
A
dvanced R

IS
C

 M
achines

A
R

M

D
ocum

ent N
um

ber:A
R

M
 D

D
I 0029E

Issued: A
ugust 1995

C
opyright A

dvanced R
IS

C
 M

achines Ltd (A
R

M
) 1995

A
ll rights reserved

A
R

M
 7T

D
M

I
D

ata S
heet

Open Access

P
roprietary N

otice
A

R
M

, the A
R

M
 P

ow
ered logo, E

m
beddedIC

E
, B

lackIC
E

 and IC
E

breaker are tradem
arks of

A
dvanced R

IS
C

 M
achines Ltd.

N
either the w

hole nor any part of the inform
ation contained in, or the product described in, this

datasheet m
ay be adapted or reproduced in any m

aterial form
 except w

ith the prior w
ritten

perm
ission of the copyright holder.

T
he product described in this datasheet is subject to continuous developm

ents and
im

provem
ents. A

llparticulars of the product and its use contained in this datasheet are given by
A

R
M

 in good faith. H
ow

ever, all w
arranties im

plied or expressed, including but not lim
ited to

im
plied w

arranties or
m

erchantability, or fitness for purpose, are excluded.

T
his datasheet is intended only to assist the reader in the use of the product. A

R
M

 Ltd shall not
be liable for any loss or dam

age arising from
 the use of any inform

ation in this datasheet, or any
error or om

ission in such inform
ation, or any incorrect use of the product.

C
hange Log

Issue
D

ate
B

y
C

hange

A
(D

raft 0.1)
S

ept 1994
E

H
/B

JH
C

reated.
(D

raft 0.2)
O

ct 1994
E

H
F

irst pass review
 com

m
ents added.

B
D

ec 1994
E

H
/A

W
F

irst form
al release

C
D

ec 1994
A

W
F

urther review
 com

m
ents

M
ar 1995

A
W

R
eissued w

ith open access status.
N

o change to the content.
D

 draft1
M

ar 1995
A

W
C

hanges in line w
ith the A

R
M

7T
D

M
datasheet. F

urther technical changes.
D

M
ar 1995

A
W

R
eview

 com
m

ents added.
E

A
ug 1995

A
P

S
ignals added plus m

inor changes.

ii
A

R
M

7T
D

M
I D

ata S
heet

A
R

M
 D

D
I 0029E

Open Access

K
ey:

O
pen A

ccess
N

o confidentiality

T
o enable docum

ent tracking, the docum
ent num

ber has tw
o codes:

M
ajor release-

P
re-release

A
F

irst release
B

S
econd release

etc
etc

D
raft S

tatus
F

ull and com
plete

draft1
F

irst D
raft

draft2
S

econd D
raft

etc
etc

E
E

m
bargoed (date given)

A
R

M
7T

D
M

I D
ata S

heet
A

R
M

 D
D

I 0029E

C
ontents-i

11

Open Access

1
Introduction

1-1
1.1

Introduction
1-2

1.2
A

R
M

7T
D

M
I A

rchitecture
1-2

1.3
A

R
M

7T
D

M
I B

lock D
iagram

1-4

1.4
A

R
M

7T
D

M
I C

ore D
iagram

1-5

1.5
A

R
M

7T
D

M
I F

unctional D
iagram

1-6

2
S

ignal D
escription

2-1
2.1

S
ignal D

escription
2-2

3
P

rogram
m

er’s M
odel

3-1
3.1

P
rocessor O

perating S
tates

3-2

3.2
S

w
itching S

tate
3-2

3.3
M

em
ory F

orm
ats

3-2

3.4
Instruction Length

3-3

3.5
D

ata T
ypes

3-3

3.6
O

perating M
odes

3-4

3.7
R

egisters
3-4

3.8
T

he P
rogram

 S
tatus R

egisters
3-8

3.9
E

xceptions
3-10

3.10
Interrupt Latencies

3-14

3.11
R

eset
3-15

��
�

��
���
���

A
R

M
7T

D
M

I D
ata S

heet
A

R
M

 D
D

I 0029E

C
ontents-ii

Open Access

4
A

R
M

 Instruction S
et

4-1
4.1

Instruction S
et S

um
m

ary
4-2

4.2
T

he C
ondition F

ield
4-5

4.3
B

ranch and E
xchange (B

X
)

4-6

4.4
B

ranch and B
ranch w

ith Link (B
, B

L)
4-8

4.5
D

ata P
rocessing

4-10

4.6
P

S
R

 T
ransfer (M

R
S

, M
S

R
)

4-18

4.7
M

ultiply and M
ultiply-A

ccum
ulate (M

U
L, M

LA
)

4-23

4.8
M

ultiply Long and M
ultiply-A

ccum
ulate Long (M

U
LL,M

LA
L)

4-25

4.9
S

ingle D
ata T

ransfer (LD
R

, S
T

R
)

4-28

4.10
H

alfw
ord and S

igned D
ata T

ransfer
4-34

4.11
B

lock D
ata T

ransfer (LD
M

, S
T

M
)

4-40

4.12
S

ingle D
ata S

w
ap (S

W
P

)
4-47

4.13
S

oftw
are Interrupt (S

W
I)

4-49

4.14
C

oprocessor D
ata O

perations (C
D

P
)

4-51

4.15
C

oprocessor D
ata T

ransfers (LD
C

, S
T

C
)

4-53

4.16
C

oprocessor R
egister T

ransfers (M
R

C
, M

C
R

)
4-57

4.17
U

ndefined Instruction
4-60

4.18
Instruction S

et E
xam

ples
4-61

5
T

H
U

M
B

 Instruction S
et

5-1
5.1

F
orm

at 1: m
ove shifted register

5-5

5.2
F

orm
at 2: add/subtract

5-7

5.3
F

orm
at 3: m

ove/com
pare/add/subtract im

m
ediate

5-9

5.4
F

orm
at 4: A

LU
 operations

5-11

5.5
F

orm
at 5: H

i register operations/branch exchange
5-13

5.6
F

orm
at 6: P

C
-relative load

5-16

5.7
F

orm
at 7: load/store w

ith register offset
5-18

5.8
F

orm
at 8: load/store sign-extended byte/halfw

ord
5-20

5.9
F

orm
at 9: load/store w

ith im
m

ediate offset
5-22

5.10
F

orm
at 10: load/store halfw

ord
5-24

5.11
F

orm
at 11: S

P
-relative load/store

5-26

5.12
F

orm
at 12: load address

5-28

5.13
F

orm
at 13: add offset to S

tack P
ointer

5-30

5.14
F

orm
at 14: push/pop registers

5-32

5.15
F

orm
at 15: m

ultiple load/store
5-34

5.16
F

orm
at 16: conditional branch

5-36

5.17
F

orm
at 17: softw

are interrupt
5-38

��
���
���

A
R

M
7T

D
M

I D
ata S

heet
A

R
M

 D
D

I 0029E

C
ontents-iii

Open Access

5.18
F

orm
at 18: unconditional branch

5-39

5.19
F

orm
at 19: long branch w

ith link
5-40

5.20
Instruction S

et E
xam

ples
5-42

6
M

em
ory Interface

6-1
6.1

O
verview

6-2

6.2
C

ycle T
ypes

6-2

6.3
A

ddress T
im

ing
6-4

6.4
D

ata T
ransfer S

ize
6-9

6.5
Instruction F

etch
6-10

6.6
M

em
ory M

anagem
ent

6-12

6.7
Locked O

perations
6-12

6.8
S

tretching A
ccess T

im
es

6-12

6.9
T

he A
R

M
 D

ata B
us

6-13

6.10
T

he E
xternal D

ata B
us

6-15

7
C

oprocessor Interface
7-1

7.1
O

verview
7-2

7.2
Interface S

ignals
7-2

7.3
R

egister T
ransfer C

ycle
7-3

7.4
P

rivileged Instructions
7-3

7.5
Idem

potency
7-4

7.6
U

ndefined Instructions
7-4

8
D

ebug Interface
8-1

8.1
O

verview
8-2

8.2
D

ebug S
ystem

s
8-2

8.3
D

ebug Interface S
ignals

8-3

8.4
S

can C
hains and JT

A
G

 Interface
8-6

8.5
R

eset
8-8

8.6
P

ullup R
esistors

8-9

8.7
Instruction R

egister
8-9

8.8
P

ublic Instructions
8-9

8.9
T

est D
ata R

egisters
8-12

8.10
A

R
M

7T
D

M
I C

ore C
locks

8-18

8.11
D

eterm
ining the C

ore and S
ystem

 S
tate

8-19

8.12
T

he P
C

’s B
ehaviour D

uring D
ebug

8-23

8.13
P

riorities / E
xceptions

8-25

8.14
S

can Interface T
im

ing
8-26

8.15
D

ebug T
im

ing
8-30

��
���
���

A
R

M
7T

D
M

I D
ata S

heet
A

R
M

 D
D

I 0029E

C
ontents-iv

Open Access

9
IC

E
B

reaker M
odule

9-1
9.1

O
verview

9-2

9.2
T

he W
atchpoint R

egisters
9-3

9.3
P

rogram
m

ing B
reakpoints

9-6

9.4
P

rogram
m

ing W
atchpoints

9-8

9.5
T

he D
ebug C

ontrol R
egister

9-9

9.6
D

ebug S
tatus R

egister
9-10

9.7
C

oupling B
reakpoints and W

atchpoints
9-11

9.8
D

isabling IC
E

B
reaker

9-13

9.9
IC

E
B

reaker T
im

ing
9-13

9.10
P

rogram
m

ing R
estriction

9-13

9.11
D

ebug C
om

m
unications C

hannel
9-14

10
Instruction C

ycle O
perations

10-1
10.1

Introduction
10-2

10.2
B

ranch and B
ranch w

ith Link
10-2

10.3
T

H
U

M
B

 B
ranch w

ith Link
10-3

10.4
B

ranch and E
xchange (B

X
)

10-3

10.5
D

ata O
perations

10-4

10.6
M

ultiply and M
ultiply A

ccum
ulate

10-6

10.7
Load R

egister
10-8

10.8
S

tore R
egister

10-9

10.9
Load M

ultiple R
egisters

10-9

10.10
S

tore M
ultiple R

egisters
10-11

10.11
D

ata S
w

ap
10-11

10.12
S

oftw
are Interrupt and E

xception E
ntry

10-12

10.13
C

oprocessor D
ata O

peration
10-13

10.14
C

oprocessor D
ata T

ransfer (from
 m

em
ory to coprocessor)

10-14

10.15
C

oprocessor D
ata T

ransfer (from
 coprocessor to m

em
ory)

10-15

10.16
C

oprocessor R
egister T

ransfer (Load from
 coprocessor)

10-16

10.17
C

oprocessor R
egister T

ransfer (S
tore to coprocessor)

10-17

10.18
U

ndefined Instructions and C
oprocessor A

bsent
10-18

10.19
U

nexecuted Instructions
10-18

10.20
Instruction S

peed S
um

m
ary

10-19

11
D

C
 P

aram
eters

11-1
11.1

A
bsolute M

axim
um

 R
atings

11-2

11.2
D

C
 O

perating C
onditions

11-2

��
���
���

A
R

M
7T

D
M

I D
ata S

heet
A

R
M

 D
D

I 0029E

C
ontents-v

Open Access

12
A

C
 P

aram
eters

12-1
12.1

Introduction
12-2

12.2
N

otes on A
C

 P
aram

eters
12-11

��
���
���

A
R

M
7T

D
M

I D
ata S

heet
A

R
M

 D
D

I 0029E

C
ontents-vi

Open Access

A
R

M
7T

D
M

I D
ata S

heet
A

R
M

 D
D

I 0029E

1-1

11

Open Access

	
�
�
�
���
�

T
his chapter introduces the A

R
M

7T
D

M
I architecture, and show

s block, core, and
functional diagram

s for the A
R

M
7T

D
M

I.

