pc’ 1 0 1
3 pc+3L i 0 - 0 0 1
4 pc’ i 0 (pc) 0 1 0
5 pc+L i 0 (pc'+L) 0 1 0

pc+2L
n registers 1 pc+2L i 0 (pc+2L) | O 0 0
(n>1) 2 alu 2 0 (alu) 0 1 1
. alu+e 2 0 (alu+s) 0 1 1
n alu+s 2 0 (alu+s) 0 1 1
n+l alu+e 2 0 (alu+e) 1 0 i
n+2 pc+3L i 0 - 0 1 1

pc+3L
n registers 1 pc+2L i 0 (pc+2L) | O 0 0
(n>1) 2 alu 2 0 (alu) 0 1 1
incl pc . alute 2 0 (alu+e) 0 1 1
n alu+e 2 0 (alu+s) 0 1 1
n+1l alu+e 2 0 pc’ 1 0 1
n+2 pc+3L i 0 - 0 0 1
n+3 pc’ i 0 (pc’) 0 1 0
n+4 pc+L i 0 (pc'+L) 0 1 0

pc+2L

Table 10-11: Load Multiple Registers instruction cycle operations

10-10
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10.10Store Multiple Registers Cycle | Address | MAS[L:0] | nRW | Data | nMREQ | SEQ | nOPC | LOCK
Store multiple proceeds very much as load multiple, s\_.gsocﬁ the final cycle. As.m. restart 3 Rn biw 1 Rm 1 0 1 1
problem is much more straightforward here, as there is no wholesale overwriting of
registers. The cycle timings are shown in D Table 10-12: Store Multiple Registers 4 pc+12 2 0 - 0 1 1 0
instruction cycle operations, below. pc+12
Cycle Address MAS[1:0] | nRW | Data nMREQ | SEQ | nOPC Table 10-13: Data Swap instruction cycle operations
1 register 1 pc+2L. i 0 (pc+2L) | O 0 0 b and w are byte and word as defined in DTable 9-2: MAS[1:0] signal encoding on
2 alu 2 1 Ra 0 0 1 page 9-5.
p—— Note Data swap cannot be executed in THUMB state.
10.12 Software Interrupt and Exception Entry
n registers 1 pc+8 i 0 (pc+2L) | O 0 0 Exceptions (and software interrupts) force the PC to a particular value and refill the
instruction pipeline from there. During the first cycle the forced address is constructed,
(n>1) 2 alu 2 1 Ra 0 1 1 and a mode change may take place. The return address is moved to R14 and the
. alu+e 2 1 Re 0 1 1 CPSR to SPSR_svc.
n aluts 2 1 Re 0 1 1 During the second cycle the return address is modified to facilitate return, though this
ication is less useful than in the case of branch with link.
n+l alu+e 2 1 Re 0 0 1 . . . . . . -
The third cycle is required only to complete the refilling of the instruction pipeline. The
pc+12 cycle timings are shown below in D Table 10-14: Software Interrupt instruction cycle
- , - - y operations.
Table 10-12: Store Multiple Registers instruction cycle operations pera
10.11 Data M<<m_u Cycle |Address |MAS[1:0] |nRW |Data NMREQ |SEQ [nOPC |nTRANS |Mode TBIT
1 pc+2L i 0 (pc+2L) (O 0 0 C old mode T

This is similar to the load and store register instructions, but the actual swap takes
place in cycles 2 and 3. In the second cycle, the data is fetched from external memory. 2 Xn 2 0 (Xn) 0 1 0 1 exception mode |0
In the third cycle, the contents of the source register are written out to the external
memory. The data read in cycle 2 is written into the destination register during the 3 Xn+4 2 0 (Xn+4) 10 1 0 1 exception mode |0
fourth cycle. The cycle timings are shown below in DTable 10-13: Data Swap Xn+8
instruction cycle operations on page 10-11.

The LOCK output of ARM7TDMI is driven HIGH for the duration of the swap operation
(cycles 2 and 3) to indicate that both cycles should be allowed to complete without c
interruption.

Table 10-14: Software Interrupt instruction cycle operations

represents the current mode-dependent value.