1.1
Introduction

1-2

1.2
A

R
M

7T
D

M
I A

rchitecture
1-2

1.3
A

R
M

7T
D

M
I B

lock D
iagram

1-4

1.4
A

R
M

7T
D

M
I C

ore D
iagram

1-5

1.5
A

R
M

7T
D

M
I F

unctional D
iagram

1-6

�����
���
���
�

A
R

M
7T

D
M

I D
ata S

heet
A

R
M

 D
D

I 0029E

1-2

Open Access 1.1
Introduction

T
he A

R
M

7T
D

M
I is a m

em
ber of the A

dvanced R
IS

C
 M

achines (A
R

M
) fam

ily of
general purpose 32-bit m

icroprocessors, w
hich offer high perform

ance for very low
pow

er consum
ption and price.

T
he A

R
M

 architecture is based on R
educed Instruction S

et C
om

puter (R
IS

C
)

principles, and the instruction set and related decode m
echanism

 are m
uch sim

pler
than those of m

icroprogram
m

ed C
om

plex Instruction S
et C

om
puters. T

his sim
plicity

results in a high instruction throughput and im
pressive real-tim

e interrupt response
from

 a sm
all and cost-effective chip.

P
ipelining is em

ployed so that all parts of the processing and m
em

ory system
s can

operate continuously. Typically, w
hile one instruction is being executed, its successor

is being decoded, and a third instruction is being fetched from
 m

em
ory.

T
he A

R
M

 m
em

ory interface has been designed to allow
 the perform

ance potential to
be realised w

ithout incurring high costs in the m
em

ory system
. S

peed-critical control
signals are pipelined to allow

 system
 control functions to be im

plem
ented in standard

low
-pow

er logic, and these control signals facilitate the exploitation of the fast local
access m

odes offered by industry standard dynam
ic R

A
M

s.

1.2
A

R
M

7T
D

M
I A

rchitecture
T

he A
R

M
7T

D
M

I processor em
ploys a unique architectural strategy know

n as
T

H
U

M
B

,
w

hich m
akes it ideally suited to high-volum

e applications w
ith m

em
ory restrictions, or

applications w
here code density is an issue.

1.2.1
T

he T
H

U
M

B
 C

oncept

T
he key idea behind T

H
U

M
B

 is that of a super-reduced instruction set. E
ssentially, the

A
R

M
7T

D
M

I processor has tw
o instruction sets:

•
the standard 32-bit A

R
M

 set
•

a 16-bit T
H

U
M

B
 set

T
he T

H
U

M
B

 set’s 16-bit instruction length allow
s it to approach tw

ice the density of
standard A

R
M

 code w
hile retaining m

ost of the A
R

M
’s perform

ance advantage over a
traditional 16-bit processor using 16-bit registers. T

his is possible because T
H

U
M

B
code operates on the sam

e 32-bit register set as A
R

M
 code.

T
H

U
M

B
 code is able to provide up to 65%

 of the code size of A
R

M
, and 160%

 of the
perform

ance of an equivalent A
R

M
 processor connected to a 16-bit m

em
ory system

.

�����
���
���
�

A
R

M
7T

D
M

I D
ata S

heet
A

R
M

 D
D

I 0029E

1-3

Open Access

1.2.2
T

H
U

M
B

’s A
dvantages

T
H

U
M

B
 instructions operate w

ith the standard A
R

M
 register configuration, allow

ing
excellent interoperability betw

een A
R

M
 and T

H
U

M
B

 states. E
ach 16-bit T

H
U

M
B

instruction has a corresponding 32-bit A
R

M
 instruction w

ith the sam
e effect on the

processor m
odel.

T
he m

ajor advantage of a 32-bit (A
R

M
) architecture over a 16-bit architecture is its

ability to m
anipulate 32-bit integers w

ith single instructions, and to address a large
address space efficiently. W

hen processing 32-bit data, a 16-bit architecture w
ill take

at least tw
o instructions to perform

 the sam
e task as a single A

R
M

 instruction.

H
ow

ever, not all the code in a program
 w

ill process 32-bit data (for exam
ple, code that

perform
s character string handling), and som

e instructions, like B
ranches, do not

process any data at all.

If a 16-bit architecture only has 16-bit instructions, and a 32-bit architecture only has
32-bit instructions, then overall the 16-bit architecture w

ill have better code density,
and better than one half the perform

ance of the 32-bit architecture. C
learly 32-bit

perform
ance com

es at the cost of code density.

T
H

U
M

B
 breaks this constraint by im

plem
enting a 16-bit instruction length on a 32-bit

architecture, m
aking the processing of 32-bit data efficient w

ith a com
pact instruction

�
coding. T

his provides far better perform
ance than a 16-bit architecture, w

ith better
code density than a 32-bit architecture.

T
H

U
M

B
 also has a m

ajor advantage over other 32-bit architectures w
ith 16-bit

instructions. T
his is the ability to sw

itch back to full A
R

M
 code and execute at full

speed. T
hus critical loops for applications such as

•
fast interrupts

•
D

S
P

 algorithm
s

can be coded using the full A
R

M
 instruction set, and linked w

ith T
H

U
M

B
 code. T

he
overhead of sw

itching from
 T

H
U

M
B

 code to A
R

M
 code is folded into sub-routine entry

tim
e. V

arious portions of a system
 can be optim

ised for speed or for code density by
sw

itching betw
een T

H
U

M
B

 and A
R

M
 execution as appropriate.

�����
���
���
�

A
R

M
7T

D
M

I D
ata S

heet
A

R
M

 D
D

I 0029E

1-4

Open Access 1.3
A

R
M

7T
D

M
I B

lock D
iagram

 F
igure 1-1: A

R
M

7T
D

M
I block diagram

• •

S
can C

hain 0

A
[31:0]

C
ore

S
can C

hain 1
D

[31:0]

nO
P

C
nR

W

A
ll

O
ther

S
ignals

T
C

K
T

M
S

T
D

I
nT

R
S

T
T

D
O

E
X

T
E

R
N

1

E
X

T
E

R
N

0

nT
R

A
N

S
nM

R
E

Q

S
can C

hain 2

IC
E

B
reaker

TA
P

 controller

M
A

S
[1:0]

Bus Splitter

D
IN

[31:0]

D
O

U
T

[31:0]

R
A

N
G

E
O

U
T

1

R
A

N
G

E
O

U
T

0

TA
P

S
M

[3:0]
IR

[3:0]
S

C
R

E
G

[3:0]

�����
���
���
�

A
R

M
7T

D
M

I D
ata S

heet
A

R
M

 D
D

I 0029E

1-5

Open Access

1.4
A

R
M

7T
D

M
I C

ore D
iagram

 F
igure 1-2: A

R
M

7T
D

M
I core

nR
E

S
E

T

nM
R

E
Q

S
E

Q

A
B

O
R

T

nIR
Q

nF
IQ

nR
W

LO
C

K
nC

P
I

C
P

A
C

P
B

nW
A

IT
M

C
LK

nO
P

C

nT
R

A
N

S

Instruction
D

ecoder
&

C
ontrol

Logic

Instruction P
ipeline

&
 R

ead D
ata R

egister

D
B

E
D

[31:0]

32-bit A
LU

B
arrel

S
hifter

A
ddress

Increm
enter

A
ddress R

egister

R
egister B

ank
(31 x 32-bit registers)

(6 status registers)

A
[31:0]

A
LE

M
ultiplier

A
B

E

W
rite D

ata R
egister

nM
[4:0]

32 x 8

nE
N

O
U

T
nE

N
IN

T
B

E

S
can

C
ontrol

B
R

E
A

K
P

T
I

D
B

G
R

Q
I

nE
X

E
C

D
B

G
A

C
K

E
C

LK

IS
Y

N
C

Bbus

ALUbus
Abus

PCbus

Incrementerbus

A
P

E
B

L[3:0]

M
A

S
[1:0]

T
B

IT
H

IG
H

Z

&
 T

hum
b Instruction D

ecoder

�����
���
���
�

A
R

M
7T

D
M

I D
ata S

heet
A

R
M

 D
D

I 0029E

1-6

Open Access 1.5
A

R
M

7T
D

M
I F

unctional D
iagram

 F
igure 1-3: A

R
M

7T
D

M
I functional diagram

LO
C

K

A
[31:0]

A
B

O
R

T
M

em
ory

M
anagem

ent

nO
P

C

nC
P

I

C
P

A
C

P
B

C
oprocessor

Interface

nT
R

A
N

S

M
em

ory
Interface

Interface

D
[31:0]

T
C

K
T

M
S

T
D

I

nT
R

S
T

B
oundary

S
can

T
D

O

P
rocessor

M
ode

nR
W

nM
R

E
Q

S
E

Q

B
L[3:0]

M
A

S
[1:0]

A
P

E

T
B

IT
P

rocessor
S

tate

nM
[4:0]

ARM7TDMI

D
IN

[31:0]

D
O

U
T

[31:0]

TA
P

S
M

[3:0]
IR

[3:0]

B
oundary S

can

T
C

K
1

T
C

K
2

11
C

ontrol S
ignals

nT
D

O
E

N

S
C

R
E

G
[3:0]

A
B

E

A
LE

nIR
Q

nF
IQ

B
us

Interrupts

IS
Y

N
C

nR
E

S
E

T

M
C

LK

nW
A

IT
C

locks

V
D

D

V
S

S
P

ow
er

D
B

G
R

Q

B
R

E
A

K
P

T

D
B

G
A

C
K

nE
X

E
C

D
ebug

C
ontrols

E
X

T
E

R
N

 1

D
B

E

T
B

E

E
X

T
E

R
N

 0

nE
N

O
U

T

nE
N

IN

E
C

LK

D
B

G
E

N

A
P

E

H
IG

H
Z

B
IG

E
N

D

B
U

S
E

N

R
A

N
G

E
O

U
T

0

R
A

N
G

E
O

U
T

1
D

B
G

R
Q

I

C
O

M
M

R
X

C
O

M
M

T
X

nE
N

O
U

T
I

E
C

A
P

C
LK

B
U

S
D

IS

A
R

M
7T

D
M

I D
ata S

heet
A

R
M

 D
D

I 0029E

2-1

11

Open Access

���
�
��
���
�� �
�

T
his chapter lists and describes the signals for the A

R
M

7T
D

M
I.

2.1
S

ignal D
escription

2-2

!�" �#$
%�����& ���
�

A
R

M
7T

D
M

I D
ata S

heet
A

R
M

 D
D

I 0029E

2-2

Open Access 2.1
S

ignal D
escription
T

he follow
ing table lists and describes all the signals for the A

R
M

7T
D

M
I.

Transistor sizes

F
or a 0.6

µm
 A

R
M

7T
D

M
I:

IN
V

4 driver has transistor sizes of
p =

 22.32
µm

/0.6
µm

N
 =

 12.6
µm

/0.6
µm

IN
V

8 driver has transistor sizes of
p =

 44.64
µm

/0.6
µm

N
 =

 25.2
µm

/0.6
µm

K
ey to signal types

IC
Input C

M
O

S
 thresholds

P
P

ow
er

O
4

O
utput w

ith IN
V

4 driver
O

8
O

utput w
ith IN

V
8 driver

N
am

e
T

ype
D

escription

A
[31:0]

A
ddresses

08
T

his is the processor address bus. IfA
LE

 (address latch enable)
is H

IG
H

 and
A

P
E

 (A
ddress P

ipeline E
nable) is LO

W
, the

addresses becom
e valid during phase 2 of the cycle before the

one to w
hich they refer and rem

ain so during phase 1 of the
referenced cycle. T

heir stable period m
ay be controlled by

A
LE

or
A

P
E

as described below
.

A
B

E
A

ddress bus enable
IC

T
his is an input signal w

hich, w
hen LO

W
, puts the address bus

drivers into a high im
pedance state. T

his signal has a sim
ilar

effect on the follow
ing control signals:M

A
S

[1:0],nR
W

,LO
C

K
,

nO
P

C
 and

nT
R

A
N

S
. A

B
E

 m
ust be tied H

IG
H

 w
hen there is no

system
 requirem

ent to turn off the address drivers.

A
B

O
R

T
M

em
ory A

bort
IC

T
his is an input w

hich allow
s the m

em
ory system

 to tell the
processor that a requested access is not allow

ed.

A
LE

A
ddress latch enable.

IC
T

his input is used to control transparent latches on the address
outputs. N

orm
ally the addresses change during phase 2 to the

value required during the next cycle, but for direct interfacing to

'R
O

M
s they are required to be stable to the end of phase 2.

T
aking

A
LE

LO
W

 until the end of phase 2 w
ill ensure that this

happens. T
his signal has a sim

ilar effect on the follow
ing control

signals:M
A

S
[1:0],nR

W
,LO

C
K

,nO
P

C
 and

nT
R

A
N

S
. If the

system
 does not require address lines to be held in this w

ay,
A

LE
m

ust be tied H
IG

H
. T

he address latch is static, so
A

LE
 m

ay
be held LO

W
 for long periods to freeze addresses.

 Table 2-1: S
ignal D

escription

!�" �#$
%�����& ���
�

A
R

M
7T

D
M

I D
ata S

heet
A

R
M

 D
D

I 0029E

2-3

Open Access

A
P

E
A

ddress pipeline enable.
IC

W
hen H

IG
H

, this signal enables the address tim
ing pipeline. In

this state, the address bus plus
M

A
S

[1:0],nR
W

,nT
R

A
N

S
,

LO
C

K
 and

nO
P

C
change in the phase 2 prior to the m

em
ory

cycle to w
hich they refer. W

hen
A

P
E

 is LO
W

, these signals
change in the phase 1 of the actual cycle. P

lease refer to(

C
hapter 6, M

em
ory Interface

 for details of this tim
ing.

B
IG

E
N

D
B

ig E
ndian configuration.

IC
W

hen this signal is H
IG

H
 the processor treats bytes in m

em
ory

as being in B
ig E

ndian form
at. W

hen it is LO
W

, m
em

ory is
treated as Little

E
ndian.

B
L[3:0]

B
yte Latch C

ontrol.
IC

T
hese signals control w

hen data and instructions are latched
from

 the external data bus. W
hen

B
L[3] is H

IG
H

, the data on
D

[31:24] is latched on the falling edge ofM
C

LK
. W

hen
B

L[2
] is

H
IG

H
, the data on

D
[23:16] is latched and so on. P

lease refer
to(

 C
hapter 6, M

em
ory Interface

 for details on the use of
these signals.

B
R

E
A

K
P

T
B

reakpoint.
IC

T
his signal allow

s external hardw
are to halt the execution of the

processor for debug purposes. W
hen H

IG
H

 causes the current
m

em
ory access to be breakpointed. If the m

em
ory access is an

instruction fetch, A
R

M
7T

D
M

I w
ill enter debug state if the

instruction reaches the execute stage of the A
R

M
7T

D
M

I pipeline.
If the m

em
ory access is for data, A

R
M

7T
D

M
I w

ill enter debug
state after the current instruction com

pletes execution.T
his

allow
s extension of the internal breakpoints provided by the

IC
E

B
reaker m

odule. S
ee (

 C
hapter 9, IC

E
B

reaker M
odule

.

B
U

S
D

IS
B

us D
isable

O
T

his signal is H
IG

H
 w

hen IN
T

E
S

T
 is selected on scan chain 0 or

4 and m
ay be used to disable external logic driving onto the

bidirectional data bus during scan testing. T
his signal changes on

the falling edge ofT
C

K

)

.

B
U

S
E

N
D

ata bus configuration
IC

T
his is a static configuration signal w

hich determ
ines w

hether the
bidirectional data bus,D

[31:0], or the unidirectional data busses,
D

IN
[31:0] and

D
O

U
T

[31:0], are to be used for transfer of data
betw

een the processor and m
em

ory. R
efer also to (

 C
hapter 6,

M
em

ory Interface
.

W
hen

B
U

S
E

N
 is LO

W
, the bidirectional data bus,D

[31:0] is
used. In this case,D

O
U

T
[31:0] is driven to value 0x00000000,

and any data presented on
D

IN
[31:0] is ignored.

W
hen

B
U

S
E

N
 is H

IG
H

, the bidirectional data bus,D
[31:0] is

ignored and m
ust be left unconnected. Input data and

instructions are presented on the input data bus,D
IN

[31:0],
output data appears on

D
O

U
T

[31:0].

C
O

M
M

R
X

C
om

m
unications C

hannel
R

eceive

O
W

hen H
IG

H
, this signal denotes that the com

m
s channel receive

buffer is em
pty. T

his signal changes on the rising edge ofM
C

LK
.

S
ee (

9.11 D
ebug C

om
m

unications C
hannel on page

9-14
for m

ore inform
ation on the debug com

m
s channel.

N
am

e
T

ype
D

escription

 Table 2-1: S
ignal D

escription (C
ontinued)

!�" �#$
%�����& ���
�

A
R

M
7T

D
M

I D
ata S

heet
A

R
M

 D
D

I 0029E

2-4

Open Access

C
O

M
M

T
X

C
om

m
unications C

hannel
T

ransm
it

O
W

hen H
IG

H
, this signal denotes that the com

m
s channel

transm
it buffer is em

pty. T
his signal changes on the rising edge

ofM
C

LK
. S

ee (

9.11 D
ebug C

om
m

unications C
hannel on

page
9-14

 for m
ore inform

ation on the debug com
m

s channel.

C
P

A
C

oprocessor absent.
IC

A
 coprocessor w

hich is capable of perform
ing the operation that

A
R

M
7T

D
M

I is requesting (by asserting nC
P

I) should take
C

P
A

LO
W

 im
m

ediately. IfC
P

A
 is H

IG
H

 at the end of phase 1 of the
cycle in w

hich
nC

P
I w

ent LO
W

, A
R

M
7T

D
M

I w
illabort the

coprocessor handshake and take the undefined instruction trap.
IfC

P
A

 is LO
W

 and rem
ains LO

W
, A

R
M

7T
D

M
I w

ill busy-w
ait until

C
P

B
 is LO

W
 and then com

plete the coprocessor instruction.

C
P

B
C

oprocessor busy.
IC

A
 coprocessor w

hich is capable of perform
ing the operation

w
hich A

R
M

7T
D

M
I is requesting (by asserting

nC
P

I), but cannot
com

m
it to starting it im

m
ediately, should indicate this by driving

C
P

B
H

IG
H

. W
hen the coprocessor is ready to start it should take

C
P

B
 LO

W
. A

R
M

7T
D

M
I sam

ples
C

P
B

 at the end of phase 1 of
each cycle in w

hich nC
P

I is LO
W

.

D
[31:0]

D
ata B

us.
IC08

T
hese are bidirectional signal paths w

hich are used for data
transfers betw

een the processor and external m
em

ory. D
uring

read cycles (w
hen

nR
W

 is LO
W

), the input data m
ust be valid

before the end of phase 2 of the transfer cycle. D
uring w

rite
cycles (w

hen
nR

W
 is H

IG
H

), the output data w
ill becom

e valid
during phase 1 and rem

ain valid throughout phase 2 of the
transfer cycle.
N

ote that this bus is driven at all tim
es, irrespective of w

hether
B

U
S

E
N

 is H
IG

H
 or LO

W
. W

hen
D

[31:0] is not being used to
connect to the m

em
ory system

 it m
ust be left unconnected. S

ee

(

 C
hapter 6, M

em
ory Interface

.

D
B

E
D

ata B
us E

nable.
IC

T
his is an input signal w

hich, w
hen driven LO

W
, puts the data

bus
D

[31:0] into the high im
pedance state. T

his is included for
test purposes, and should be tied H

IG
H

 at all tim
es.

D
B

G
A

C
K

D
ebug acknow

ledge.
04

W
hen H

IG
H

 indicates A
R

M
 is in debug state.

D
B

G
E

N
D

ebug E
nable.

IC
T

his input signal allow
s the debug features of A

R
M

7T
D

M
I to be

disabled. T
his signal should be driven LO

W
 w

hen debugging is
not required.

D
B

G
R

Q
D

ebug request.
IC

T
his is a level-sensitive input, w

hich w
hen H

IG
H

 causes
A

R
M

7T
D

M
I to enter debug state after executing the current

instruction. T
his allow

s external hardw
are to force A

R
M

7T
D

M
I

into the debug state, in addition to the debugging features
provided by the IC

E
B

reaker block. S
ee(

 C
hapter 9,

IC
E

B
reaker M

odule
 for details.