The data swapped may be a byte or word quantity (b/w). T represents the current state-dependent value

pc for software interrupts is the address of the SWI instruction.
for exceptions is the address of the instruction following the last one
to be executed before entering the exception.
for prefetch aborts is the address of the aborting instruction.
Cycle | Address MAS[1:0] | nRW | Data nMREQ SEQ | nOPC | LOCK for data aborts is the address of the instruction following the one
which attempted the aborted data transfer.

The swap operation may be aborted in either the read or write cycle, and in both cases
the destination register will not be affected.

1 pc+8 2 0 (pc+8) | O 0 0 0
Xn is the appropriate trap address.
2 Rn biw 0 (Rn) 0 0 1 1
Table 10-13: Data Swap instruction cycle operations
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10.13Coprocessor Data Operation

A coprocessor data operation is a request from ARM7TDMI for the coprocessor to
initiate some action. The action need not be completed for some time, but the
coprocessor must commit to doing it before driving CPB LOW.

If the coprocessor can never do the requested task, it should leave CPA and CPB
HIGH. If it can do the task, but can’t commit right now, it should drive CPA LOW but
leave CPB HIGH until it can commit. ARM7TDMI will busy-wait until CPB goes LOW.
The cycle timings are shown in 2 Table 10-15: Coprocessor Data Operation instruction
cycle operations.

Address nRW MASJ[1:0] | Data NMREQ SEQ |nOPC nCPI CPA |CPB
Cycle
ready |1 pc+8 0 2 (pct8) |0 0 0 0 0 0
pc+12
not |1 pc+8 0 2 (pc+8) |1 0 0 0 0 1
ready
2 pc+8 0 2 = i, 0 d 0 0 dl
. pc+8 0 2 - 1 0 1 0 0 1
n pc+8 0 2 - 0 0 1 0 0 0
pc+12

Table 10-15: Coprocessor Data Operation instruction cycle operations

Note This operation cannot occur in THUMB state.
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10.14Coprocessor Data T ransfer (from memory to coprocessor)

Here the coprocessor should commit to the transfer only when it is ready to accept the
data. When CPB goes LOW, ARM7TDMI will produce addresses and expect the
coprocessor to take the data at sequential cycle rates. The coprocessor is responsible
for determining the number of words to be transferred, and indicates the last transfer
cycle by driving CPA and CPB HIGH.

ARM7TDMI spends the first cycle (and any busy-wait cycles) generating the transfer
address, and performs the write-back of the address base during the transfer cycles.
The cycle timings are shown in D Table 10-16: Coprocessor Data Transfer instruction
cycle operations on page 10-14.

Cycles | Address R)Sm nRW | Data NMREQ | SEQ | nOPC | nCPI | CPA | CPB
1 1 pc+8 2 0 (pc+8) | 0 0 0 0 0 0
register
ready 2 alu 2 0 (alu) 0 0 1 1 1 1
pc+12
1 1 pc+8 2 0 (pc+8) | 1 0 0 0 0 i
register
not 2 pc+8 2 0 - 1 0 1 0 0 1
ready
. pc+8 2 0 = 1 0 1 0 0 1
n pc+8 2 0 - 0 0 1 0 0 0
n+1 alu 2 0 (alu) 0 0 1 1 1 1
pc+12
n 1 pc+8 2 0 (pc+8) | 0 0 0 0 0 0
regis-
ters
(n>1) 2 alu 2 0 (alu) 0 1 1 1 0 0
ready . alu+e 2 0 (alu+e) | O 1 1 1 0 0
n alu+e 2 0 (alu+s) | O 1 1 1 0 0
n+l alu+e 2 0 (alu+s) | O 0 1 1 1 1
pc+12
Table 10-16: Coprocessor Data T ransfer instruction cycle operations
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Cycles | Address

regis-
ters

(m>1)

not
ready

1 pc+8

2 pc+8

. pc+8

n pc+8
n+l alu

. alute
n+m alu+e
n+m+1 | alu+e

pc+12

MAS
[1:0] | nRW | Data | nMREQ | SEQ | nOPC | nCPI | CPA | CPB
2 0 (pc+8) | 1 0 0 0 0 1
2 0 . 1 0 1 0 0 1
2 0 - 1 0 1 0 0 1
2 0 - 0 0 1 0 0 0
2 0 (aluy |0 1 1 1 0 0
0 (alu+e) | O 1 1 1 0 0
2 0 (alu+s) | O 1 1 1 0 0
2 0 (alu+s) | O 0 1 1 1 1

Table 10-16: Coprocessor Data T ransfer instruction cycle operations

Note This operation cannot occur in THUMB state.

10.15Coprocessor Data T ransfer (from coprocessor to memory)

The ARM7TDMI controls these instructions exactly as for memory to coprocessor
transfers, with the one exception that the nRW line is inverted during the transfer cycle.
The cycle timings are show in D Table 10-17: Coprocessor Data Transfer instruction
cycle operations.

Cycle Address MAS |nRW |Data NMREQ |SEQ |[nOPC |nCPI |CPA |CPB
[1:0]
1 register 1 pc+8 2 0 (pc+8) 0 0 0 0 0 0
ready 2 alu 2 1 CPdata |0 0 1 1 1 1
pc+12
1 register 1 pc+8 2 0 (pc+8) 1 0 0 0 0 1
not ready 2 pc+8 2 0 - 1 0 1 0 0 1
. pc+8 2 0 - 1 0 1 0 0 1
n pc+8 2 0 - 0 0 1 0 0 0
n+1 alu 2 1 CPdata |0 0 1 1 1 1
Table 10-17: Coprocessor Data T ransfer instruction cycle operations
ARM7TDMI Data Sheet 1015

ARM DDI 0029E

Instruction Cycle Operations

Cycle Address |MAS |nRW |Data NnMREQ |[SEQ |[nOPC |nCPlI |[CPA |CPB
[1:0]
pc+12
nregisters |1 pc+8 2 0 (pc+8) |0 0 0 0 0 0
(n>1) 2 alu 2 1 CPdata |0 il L al 0 0
ready . alu+s 2 1 CPdata |0 1 1 1 0 0
n alu+e 2 1 CPdata |0 1 1 1 0 0
n+l alu+e 2 1 CpPdata |0 0 1 1 1 1
pc+12
mregisters |1 pc+8 2 0 (pc+8) 1 0 0 0 0 1
(m>1) 2 pc+8 2 0 B 1 0 1 0 0 1
not ready . pc+8 2 0 - 1 0 1 0 0 1
n pc+8 2 0 = 0 0 1 0 0 0
n+l alu 2 1 CPdata |0 1 1 1 0 0
O alu+e 2 1 CPdata |0 i i 1 0 0
n+m alu+e 2 1 CPdata |0 1 1 1 0 0
n+m+1 |alu+e 2 1 CPdata |0 0 1 1 1 1
pc+12

Table 10-17: Coprocessor Data T ransfer instruction cycle operations (Continued)

Note This operation cannot occur in THUMB state.

10.16Coprocessor Register T ransfer (Load from coprocessor)

Here the busy-wait cycles are much as above, but the transfer is limited to one data
word, and ARM7TDMI puts the word into the destination register in the third cycle. The
third cycle may be merged with the following prefetch cycle into one memory N-cycle
as with all ARM7TDMI register load instructions. The cycle timings are shown in
DTable 10-18: Coprocessor register transfer (Load from coprocessor).

Cycle | Address MAS nRW | Data NMREQ | SEQ | nOPC | nCPI | CPA | CPB
[1:0]
ready 1 pc+8 2 0 (pc+8) 1 1 0 0 0 0
2 pc+12 2 0 CPdata | 1 0 1 1 1 1
3 pc+12 2 0 - 0 1 d 1 o °

Table 10-18: Coprocessor register transfer (Load from coprocessor)
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Cycle | Address MAS nRW | Data NMREQ | SEQ | nOPC | nCPI | CPA | CPB
[1:0]

pc+12
notready | 1 pc+8 2 0 (pc+8) 1 0 0 0 0 1
2 pc+8 2 0 - 1 0 1 0 0 1
. pc+8 2 0 - 1 0 1 0 0 1
n pc+8 2 0 = 1 1 1 0 0 0
n+l | pc+12 2 0 CPdata | 1 0 1 1 1 1
n+2 | pc+12 2 0 o 0 il L i > o

pc+12

Table 10-18: Coprocessor register transfer (Load from coprocessor)

Note This operation cannot occur in THUMB state.