N
am

e
T

ype
D

escription

 Table 2-1: S
ignal D

escription (C
ontinued)

!�" �#$
%�����& ���
�

A
R

M
7T

D
M

I D
ata S

heet
A

R
M

 D
D

I 0029E

2-5

Open Access

D
B

G
R

Q
I

Internal debug request*
04

T
his signal represents the debug request signal w

hich is
presented to the processor. T

his is the com
bination of external

D
B

G
R

Q
, as presented to the A

R
M

7T
D

M
I m

acrocell, and bit 1 of
the debug control register. T

hus there are tw
o conditions w

here
this signal can change. F

irstly, w
hen

D
B

G
R

Q
 changes,D

B
G

R
Q

I
w

ill change after a propagation delay. W
hen bit 1 of the debug

control register has been w
ritten, this signal w

ill change on the
falling edge ofT

C
K

 w
hen the T

A
P

 controller state m
achine is in

the R
U

N
-T

E
S

T
/ID

LE
 state. S

ee(

 C
hapter 9, IC

E
B

reaker
M

odule
 for details.

D
IN

[31:0]
D

ata input bus
IC

T
his is the input data bus w

hich m
ay be used to transfer

instructions and data betw
een the processor and m

em
ory.T

his
data input bus is only used w

hen
B

U
S

E
N

 is H
IG

H
. T

he data on
this bus is sam

pled by the processor at the end of phase 2 during
read cycles (i.e. w

hen
nR

W
 is LO

W
).

D
O

U
T

[31:0]
D

ata output bus
08

T
his is the data out bus, used to transfer data from

 the processor
to the m

em
ory system

. O
utput data only appears on this bus

w
hen

B
U

S
E

N
 is H

IG
H

. A
t all other tim

es, this bus is driven to
value 0x00000000. W

hen in use, data on this bus changes
during phase 1 of store cycles (i.e. w

hen
nR

W
 is H

IG
H

) and
rem

ains valid throughout phase 2.

D
R

IV
E

B
S

B
oundary scan

cell enable

04
T

his signal is used to control the m
ultiplexers in the scan cells of

an external boundary scan chain. T
his signal changes in the

U
P

D
A

T
E

-IR
 state w

hen scan chain 3 is selected and either the
IN

T
E

S
T

, E
X

T
E

S
T

, C
LA

M
P

 or C
LA

M
P

Z
 instruction is loaded.

W
hen an external boundary scan chain is not connected, this

output should be left unconnected.

E
C

A
P

C
LK

E
xtest capture clock

O
T

his signal rem
oves the need for the external logic in the test

chip w
hich w

as required to enable the internal tristate bus during
scan testing. T

his need not be brought out as an external pin on
the test chip.

E
C

A
P

C
LK

B
S

E
xtest capture clock for

B
oundary S

can

04
T

his is a
T

C
K

2
 w

ide pulse generated w
hen the T

A
P

 controller
state m

achine is in the C
A

P
T

U
R

E
-D

R
 state, the current

instruction is E
X

T
E

S
T

 and scan chain 3 is selected. T
his is used

to capture the m
acrocell outputs during E

X
T

E
S

T
. W

hen an
external boundary scan chain is not connected, this output
should be left unconnected.

E
C

LK
E

xternal clock output.
04

In norm
al operation, this is sim

ply
M

C
LK

 (optionally stretched
w

ith
nW

A
IT

) exported from
 the core. W

hen the core is being
debugged, this is

D
C

LK
. T

his allow
s external hardw

are to track
w

hen the A
R

M
7D

M
 core is clocked.

E
X

T
E

R
N

0
E

xternal input 0.
IC

T
his is an input to the IC

E
B

reaker logic in the A
R

M
7T

D
M

I w
hich

allow
s breakpoints and/or w

atchpoints to be dependent on an
external condition.

N
am

e
T

ype
D

escription

 Table 2-1: S
ignal D

escription (C
ontinued)

!�" �#$
%�����& ���
�

A
R

M
7T

D
M

I D
ata S

heet
A

R
M

 D
D

I 0029E

2-6

Open Access

E
X

T
E

R
N

1
E

xternal input 1.
IC

T
his is an input to the IC

E
B

reaker logic in the A
R

M
7T

D
M

I w
hich

allow
s breakpoints and/or w

atchpoints to be dependent on an
external condition.

H
IG

H
Z

04
T

his signal denotes that the H
IG

H
Z

 instruction has been loaded
into the T

A
P

 controller. S
ee(

 C
hapter 8, D

ebug Interface for
details.

IC
A

P
C

LK
B

S
Intest capture clock

04
T

his is a
T

C
K

2

)

 w
ide pulse generated w

hen the T
A

P
 controller

state m
achine is in the C

A
P

T
U

R
E

-D
R

 state, the current
instruction is IN

T
E

S
T

 and scan chain 3 is selected. T
his is used

to capture the m
acrocell outputs during IN

T
E

S
T

. W
hen an

external boundary scan chain is not connected, this output
should be left unconnected.

IR
[3:0]

T
A

P
 controller Instruction

register

04
T

hese 4 bits reflect the current instruction loaded into the T
A

P
controller instruction register. T

he instruction encoding is as
described in (

8.8 P
ublic Instructions on page

8-9
. T

hese bits
change on the falling edge ofT

C
K

 w
hen the state m

achine is in
the U

P
D

A
T

E
-IR

 state.

IS
Y

N
C

S
ynchronous interrupts.

IC
W

hen LO
W

 indicates that the
nIR

Q
 and

nF
IQ

 inputs are to be
synchronised by the A

R
M

 core. W
hen H

IG
H

 disables this
synchronisation for inputs that are already synchronous.

LO
C

K
Locked operation.

08
W

hen
LO

C
K

is H
IG

H
, the processor is perform

ing a “locked”
m

em
ory access, and the m

em
ory controller m

ust w
ait untilLO

C
K

goes LO
W

 before allow
ing another device to access the m

em
ory.

LO
C

K
 changes w

hile
M

C
LK

 is H
IG

H
, and rem

ains H
IG

H
 for the

duration of the locked m
em

ory accesses. It is active only during
the data sw

ap (S
W

P
) instruction. T

he tim
ing of this signal m

ay be
m

odified by the use ofA
LE

 and
A

P
E

in a sim
ilar w

ay to the
address, please refer to the

A
LE

 and
A

P
E

descriptions. T
his

signal m
ay also be driven to a high im

pedance state by driving
A

B
E

 LO
W

.

M
A

S
[1:0]

M
em

ory A
ccess S

ize.
08

T
hese are output signals used by the processor to indicate to the

external m
em

ory system
 w

hen a w
ord transfer or a half-w

ord or
byte length is required. T

he signals take the value 10 (binary) for
w

ords, 01 for half-w
ords and 00 for bytes. 11 is reserved. T

hese

+values are valid for both read and w
rite cycles. T

he signals w
ill

norm
ally becom

e valid during phase 2 of the cycle before the one
in w

hich the transfer w
ill take place. T

hey w
ill rem

ain stable
throughout phase 1 of the transfer cycle. T

he tim
ing of the

signals m
ay be m

odified by the use ofA
LE

 and
A

P
E

 in a sim
ilar

w
ay to the address, please refer to the

A
LE

 and
A

P
E

descriptions. T
he signals m

ay also be driven to high im
pedance

state by driving
A

B
E

 LO
W

.

N
am

e
T

ype
D

escription

 Table 2-1: S
ignal D

escription (C
ontinued)

!�" �#$
%�����& ���
�

A
R

M
7T

D
M

I D
ata S

heet
A

R
M

 D
D

I 0029E

2-7

Open Access

M
C

LK
M

em
ory clock input.

IC
T

his clock tim
es all A

R
M

7T
D

M
I m

em
ory accesses and internal

operations. T
he clock has tw

o distinct phases -phase 1 in w
hich

M
C

LK
 is LO

W
 and

phase 2

,

 in w
hich

M
C

LK
 (and

nW
A

IT
) is

H
IG

H
. T

he clock m
ay be stretched indefinitely in either phase to

allow
 access to slow

 peripherals or m
em

ory. A
lternatively, the

nW
A

IT
 input m

ay be used w
ith a free running

M
C

LK
 to achieve

the sam
e effect.

nC
P

I
N

ot C
oprocessor

instruction.

04
W

hen A
R

M
7T

D
M

I executes a coprocessor instruction, it w
ill take

this output LO
W

 and w
ait for a response from

 the coprocessor.
T

he action taken w
ill depend on this response, w

hich the
coprocessor signals on the

C
P

A
 and C

P
B

 inputs.

nE
N

IN
N

O
T

 enable input.
IC

T
his signal m

ay be used in conjunction w
ith

nE
N

O
U

T
 to control

the data bus during w
rite cycles. S

ee (

 C
hapter 6, M

em
ory

Interface
.

nE
N

O
U

T
N

ot enable output.
04

D
uring a data w

rite cycle, this signal is driven LO
W

 during phase
1, and rem

ains LO
W

 for the entire cycle. T
his m

ay be used to aid
arbitration in shared bus applications. S

ee(

 C
hapter 6,

M
em

ory Interface
.

nE
N

O
U

T
I

N
ot enable output.

O
D

uring a coprocessor register transfer C
-cycle from

 the
IC

E
breaker com

m
s channel coprocessor to the A

R
M

 core, this
signal goes LO

W
 during phase 1 and stays LO

W
 for the entire

cycle. T
his m

ay be used to aid arbitration in shared bus system
s.

nE
X

E
C

N
ot executed.

04
W

hen H
IG

H
 indicates that the instruction in the execution unit is

not being executed, because for exam
ple it has failed its

condition code check.

nF
IQ

N
ot fast interrupt request.

IC
T

his is an interrupt request to the processor w
hich causes it to be

interrupted if taken LO
W

 w
hen the appropriate enable in the

processor is active. T
he signal is level-sensitive and m

ust be
held LO

W
 until a suitable response is received from

 the
processor.nF

IQ
 m

ay be synchronous or asynchronous,
depending on the state ofIS

Y
N

C
.

nH
IG

H
Z

N
otH

IG
H

Z
04

T
his signal is generated by the T

A
P

 controller w
hen the current

instruction is H
IG

H
Z

. T
his is used to place the scan cells of that

scan chain in the high im
pedance state. W

hen a external
boundary scan chain is not connected, this output should be left
unconnected.

nIR
Q

N
ot interrupt request.

IC
A

s
nF

IQ
, but w

ith low
er priority. M

ay be taken LO
W

 to interrupt
the processor w

hen the appropriate enable is active.nIR
Q

 m
ay

be synchronous or asynchronous, depending on the state of
IS

Y
N

C
.

nM
[4:0]

N
ot processor m

ode.
04

T
hese are output signals w

hich are the inverses of the internal
status bits indicating the processor operation m

ode.

N
am

e
T

ype
D

escription

 Table 2-1: S
ignal D

escription (C
ontinued)

!�" �#$
%�����& ���
�

A
R

M
7T

D
M

I D
ata S

heet
A

R
M

 D
D

I 0029E

2-8

Open Access

nM
R

E
Q

N
ot m

em
ory request.