10.17Coprocessor Register T ransfer (Store to coprocessor)

As for the load from coprocessor, except that the last cycle is omitted. The cycle
timings are shown in DTable 10-19: Coprocessor register transfer (Store to

coprocessor) on page 10-17.

Cycle Address MAS nRW | Data NMREQ | SEQ | nOPC | nCPI | CPA | CPB
[1:0]

ready 1 pc+8 2 0 (pc+8) | 1 1 0 0 0 0
2 pc+12 2 1 Rd 0 0 1 1 1 1

pc+12
not ready 1 pc+8 2 0 (pc+8) | 1 0 0 0 0 1
2 pc+8 2 0 - 1 0 1 0 0 1
. pc+8 2 0 - 1 0 1 0 0 1
n pc+8 2 0 - 1 1 1 0 0 0
n+l | pc+12 2 1 Rd 0 0 1 1 1 1

pc+12

Table 10-19: Coprocessor register transfer (Store to coprocessor)

Note This operation cannot occur in THUMB state.
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10.18Undefined Instructions and Coprocessor Absent

When a coprocessor detects a coprocessor instruction which it cannot perform, and
this must include all undefined instructions, it must not drive CPA or CPB LOW. These
will remain HIGH, causing the undefined instruction trap to be taken. Cycle timings are
shown in DTable 10-20: Undefined instruction cycle operations.

Cycle |Address |MAS |nRW |Data NMREQ [SEQ|[nOPC [nCPI |CPA |CPB |[nTRANS [Mode |TBIT
[1:0]

1 pc+2L i 0 (pc+2L) |1 o |o 0 1 1 c od [T

2 pc+2L i 0 - 0 0 0 1 1 1 (o} Old T

3 Xn 2 0 (Xn) 0 1 0 1 1 1 1 00100 |0

4 Xn+4 2 0 (Xn+4) |0 1 |0 1 1 1 1 00100 |0

Xn+8
Table 10-20: Undefined instruction cycle operations

C represents the current mode-dependent value.
T represents the current state-dependent value.

Note  Coprocessor Instructions cannot occur in THUMB state.

10.19Unexecuted Instructions

Any instruction whose condition code is not met will fail to execute. It will add one cycle
to the execution time of the code segment in which it is embedded (see DTable 10-21:
Unexecuted instruction cycle operations).

Cycle Address MAS[1:0] | nRW Data nMREQ SEQ nOPC

1 pc+2L i 0 (pc+2L) | O 1 0

pc+3L

Table 10-21: Unexecuted instruction cycle operations
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10.20Instruction m_ume wc_‘j_‘._‘._m_‘v\ Instruction Cycle count Additional
Due to the pipelined architecture of the CPU, instructions overlap considerably. In a Data Processing 1S F11 for SHIFT(Rs)
typical cycle one instruction may be using the data path while the next is being +1S+ 1N if R15 written
decoded and the one after that is being fetched. For this reason the following table
presents the incremental number of cycles required by an instruction, rather than the MSR, MRS 1s
6.5_ 5:359 of cycles 8.- which the instruction uses part oq. the processor. m_mumma. LDR 1S+1IN+1] +1S+ 1N if R15 loaded
time (in cycles) for a routine may be calculated from these figures which are shown in
DTable 10-22: ARM instruction speed summary on page 10-20. These figures assume STR 2N
that the instruction is actually executed. Unexecuted instructions take one cycle. A0 — SIS TY [EABER
n is the number of words transferred STM™ (n-1)S+2N
mis 1 if bits [32:8] of the multiplier operand are all zero or one.
2 if bits[32:16] of the multiplier operand are all zero or one. S At
3if bits[31:24] of the multiplier operand are all zero or all one. B,BL 2S+1N
4 otherwise.
. . . SWI, trap 2S+IN
b is the number of cycles spent in the coprocessor busy-wait loop.
. . MUL 1S+mi
| the instructions take one S-cycle. The cycle types N, S, m
I, and C are defined in 2Chapter 6, Memory Interface. MLA 1S+(m+1)l
MULL 1S+(m+1)l
MLAL 1S+(m+2)l
CDP 1S+bl
LDC,STC (n-1)S+2N+bl
MCR 1IN+bI+1C
MRC 1S+(b+1)I+1C

Table 10-22: ARM instruction speed summary
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A