04
T

his signal, w
hen LO

W
, indicates that the processor requires

m
em

ory access during the follow
ing cycle. T

he signal becom
es

valid during phase 1, rem
aining valid through phase 2 of the

cycle preceding that to w
hich it refers.

nO
P

C
N

ot op-code fetch.
08

W
hen LO

W
 this signal indicates that the processor is fetching an

instruction from
 m

em
ory; w

hen H
IG

H
, data (if present) is being

transferred. T
he signal becom

es valid during phase 2 of the
previous cycle, rem

aining valid through phase 1 of the
referenced cycle. T

he tim
ing of this signal m

ay be m
odified by

the use ofA
LE

 and
A

P
E

in a sim
ilar w

ay to the address, please
refer to the

A
LE

 and
A

P
E

descriptions. T
his signal m

ay also be
driven to a high im

pedance state by driving
A

B
E

 LO
W

.

nR
E

S
E

T
N

ot reset.
IC

T
his is a level sensitive input signal w

hich is used to start the
processor from

 a know
n address. A

 LO
W

 level w
ill cause the

instruction being executed to term
inate abnorm

ally. W
hen

nR
E

S
E

T
becom

es H
IG

H
 for at least one clock cycle, the

processor w
ill re-start from

 address 0.nR
E

S
E

T
m

ust rem
ain

LO
W

 (and
nW

A
IT

 m
ust rem

ain H
IG

H
) for at least tw

o clock
cycles. D

uring the LO
W

 period the processor w
ill perform

 dum
m

y
instruction fetches w

ith the address increm
enting from

 the point
w

here reset w
as activated. T

he address w
ill overflow

 to zero if
nR

E
S

E
T

is held beyond the m
axim

um
 address lim

it.

nR
W

N
ot read/w

rite.
08

W
hen H

IG
H

 this signal indicates a processor w
rite cycle; w

hen
LO

W
, a read cycle. It becom

es valid during phase 2 of the cycle
before that to w

hich it refers, and rem
ains valid to the end of

phase 1 of the referenced cycle. T
he tim

ing of this signal m
ay be

m
odified by the use ofA

LE
 and

A
P

E
in a sim

ilar w
ay to the

address, please refer to the
A

LE
 and

A
P

E
descriptions. T

his
signal m

ay also be driven to a high im
pedance state by driving

A
B

E
 LO

W
.

nT
D

O
E

N
N

otT
D

O
 E

nable.
04

W
hen LO

W
, this signal denotes that serial data is being driven

out on the
T

D
O

)

 output. nT
D

O
E

N
 w

ould norm
ally be used as an

output enable for a
T

D
O

 pin in a packaged part.

nT
R

A
N

S
N

ot m
em

ory translate.
08

W
hen this signal is LO

W
 it indicates that the processor is in user

m
ode. It m

ay be used to tell m
em

ory m
anagem

ent hardw
are

w
hen translation of the addresses should be turned on, or as an

indicator of non-user m
ode activity. T

he tim
ing of this signal m

ay
be m

odified by the use ofA
LE

 and
A

P
E

 in a sim
ilar w

ay to the
address, please refer to the

A
LE

 and
A

P
E

 description. T
his

signal m
ay also be driven to a high im

pedance state by driving
A

B
E

 LO
W

.

nT
R

S
T

N
ot T

est R
eset.

IC
A

ctive-low
 reset signal for the boundary scan logic. T

his pin m
ust

be pulsed or driven LO
W

 to achieve norm
al device operation, in

addition to the norm
al device reset(nR

E
S

E
T

). F
or m

ore
inform

ation, see(

 C
hapter 8, D

ebug Interface
.

N
am

e
T

ype
D

escription

 Table 2-1: S
ignal D

escription (C
ontinued)

!�" �#$
%�����& ���
�

A
R

M
7T

D
M

I D
ata S

heet
A

R
M

 D
D

I 0029E

2-9

Open Access

nW
A

IT
N

ot w
ait.

IC
W

hen accessing slow
 peripherals, A

R
M

7T
D

M
I can be m

ade to
w

ait for an integer num
ber ofM

C
LK

 cycles by driving
nW

A
IT

LO
W

. Internally,nW
A

IT
 is A

N
D

ed w
ith M

C
LK

and m
ust only

change w
hen

M
C

LK
 is LO

W
. IfnW

A
IT

 is not used it m
ust be tied

H
IG

H
.

P
C

LK
B

S
B

oundary scan
update clock

04
T

his is a
T

C
K

2
 w

ide pulse generated w
hen the T

A
P

 controller
state m

achine is in the U
P

D
A

T
E

-D
R

 state and scan chain 3 is
selected. T

his is used by an external boundary scan chain as the
update clock. W

hen an external boundary scan chain is not
connected, this output should be left unconnected.

R
A

N
G

E
O

U
T

0
IC

E
breaker R

angeout0
04

T
his signal indicates that IC

E
breaker w

atchpoint register 0 has
m

atched the conditions currently present on the address, data
and control busses. T

his signal is independent of the state of the
w

atchpoint’s enable control bit.R
A

N
G

E
O

U
T

0
 changes w

hen
E

C
LK

 is LO
W

.

R
A

N
G

E
O

U
T

1
IC

E
breaker R

angeout1
04

A
s

R
A

N
G

E
O

U
T

0
 but corresponds to IC

E
breaker’s w

atchpoint
register 1.

R
S

T
C

LK
B

S
B

oundary S
can

R
eset C

lock

O
T

his signal denotes that either the T
A

P
 controller state m

achine
is in the R

E
S

E
T

 state or thatnT
R

S
T

 has been asserted. T
his

m
ay be used to reset external boundary scan cells.

S
C

R
E

G
[3:0]

S
can C

hain R
egister

O
T

hese 4 bits reflect the ID
 num

ber of the scan chain currently
selected by the T

A
P

 controller. T
hese bits change on the falling

edge ofT
C

K

)

 w
hen the T

A
P

 state m
achine is in the U

P
D

A
T

E
-D

R
state.

S
D

IN
B

S
B

oundary S
can

S
erial Input D

ata

O
T

his signal contains the serial data to be applied to an external
scan chain and is valid around the falling edge ofT

C
K

.

S
D

O
U

T
B

S
B

oundary scan serial
output data

IC
T

his control signal is provided to ease the connection of an
external boundary scan chain. T

his is the serial data out of the
boundary scan chain. It should be set up to the rising edge of
T

C
K

. W
hen an external boundary scan chain is not connected,

this input should be tied LO
W

.

S
E

Q
S

equential address.
O

4
T

his output signal w
ill becom

e H
IG

H
 w

hen the address of the
next m

em
ory cycle w

ill be related to that of the last m
em

ory
access. T

he new
 address w

ill either be the sam
e as the previous

one or 4 greater in A
R

M
 state, or 2 greater in T

H
U

M
B

 state.

T
he signal becom

es valid during phase 1 and rem
ains so

through phase 2 of the cycle before the cycle w
hose address it

anticipates. It m
ay be used, in com

bination w
ith the low

-order
address lines, to indicate that the next cycle can use a fast
m

em
ory m

ode (for exam
ple D

R
A

M
 page m

ode) and/or to bypass
the address translation system

.

N
am

e
T

ype
D

escription

 Table 2-1: S
ignal D

escription (C
ontinued)

!�" �#$
%�����& ���
�

A
R

M
7T

D
M

I D
ata S

heet
A

R
M

 D
D

I 0029E

2-10

Open Access

S
H

C
LK

B
S

B
oundary scan shift clock,

phase 1

04
T

his control signal is provided to ease the connection of an
external boundary scan chain.S

H
C

LK
B

S
 is used to clock the

m
aster half of the external scan cells. W

hen in the S
H

IF
T

-D
R

state of the state m
achine and scan chain 3 is selected,

S
H

C
LK

B
S

 follow
s

T
C

K
1

. W
hen not in the S

H
IF

T
-D

R
 state or

w
hen scan chain 3 is not selected, this clock is LO

W
. W

hen an

+external boundary scan chain is not connected, this output
should be left unconnected.

S
H

C
LK

2B
S

B
oundary scan shift clock,

phase 2

04
T

his control signal is provided to ease the connection of an
external boundary scan chain.S

H
C

LK
2B

S
 is used to clock the

m
aster half of the external scan cells. W

hen in the S
H

IF
T

-D
R

state of the state m
achine and scan chain 3 is selected,

S
H

C
LK

2B
S

 follow
s

T
C

K
2

. W
hen not in the S

H
IF

T
-D

R
 state or

w
hen scan chain 3 is not selected, this clock is LO

W
. W

hen an
external boundary scan chain is not connected, this output
should be left unconnected.

T
A

P
S

M
[3:0]

T
A

P
 controller

state m
achine

04
T

his bus reflects the current state of the T
A

P
 controller state

m
achine, as show

n in(

8.4.2 T
he JT

A
G

 state m
achine on

page
8-8

. T
hese bits change off the rising edge ofT

C
K

.

T
B

E
T

est B
us E

nable.
IC

W
hen driven LO

W
,T

B
E

 forces the data bus
D

[31:0], the
A

ddress bus
A

[31:0], plus
LO

C
K

,M
A

S
[1:0],nR

W
,nT

R
A

N
S

and
nO

P
C

 to high im
pedance. T

his is as if both
A

B
E

 and
D

B
E

had both been driven LO
W

. H
ow

ever,T
B

E
 does not have an

associated scan cell and so allow
s external signals to be driven

high im
pedance during scan testing. U

nder norm
al operating

conditions,T
B

E

)

 should be held H
IG

H
 at all tim

es.

T
B

IT

)

O
4

W
hen H

IG
H

, this signal denotes that the processor is executing
the T

H
U

M
B

 instruction set. W
hen LO

W
, the processor is

executing the A
R

M
 instruction set. T

his signal changes in phase
2 in the first execute cycle of a B

X
 instruction.

T
C

K

)

IC
T

est C
lock.

T
C

K
1

T
C

K
, phase 1

04
T

his clock represents phase 1 ofT
C

K
.T

C
K

1
 is H

IG
H

 w
hen

T
C

K
is H

IG
H

, although there is a slight phase lag due to the internal
clock non-overlap.

T
C

K
2

T
C

K
, phase 2

04
T

his clock represents phase 2 ofT
C

K
.T

C
K

2
 is H

IG
H

 w
hen

T
C

K
is LO

W
, although there is a slight phase lag due to the internal

clock non-overlap.T
C

K
2

 is the non-overlapping com
plim

ent of
T

C
K

1
.

T
D

I

)

IC
T

est D
ata Input.

T
D

O
T

est D
ata O

utput.
O

4
O

utput from
 the boundary scan logic.

T
M

S
IC

T
est M

ode S
elect.