Abort
data 3-12
during block data transfer 4-44
prefetch 3-12
Abort mode 3-4
ADC
ARM instruction 4-11
THUMB instruction 5-3, 5-11
ADD
ARM instruction 4-11
THUMB instruction 5-3, 5-7, 5-9, 5-28, 5-30
with Hi register operand 5-13
address bus
configuring 6-4
Advantages
of THUMB 1-3
AND
ARM instruction 4-11
THUMB instruction 5-3, 5-11
ARM state. See operating state
ASR
ARM instruction 4-13
THUMB instruction 5-3, 5-5, 5-11

B (Branch)
ARM instruction 4-8
THUMB instruction
conditional 5-3, 5-36, 5-37
unconditional 5-3, 5-39

BIC
ARM instruction 4-11
THUMB instruction 5-3, 5-12
big endian. See memory format
BL (Branch and Link)
ARM instruction 4-8
THUMB instruction 5-3, 5-41
Branch instruction 10-2
branching
in ARM state 4-8
in THUMB state 5-3, 5-36, 5-37, 5-39
to subroutine
in ARM state 4-8
in THUMB state 5-3, 5-41
Breakpoints
entering debug state from 8-23
h prefetch abort 8-25
BX (Branch and Exchange)
ARM instruction 4-6
THUMB instruction 5-3, 5-14
with Hi register operand 5-14
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BYPASS
public instruction 8-11
Bypass register 8-12
byte (data type) 3-3
loading and storing 4-29, 5-3, 5-4, 5-19, 5-20,

5-23
C

CDP
ARM instruction 4-51
CLAMP
public instruction 8-11
CLAMPZ
public instruction 8-12
Clock switching
debug state 8-18
test state 8-19
CMN
ARM instruction 4-11, 4-16
THUMB instruction 5-3, 5-12
CMP
ARM instruction 4-11, 4-16
THUMB instruction 5-3, 5-9, 5-12
with Hi register operand 5-14
Concepts
of THUMB 1-2

conditional execution
in ARM state 4-5

coprocessor
data operations 4-51
data transfer 4-53
action on data abort 4-54
passing instructions to 7-2
pipeline following 7-3
register transfer 4-57
coprocessor interface 7-2—7-4
Core state
determining 8-19
CP# (coprocessor number) field 7-2
CPSR (Current Processor Status Register) 3-8
format of 3-8
reading 4-18
writing 4-18

D

data bus
external 6-18
internal 6-13
Data operations 10-4
data transfer
block
in ARM state 4-40
in THUMB state 5-3, 5-4, 5-34
single
in ARM state 4-28
in THUMB state 5-3, 5-4, 5-16, 5-17, 5-18,
5-19, 5-20, 5-21, 5-22, 5-23, 5-24,
5-26
specifying size of 6-9
data types 3-3
Debug request
entering debug state via 8-24
Debug state
exiting from 8-21
Debug systems 8-2, 8-3
Device Identification Code register 8-13

EOR
ARM instruction 4-11
THUMB instruction 5-3, 5-11
exception
entering 3-10
leaving 3-10
iorities 3-14
returning to THUMB state from 3-10
vectors 3-13
EXTEST 8-10
public instruction 8-10

FIQ mode 3-4
definition of 3-11
See also interrupts
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H

halfword
loading and storing 4-34
halfword (data type) 3-3, 4-34
loading and storing 5-3, 5-4, 5-20, 5-21, 5-24
Hi register
accessing from THUMB state 3-7
description 3-7
operations
example code 5-15
operations on 5-13
HIGHZ
public instruction 8-11

ICEbreaker
Breakpoints 9-6
coupling with Watchpoints 9-11
hardware 9-7
software 9-7
BREAKPT signal 9-2
communications 9-14
Control registers 9-5
Debug Control register 9-9
Debug Status register 9-10
disabling 9-13
TAP controller 9-2, 9-4
Watchpoint registers 9-3—9-4
Watchpoints
coupling with Breakpoints 9-11
IDCODE
public instruction 8-10
Instruction register 8-13
INTEST
public instruction 8-10
IRQ mode 3-4
definition of 3-12
See also interrupts

J

Jtag state machine 8-8

L

LDC
ARM instruction 4-53
LDM
action on data abort 4-44
ARM instruction 4-40
LDMIA
THUMB instruction 5-3, 5-34
LDR
ARM instruction 4-28
THUMB instruction 5-3, 5-16, 5-17, 5-19, 5-22,

5-26

LDRB

THUMB instruction 5-3, 5-19, 5-23
LDRH

THUMB instruction 5-3, 5-20, 5-21, 5-24
LDSB

THUMB instruction 5-3, 5-20
LDSH

THUMB instruction 5-3
little endian. See memory format
Lo registers 3-7
LOCK output 4-47
LSL
ARM instruction 4-12, 4-13
THUMB instruction 5-3, 5-5, 5-11
LSR
ARM instruction 4-13
THUMB instruction 5-3, 5-5

M

memory
locking 6-12
protecting 6-12
memory access times 6-12
memory cycle timing 6-3
memory cycle types 6-2
memory format
big endian
description 3-3
single data transfer in 4-30
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little endian
description 3-3
single data transfer in 4-29
memory transfer cycle
non-sequential 6-12
memory transfer cycle types 6-2
MLA
ARM instruction 4-23
MLAL
ARM instruction 4-23, 4-25
MOV
ARM instruction 4-11
THUMB instruction 5-3, 5-9
with Hi register operand 5-14
MRS
ARM instruction 4-18
MSR
ARM instruction 4-18
MUL
ARM instruction 4-23
THUMB instruction 5-3, 5-12
MULL
ARM instruction 4-23, 4-25
MVN
ARM instruction 4-11
THUMB instruction 5-3, 5-12

N

NEG
THUMB instruction 5-4, 5-11

0]

operating mode
reading 3-9
setting 3-9
operating state
ARM 3-2
reading 3-8
switching 3-2
to ARM 3-2, 5-14, 5-15
to THUMB 3-2, 4-7
THUMB 3-2
ORR
ARM instruction 4-11
THUMB instruction 5-4, 5-12

P

pipeline 7-3
POP
THUMB instruction 5-4, 5-32
privileged instruction 7-3
Public instructions 8-9
PUSH
THUMB instruction 5-32

registers

ARM 3-4

THUMB 3-6
reset

action of processor on 3-15
Return address calculations 8-25
ROR

ARM instruction 4-14

THUMB instruction 5-4, 5-11
rotate operations 4-14, 4-15
RRX

ARM instruction 4-14
RSB

ARM instruction 4-11
RSC

ARM instruction 4-11

SAMPLE/PRELOAD
public instruction 8-12
SBC
ARM instruction 4-11
THUMB instruction 5-11
Scan Chain Select register 8-13
Scan Chains 8-14
Scan li ions 8-6
SCAN_N
public instruction 8-10
shift operations 4-12, 4-15, 5-5, 5-11
Software Interrupt 3-13, 4-49, 5-4
SPSR (Saved Processor Status Register) 3-8
format of 3-8
reading 4-18
writing 4-18
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stack operations 5-32
STC

ARM instruction 4-53
ST™M

ARM instruction 4-40
STMIA

THUMB instruction 5-4, 5-34
STR

ARM instruction 4-28

THUMB instruction 5-4, 5-18, 5-22, 5-26
STRB

THUMB instruction 5-4, 5-19, 5-23
STRH

THUMB instruction 5-4, 5-20, 5-24
SuB

ARM instruction 4-11

THUMB instruction 5-4, 5-7, 5-9
Supervisor mode 3-4
Swi 3-13

ARM instruction 4-49

THUMB instruction 5-4, 5-38
SwWpP

ARM instruction 4-47
System mode 3-4
System speed access

during debug state 8-25
system state

determining 8-21

T

T bit (in CPSR) 3-8
TEQ
ARM instruction 4-11, 4-16
THUMB Branch with Link operation 10-3
THUMB state. See operating state
TST
ARM instruction 4-11, 4-16
THUMB instruction 5-4, 5-11

U

undefined instruction 7-4
undefined instruction trap 3-13, 4-2
Undefined mode 3-4

User mode 3-4

Vv

virtual memory systems 3-12

w

Watchpoints
entering debug state from 8-23
word (data type)
address alignment 3-3
loading and storing 4-29, 5-3, 5-4, 5-16, 5-18,
5-19, 5-22, 5-26
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