N
am

e
T

ype
D

escription

 Table 2-1: S
ignal D

escription (C
ontinued)

!�" �#$
%�����& ���
�

A
R

M
7T

D
M

I D
ata S

heet
A

R
M

 D
D

I 0029E

2-11

Open Access

V
D

D
P

ow
er supply.

P
T

hese connections provide pow
er to the device.

V
S

S
G

round.
P

T
hese connections are the ground reference for all signals.

N
am

e
T

ype
D

escription

 Table 2-1: S
ignal D

escription (C
ontinued)

!�" �#$
%�����& ���
�

A
R

M
7T

D
M

I D
ata S

heet
A

R
M

 D
D

I 0029E

2-12

Open Access

A
R

M
7T

D
M

I D
ata S

heet
A

R
M

 D
D

I 0029E

3-1

11

Open Access

-�
� ��
.
.�� /�
0
�
��

T
his chapter describes the tw

o operating states of the A
R

M
7T

D
M

I.

3.1
P

rocessor O
perating S

tates
3-2

3.2
S

w
itching S

tate
3-2

3.3
M

em
ory F

orm
ats

3-2

3.4
Instruction Length

3-3

3.5
D

ata Types
3-3

3.6
O

perating M
odes

3-4

3.7
R

egisters
3-4

3.8
T

he P
rogram

 S
tatus R

egisters
3-8

3.9
E

xceptions
3-10

3.11
R

eset
3-15

1��
" �#22

�� 3�
4�
��$

A
R

M
7T

D
M

I D
ata S

heet
A

R
M

 D
D

I 0029E

3-2

Open Access 3.1
P

rocessor O
perating S

tates
F

rom
 the program

m
er’s point of view

, the A
R

M
7T

D
M

I can be in one of tw
o states:

A
R

M
 state

w
hich executes 32-bit, w

ord-aligned A
R

M
 instructions.

5

T
H

U
M

B
 state

w
hich operates w

ith 16-bit, halfw
ord-aligned T

H
U

M
B

5instructions. In this state, the P
C

 uses bit 1 to select betw
een

alternate halfw
ords.

N
ote

T
ransition betw

een these tw
o states does not affect the processor m

ode or the
contents of the registers.

3.2
S

w
itching S

tate

E
ntering T

H
U

M
B

 state

E
ntry into T

H
U

M
B

 state can be achieved by executing a
B

X instruction w
ith the state

bit (bit 0) set in the operand register.

Transition to T
H

U
M

B
 state w

ill also occur autom
atically on return from

 an exception
(IR

Q
, F

IQ
, U

N
D

E
F, A

B
O

R
T, S

W
I etc.), if the exception w

as entered w
ith the processor

in T
H

U
M

B
 state.

E
ntering A

R
M

 state

E
ntry into A

R
M

 state happens:

1
O

n execution of the
B

X instruction w
ith the state bit clear in the operand

register.

2
O

n the processor taking an exception (IR
Q

, F
IQ

, R
E

S
E

T, U
N

D
E

F, A
B

O
R

T,
S

W
I etc.).

In this case, the P
C

 is placed in the exception m
ode’s link register, and

execution com
m

ences at the exception’s vector address.

3.3
M

em
ory F

orm
ats

A
R

M
7T

D
M

I view
s m

em
ory as a linear collection of bytes num

bered upw
ards from

zero. B
ytes 0 to 3 hold the first stored w

ord, bytes 4 to 7 the second and so on.
A

R
M

7T
D

M
I can treat w

ords in m
em

ory as being stored either in
B

ig E
ndian or

Little
E

ndian form
at.

1��
" �#22

�� 3�
4�
��$

A
R

M
7T

D
M

I D
ata S

heet
A

R
M

 D
D

I 0029E

3-3

Open Access

3.3.1
B

ig endian form
at

In B
ig E

ndian form
at, the m

ost significant byte of a w
ord is stored at the low

est
num

bered byte and the least significant byte at the highest num
bered byte. B

yte 0 of
the m

em
ory system

 is therefore connected to data lines 31 through 24.

3.3.2
Little endian form

at

In Little E
ndian form

at, the low
est num

bered byte in a w
ord is considered the w

ord’s
least significant byte, and the highest num

bered byte the m
ost significant. B

yte 0 of
the m

em
ory system

 is therefore connected to data lines 7 through 0.

3.4
Instruction Length

Instructions are either 32 bits long (in A
R

M
 state) or 16 bits long (in T

H
U

M
B

 state).

3.5
D

ata Types
A

R
M

7T
D

M
I supports byte (8-bit), halfw

ord (16-bit) and w
ord (32-bit) data types.

W
ords m

ust be aligned to four-byte boundaries and half w
ords to tw

o-byte boundaries.

H
igher A

ddress
31 24

23 16
15 8

7 0
W

ord A
ddress

8
9

10
11

8

4
5

6
7

4

0
1

2
3

0

Low
er A

ddress
• M

ost significant byte is at low
est address

• W
ord is addressed by byte address of m

ost significant byte

 F
igure 3-1: B

ig endian addresses of bytes w
ithin w

ords

H
igher A

ddress
31 24

23 16
15 8

7 0
W

ord A
ddress

11
10

9
8

8

7
6

5
4

4

3
2

1
0

0

Low
er A

ddress
• Least significant byte is at low

est address
• W

ord is addressed by byte address of least significant byte

 F
igure 3-2: Little endian addresses of bytes w

ithin w
ords

1��
" �#22

�� 3�
4�
��$

A
R

M
7T

D
M

I D
ata S

heet
A

R
M

 D
D

I 0029E

3-4

Open Access 3.6
O

perating M
odes

A
R

M
7T

D
M

I supports seven m
odes of operation:

U
ser (usr):

T
he norm

al A
R

M
 program

 execution state

F
IQ

 (fiq):
D

esigned to support a data transfer or channel process

IR
Q

 (irq):
U

sed for general-purpose interrupt handling

S
upervisor (svc):

P
rotected m

ode for the operating system

A
bort m

ode (abt):
E

ntered after a data or instruction prefetch abort

S
ystem

 (sys):
A

 privileged user m
ode for the operating system

U
ndefined (und):

E
ntered w

hen an undefined instruction is executed

M
ode changes m

ay be m
ade under softw

are control, or m
ay be brought about by

external interrupts or exception processing. M
ost application program

s w
ill execute in

U
ser m

ode. T
he non-user m

odes - know
n as

privileged m
odes - are entered in order

to service interrupts or exceptions, or to access protected resources.

3.7
R

egistersA
R

M
7T

D
M

I has a total of 37 registers - 31 general-purpose 32-bit registers and six
status registers - but these cannot all be seen at once. T

he processor state and
operating m

ode dictate w
hich registers are available to the program

m
er.

3.7.1
T

he A
R

M
 state register set

In A
R

M
 state, 16 general registers and one or tw

o status registers are visible at any
one tim

e. In privileged (non-U
ser) m

odes, m
ode-specific banked registers are

sw
itched in.(

F
igure 3-3: R

egister organization in A
R

M
 state show

s w
hich registers

are available in each m
ode: the banked registers are m

arked w
ith a shaded triangle.

T
he A

R
M

 state register set contains 16 directly accessible registers: R
0 to R

15. A
ll of

these except R
15 are general-purpose, and m

ay be used to hold either data or
address values. In addition to these, there is a seventeenth register used to store
status inform

ation

R
egister 14

is used as the subroutine link register. T
his receives a copy of

R
15 w

hen a B
ranch and Link (B

L) instruction is executed. A
t

all other tim
es it m

ay be treated as a general-purpose
register. T

he corresponding banked registers R
14_svc,

R
14_irq, R

14_fiq, R
14_abt and R

14_und are sim
ilarly used

to hold the return values of R
15 w

hen interrupts and
exceptions arise, or w

hen B
ranch and Link instructions are

executed w
ithin interrupt or exception routines.

R
egister 15

holds the P
rogram

 C
ounter (P

C
). In A

R
M

 state, bits [1:0] of
R

15 are zero and bits [31:2] contain the P
C

. In T
H

U
M

B
 state,

bit [0] is zero and bits [31:1] contain the P
C

.

R
egister 16

is the C
P

S
R

 (C
urrent P

rogram
 S

tatus R
egister). T

his
contains condition code flags and the current m

ode bits.

1��
" �#22

�� 3�
4�
��$

A
R

M
7T

D
M

I D
ata S

heet
A

R
M

 D
D

I 0029E

3-5

Open Access

F
IQ

 m
ode has seven banked registers m

apped to R
8-14 (R

8_fiq-R
14_fiq). In A

R
M

state, m
any F

IQ
 handlers do not need to save any registers. U

ser, IR
Q

, S
upervisor,

A
bort and U

ndefined each have tw
o banked registers m

apped to R
13 and R

14,
allow

ing each of these m
odes to have a private stack pointer and link registers.

 F
igure 3-3: R

egister organization in A
R

M
 state

A
R

M
 S

tate G
eneral R

egisters and P
rogram

 C
ounter

R
0

R
1

R
2

R
3

R
4

R
5

R
6

R
7

R
8

R
9

R
10

R
11

R
12

R
13

R
14

R
15 (P

C
)

R
0

R
1

R
2

R
3

R
4

R
5

R
6

R
7

R
8_fiq

R
9_fiq

R
10_fiq

R
11_fiq

R
12_fiq

R
13_fiq

R
14_fiq

R
15 (P

C
)

R
0

R
1

R
2

R
3

R
4

R
5

R
6

R
7

R
8

R
9

R
10

R
11

R
12

R
13_svc

R
14_svc

R
15 (P

C
)

R
0

R
1

R
2

R
3

R
4

R
5

R
6

R
7

R
8

R
9

R
10

R
11

R
12

R
13_abt

R
14_abt

R
15 (P

C
)

R
0

R
1

R
2

R
3

R
4

R
5

R
6

R
7

R
8

R
9

R
10

R
11

R
12

R
13_irq

R
14_irq

R
15 (P

C
)

R
0

R
1

R
2

R
3

R
4

R
5

R
6

R
7

R
8

R
9

R
10

R
11

R
12

R
13_und

R
14_und

R
15 (P

C
)

S
ystem

 &
 U

ser
F

IQ
S

upervisor
A

bort
IR

Q
U

ndefined

C
P

S
R

C
P

S
R

S
P

S
R

_fiq

C
P

S
R

S
P

S
R

_svc

C
P

S
R

S
P

S
R

_abt

C
P

S
R

S
P

S
R

_irq

C
P

S
R

S
P

S
R

_und

A
R

M
 S

tate P
rogram

 S
tatus R

egisters

= banked register

1��
" �#22

�� 3�
4�
��$

A
R

M
7T

D
M

I D
ata S

heet
A

R
M

 D
D

I 0029E

3-6

Open Access

3.7.2
T

he T
H

U
M

B
 state register set

T
he T

H
U

M
B

 state register set is a subset of the A
R

M
 state set. T

he program
m

er has
direct access to eight general registers, R

0-R
7, as w

ell as the P
rogram

 C
ounter (P

C
),

a stack pointer register (S
P

), a link register (LR
), and the C

P
S

R
. T

here are banked
S

tack P
ointers, Link R

egisters and S
aved P

rocess S
tatus R

egisters (S
P

S
R

s) for each
privileged m

ode. T
his is show

n in(

F
igure 3-4: R

egister organization in T
H

U
M

B
 state.

 F
igure 3-4: R

egister organization in T
H

U
M

B
 state

3.7.3
T

he relationship betw
een A

R
M

 and T
H

U
M

B
 state registers

T
he T

H
U

M
B

 state registers relate to the A
R

M
 state registers in the follow

ing w
ay:

•
T

H
U

M
B

 state R
0-R

7 and A
R

M
 state R

0-R
7 are identical

•
T

H
U

M
B

 state C
P

S
R

 and S
P

S
R

s and A
R

M
 state C

P
S

R
 and S

P
S

R
s are

identical

•
T

H
U

M
B

 state S
P

 m
aps onto A

R
M

 state R
13

R
0

R
1

R
2

R
3

R
4

R
5

R
6

R
7

S
P

LRP
C

S
ystem

 &
 U

ser
F

IQ
S

upervisor
A

bort
IR

Q
U

ndefined

C
P

S
R

C
P

S
R

S
P

S
R

_fiq

C
P

S
R

S
P

S
R

_svc

C
P

S
R

S
P

S
R

_abt

C
P

S
R

S
P

S
R

_irq

C
P

S
R

S
P

S
R

_und

R
0

R
1

R
2

R
3

R
4

R
5

R
6

R
7

S
P

_fiq

LR
_fiq

P
C

R
0

R
1

R
2

R
3

R
4

R
5

R
6

R
7

S
P

_svc

LR
_svc

P
C

R
0

R
1

R
2

R
3

R
4

R
5

R
6

R
7

S
P

_abt

LR
_abt

P
C

R
0

R
1

R
2

R
3

R
4

R
5

R
6

R
7

S
P

_irq

LR
_irq

P
C

R
0

R
1

R
2

R
3

R
4

R
5

R
6

R
7

S
P

_und

LR
_und

P
C

T
H

U
M

B
 S

tate G
eneral R

egisters and P
rogram

 C
ounter

T
H

U
M

B
 S

tate P
rogram

 S
tatus R

egisters

= banked register

1��
" �#22

�� 3�
4�
��$

A
R

M
7T

D
M

I D
ata S

heet
A

R
M

 D
D

I 0029E

3-7

Open Access

•
T

H
U

M
B

 state LR
 m

aps onto A
R

M
 state R

14

•
T

he T
H

U
M

B
 state P

rogram
 C

ounter m
aps onto the A

R
M

 state P
rogram

C
ounter (R

15)

T
his relationship is show

n in(

F
igure 3-5: M

apping of T
H

U
M

B
 state registers onto

A
R

M
 state registers.

 F
igure 3-5: M

apping of T
H

U
M

B
 state registers onto A

R
M

 state registers

3.7.4
A

ccessing H
i registers in T

H
U

M
B

 state

In T
H

U
M

B
 state, registers R

8-R
15 (the H

i registers) are not part of the standard
register set. H

ow
ever, the assem

bly language program
m

er has lim
ited access to

them
, and can use them

 for fast tem
porary storage.

A
 value m

ay be transferred from
 a register in the range R

0-R
7 (a Lo register) to a H

i
register, and from

 a H
i register to a Lo register, using special variants of the

M
O

V
instruction. H

i register values can also be com
pared against or added to Lo register

values w
ith the

C
M

P and
A

D
D instructions. S

ee (

5.5 F
orm

at 5: H
i register operations/

branch exchange on page 5-13.

R
0

R
1

R
2

R
3

R
5

R
6

R
7

R
8

R
9

R
10

R
11

R
12

S
tack P

ointer (R
13)

Link R
egister (R

14)
P

rogram
 C

ounter (R
15)

R
0

R
1

R
2

R
3

R
5

R
6

R
7

S
tack P

ointer (S
P

)
Link R

egister (LR
)

P
rogram

 C
ounter (P

C
)

C
P

S
R

C
P

S
R

S
P

S
R

S
P

S
R

T
H

U
M

B
 state

A
R

M
 state

R
4

R
4

Lo registersHi registers

1��
" �#22

�� 3�
4�
��$

A
R

M
7T

D
M

I D
ata S

heet
A

R
M

 D
D

I 0029E

3-8

Open Access 3.8
T

he P
rogram

 S
tatus R

egisters
T

he A
R

M
7T

D
M

I contains a C
urrent P

rogram
 S

tatus R
egister (C

P
S

R
), plus five S

aved
P

rogram
 S

tatus R
egisters (S

P
S

R
s) for use by exception handlers. T

hese registers

•
hold inform

ation about the m
ost recently perform

ed A
LU

 operation

•
control the enabling and disabling of interrupts

•
set the processor operating m

ode

T
he arrangem

ent of bits is show
n in (

F
igure 3-6: P

rogram
 status register form

at.

 F
igure 3-6: P

rogram
 status register form

at

3.8.1
T

he condition code flags

T
he N

, Z
, C

 and V
 bits are the condition code flags. T

hese m
ay be changed as a result

of arithm
etic and logical operations, and m

ay be tested to determ
ine w

hether an
instruction should be executed.

In A
R

M
 state, all instructions m

ay be executed conditionally: see(

4.2 T
he C

ondition
F

ield on page 4-5 for details.

In T
H

U
M

B
 state, only the B

ranch instruction is capable of conditional execution: see

(

5.17 F
orm

at 17: softw
are interrupt on page 5-38

3.8.2
T

he control bits

T
he bottom

 8 bits of a P
S

R
 (incorporating I, F, T

 and M
[4:0]) are know

n collectively as
the control bits. T

hese w
ill change w

hen an exception arises. If the processor is
operating in a privileged m

ode, they can also be m
anipulated by softw

are.

T
he T

 bit
T

his reflects the operating state. W
hen this bit is set, the

processor is executing in T
H

U
M

B
 state, otherw

ise it is
executing in A

R
M

 state. T
his is reflected on the

T
B

IT
external signal.

N
ote that the softw

are m
ust never change the state of the

T
B

IT
 in the C

P
S

R
. If this happens, the processor w

ill
enter an unpredictable state.

0
1

2
3

4
5

6
7

8
27

28
29

30
31

M
0

M
1

M
2

M
3

M
4

.
F

I
V

C
Z

N

O
verflow

C
arry / Borrow

Zero
N

egative / Less Than

M
ode bits

FIQ
 disable

IR
Q

 disable

.
.

condition code flags
control bits

State bit

(reserved)23.
.

24

T

25.

26.

/ Extend

6

1��
" �#22

�� 3�
4�
��$

A
R

M
7T

D
M

I D
ata S

heet
A

R
M

 D
D

I 0029E

3-9

Open Access

Interrupt disable bits
T

he I and F
 bits are the interrupt disable bits. W

hen set,
these disable the IR

Q
 and F

IQ
 interrupts respectively.

T
he m

ode bits
T

he M
4, M

3, M
2, M

1 and M
0 bits (M

[4:0]) are the m
ode

bits. T
hese determ

ine the processor’s operating m
ode,

as show
n in (

T
able 3-1: P

S
R

 m
ode bit values on page

3-9. N
ot all com

binations of the m
ode bits define a valid

processor m
ode. O

nly those explicitly described shall be
used. T

he user should be aw
are that if any illegal value

is program
m

ed into the m
ode bits, M

[4:0], then the
processor w

ill enter an unrecoverable state. If this
occurs, reset should be applied.

R
eserved bits

T
he rem

aining bits in the P
S

R
s are

reserved. W
hen

changing a P
S

R
’s flag or control bits, you m

ust ensure
that these unused bits are not altered. A

lso, your
program

 should not rely on them
 containing specific

values, since in future processors they m
ay read as one

or zero.

M
[4:0]

M
ode

V
isible T

H
U

M
B

 state
registers

V
isible A

R
M

 state
registers

10000
U

ser
R

7..R
0,

LR
, S

P
P

C
, C

P
S

R

R
14..R

0,
P

C
, C

P
S

R

10001
F

IQ
R

7..R
0,

LR
_fiq, S

P
_fiq

P
C

, C
P

S
R

, S
P

S
R

_fiq

R
7..R

0,
R

14_fiq..R
8_fiq,

P
C

, C
P

S
R

, S
P

S
R

_fiq

10010
IR

Q
R

7..R
0,

LR
_irq, S

P
_irq

P
C

, C
P

S
R

, S
P

S
R

_irq

R
12..R

0,
R

14_irq..R
13_irq,

P
C

, C
P

S
R

, S
P

S
R

_irq

10011
S

upervisor
R

7..R
0,

LR
_svc, S

P
_svc,

P
C

, C
P

S
R

, S
P

S
R

_svc

R
12..R

0,
R

14_svc..R
13_svc,

P
C

, C
P

S
R

, S
P

S
R

_svc

10111
A

bort
R

7..R
0,

LR
_abt, S

P
_abt,

P
C

, C
P

S
R

, S
P

S
R

_abt

R
12..R

0,
R

14_abt..R
13_abt,

P
C

, C
P

S
R

, S
P

S
R

_abt

11011
U

ndefined
R

7..R
0

LR
_und, S

P
_und,

P
C

, C
P

S
R

, S
P

S
R

_und

R
12..R

0,
R

14_und..R
13_und,

P
C

, C
P

S
R

11111
S

ystem
R

7..R
0,

LR
, S

P
P

C
, C

P
S

R

R
14..R

0,
P

C
, C

P
S

R

 Table 3-1: P
S

R
 m

ode bit values

1��
" �#22

�� 3�
4�
��$

A
R

M
7T

D
M

I D
ata S

heet
A

R
M

 D
D

I 0029E

3-10

Open Access 3.9
E

xceptionsE
xceptions arise w

henever the norm
al flow

 of a program
 has to be halted tem

porarily,
for exam

ple to service an interrupt from
 a peripheral. B

efore an exception can be
handled, the current processor state m

ust be preserved so that the original program
can resum

e w
hen the handler routine has finished.

It is possible for several exceptions to arise at the sam
e tim

e. If this happens, they are
dealt w

ith in a fixed order - see (

3.9.10 E
xception priorities on page 3-14.

3.9.1
A

ction on entering an exception

W
hen handling an exception, the A

R
M

7T
D

M
I:

1
P

reserves the address of the next instruction in the appropriate Link R
egister.

If the exception has been entered from
 A

R
M

 state, then the address of the
next instruction is copied into the Link R

egister (that is, current P
C

 +
 4 or P

C
+

 8 depending on the exception. S
ee (

T
able 3-2: E

xception entry/exit on
page 3-11 for details). If the exception has been entered from

 T
H

U
M

B
 state,

then the value w
ritten into the Link R

egister is the current P
C

 offset by a value
such that the program

 resum
es from

 the correct place on return from
 the

exception. T
his m

eans that the exception handler need not determ
ine w

hich
state the exception w

as entered from
. F

or exam
ple, in the case of S

W
I,M

O
V

S
P

C
, R

1
4

_
svc

 w
ill alw

ays return to the next instruction regardless of w
hether

the S
W

I w
as executed in A

R
M

 or T
H

U
M

B
 state.

2
C

opies the C
P

S
R

 into the appropriate S
P

S
R

3
F

orces the C
P

S
R

 m
ode bits to a value w

hich depends on the exception

4
F

orces the P
C

 to fetch the next instruction from
 the relevant exception vector

It m
ay also set the interrupt disable flags to prevent otherw

ise unm
anageable nestings

of exceptions.

If the processor is in T
H

U
M

B
 state w

hen an exception occurs, it w
ill autom

atically
sw

itch into A
R

M
 state w

hen the P
C

 is loaded w
ith the exception vector address.

3.9.2
A

ction on leaving an exception

O
n com

pletion, the exception handler:

1
M

oves the Link R
egister, m

inus an offset w
here appropriate, to the P

C
. (T

he
offset w

ill vary depending on the type of exception.)

2
C

opies the S
P

S
R

 back to the C
P

S
R

3
C

lears the interrupt disable flags, if they w
ere set on entry

N
ote

A
n explicit sw

itch back to T
H

U
M

B
 state is never needed, since restoring the C

P
S

R
from

 the S
P

S
R

 autom
atically sets the T

 bit to the value it held im
m

ediately prior to the
exception.

1��
" �#22

�� 3�
4�
��$

A
R

M
7T

D
M

I D
ata S

heet
A

R
M

 D
D

I 0029E

3-11

Open Access

3.9.3
E

xception entry/exit sum
m

ary
(

T
able 3-2: E

xception entry/exit sum
m

arises the P
C

 value preserved in the relevant
R

14 on exception entry, and the recom
m

ended instruction for exiting the exception
handler.

N
otes1

W
here P

C
 is the address of the B

L/S
W

I/U
ndefined Instruction fetch w

hich had
the prefetch abort.

2
W

here P
C

 is the address of the instruction w
hich did not get executed since

the F
IQ

 or IR
Q

 took priority.

3
W

here P
C

 is the address of the Load or S
tore instruction w

hich generated the
data abort.

4
T

he value saved in R
14_svc upon reset is unpredictable.

3.9.4
F

IQ

T
he F

IQ
 (F

ast Interrupt R
equest) exception is designed to support a data transfer or

channel process, and in A
R

M
 state has sufficient private registers to rem

ove the need

�

for register saving (thus m
inim

ising the overhead of context sw
itching).

F
IQ

 is externally generated by taking the
nF

IQ
 input LO

W
. T

his input can except either
synchronous or asynchronous transitions, depending on the state of the

IS
Y

N
C

 input
signal. W

hen
IS

Y
N

C
 is LO

W
,nF

IQ
 and

nIR
Q

 are considered asynchronous, and a
cycle delay for synchronization is incurred before the interrupt can affect the processor
flow

.

Irrespective of w
hether the exception w

as entered from
 A

R
M

 or T
hum

b state, a F
IQ

handler should leave the interrupt by executing

S
U

B
S

 P
C

,R
1

4
_

fiq
,#

4

R
eturn Instruction

P
revious S

tate
A

R
M

T
H

U
M

B
R

14_x
R

14_x

N
otes

B
L

M
O

V
 P

C
, R

14
P

C
 +

 4
P

C
 +

 2
1

S
W

I
M

O
V

S
 P

C
, R

14_svc
P

C
 +

 4
P

C
 +

 2
1

U
D

E
F

M
O

V
S

 P
C

, R
14_und

P
C

 +
 4

P
C

 +
 2

1

F
IQ

S
U

B
S

 P
C

, R
14_fiq, #4

P
C

 +
 4

P
C

 +
 4

2

IR
Q

S
U

B
S

 P
C

, R
14_irq, #4

P
C

 +
 4

P
C

 +
 4

2

P
A

B
T

S
U

B
S

 P
C

, R
14_abt, #4

P
C

 +
 4

P
C

 +
 4

1

D
A

B
T

S
U

B
S

 P
C

, R
14_abt, #8

P
C

 +
 8

P
C

 +
 8

3

R
E

S
E

T
N

A
-

-
4

 Table 3-2: E
xception entry/exit

1��
" �#22

�� 3�
4�
��$

A
R

M
7T

D
M

I D
ata S

heet
A

R
M

 D
D

I 0029E

3-12

Open Access

F
IQ

 m
ay be disabled by setting the C

P
S

R
’s F

 flag (but note that this is not possible
from

 U
ser m

ode). If the F
 flag is clear, A

R
M

7T
D

M
I checks for a LO

W
 level on the

output of the F
IQ

 synchroniser at the end of each instruction.

3.9.5
IR

Q

T
he IR

Q
 (Interrupt R

equest) exception is a norm
al interrupt caused by a LO

W
 level on

the
nIR

Q
 input. IR

Q
 has a low

er priority than F
IQ

 and is m
asked out w

hen a F
IQ

sequence is entered. It m
ay be disabled at any tim

e by setting the I bit in the C
P

S
R

,
though this can only be done from

 a privileged (non-U
ser) m

ode.

Irrespective of w
hether the exception w

as entered from
 A

R
M

 or T
hum

b state, an IR
Q

handler should return from
 the interrupt by executing

S
U

B
S

 P
C

,R
1

4
_

irq
,#

4

3.9.6
A

bort

A
n abort indicates that the current m

em
ory access cannot be com

pleted. It can be
signalled by the externalA

B
O

R
T

 input. A
R

M
7T

D
M

I checks for the abort exception
during m

em
ory access cycles.

T
here are tw

o types of abort:

P
refetch abort

occurs during an instruction prefetch.

D
ata abort

occurs during a data access.

If a prefetch abort occurs, the prefetched instruction is m
arked as invalid, but the

exception w
ill not be taken until the instruction reaches the head of the pipeline. If the

instruction is not executed - for exam
ple because a branch occurs w

hile it is in the
pipeline - the abort does not take place.

If a data abort occurs, the action taken depends on the instruction type:

1
S

ingle data transfer instructions (LD
R

, S
T

R
) w

rite back m
odified base

registers: the A
bort handler m

ust be aw
are of this.

2
T

he sw
ap instruction (S

W
P

) is aborted as though it had not been executed.

3
B

lock data transfer instructions (LD
M

, S
T

M
) com

plete. If w
rite-back is set, the

base is updated. If the instruction w
ould have overw

ritten the base w
ith data

(ie it has the base in the transfer list), the overw
riting is prevented. A

ll register
overw

riting is prevented after an abort is indicated, w
hich m

eans in particular
that R

15 (alw
ays the last register to be transferred) is preserved in an aborted

LD
M

 instruction.

T
he abort m

echanism
 allow

s the im
plem

entation of a dem
and paged virtual m

em
ory

system
. In such a system

 the processor is allow
ed to generate arbitrary addresses.

W
hen the data at an address is unavailable, the M

em
ory M

anagem
ent U

nit (M
M

U
)

signals an abort. T
he abort handler m

ust then w
ork out the cause of the abort, m

ake
the requested data available, and retry the aborted instruction. T

he application
program

 needs no know
ledge of the am

ount of m
em

ory available to it, nor is its state
in any w

ay affected by the abort.

1��
" �#22

�� 3�
4�
��$

A
R

M
7T

D
M

I D
ata S

heet
A

R
M

 D
D

I 0029E

3-13

Open Access

A
fter fixing the reason for the abort, the handler should execute the follow

ing
irrespective of the state (A

R
M

 or T
hum

b):

S
U

B
S

 P
C

,R
1

4
_

a
b

t,#
4

for a prefetch abort, or

S
U

B
S

 P
C

,R
1

4
_

a
b

t,#
8

for a data abort

T
his restores both the P

C
 and the C

P
S

R
, and retries the aborted instruction.

3.9.7
S

oftw
are interrupt

T
he softw

are interrupt instruction (S
W

I) is used for entering S
upervisor m

ode, usually
to request a particular supervisor function. A

 S
W

I handler should return by executing
the follow

ing irrespective of the state (A
R

M
 or T

hum
b):

M
O

V
 P

C
, R

1
4

_
svc

T
his restores the P

C
 and C

P
S

R
, and returns to the instruction follow

ing the S
W

I.

3.9.8
U

ndefined instruction

W
hen A

R
M

7T
D

M
I com

es across an instruction w
hich it cannot handle, it takes the

undefined instruction trap. T
his m

echanism
 m

ay be used to extend either the T
H

U
M

B
or A

R
M

 instruction set by softw
are em

ulation.

A
fter em

ulating the failed instruction, the trap handler should execute the follow
ing

irrespective of the state (A
R

M
 or T

hum
b):

M
O

V
S

 P
C

,R
1

4
_

u
n

d

T
his restores the C

P
S

R
 and returns to the instruction follow

ing the undefined
instruction.

3.9.9
E

xception vectors

T
he follow

ing table show
s the exception vector addresses.

A
ddress

 E
xception

M
ode on entry

0x00000000
 R

eset
S

upervisor

0x00000004
 U

ndefined instruction
U

ndefined

0x00000008
 S

oftw
are interrupt

S
upervisor

0x0000000C
 A

bort (prefetch)
A

bort

0x00000010
 A

bort (data)
A

bort

0x00000014
R

eserved
R

eserved

0x00000018
 IR

Q
IR

Q

0x0000001C
 F

IQ
F

IQ

 Table 3-3: E
xception vectors

1��
" �#22

�� 3�
4�
��$

A
R

M
7T

D
M

I D
ata S

heet
A

R
M

 D
D

I 0029E

3-14

Open Access

3.9.10
E

xception priorities

W
hen m

ultiple exceptions arise at the sam
e tim

e, a fixed priority system
 determ

ines
the order in w

hich they are handled:

H
ighest priority:

1
R

eset

2
D

ata abort

3
F

IQ

4
IR

Q

5
P

refetch abort

Low
est priority:

6
U

ndefined Instruction, S
oftw

are interrupt.

N
ot all exceptions can occur at once:

U
ndefined Instruction and S

oftw
are Interrupt are m

utually exclusive, since they each
correspond to particular (non-overlapping) decodings of the current instruction.

If a data abort occurs at the sam
e tim

e as a F
IQ

, and F
IQ

s are enabled (ie the C
P

S
R

’s
F

 flag is clear), A
R

M
7T

D
M

I enters the data abort handler and then im
m

ediately
proceeds to the F

IQ
 vector. A

 norm
al return from

 F
IQ

 w
ill cause the data abort handler

to resum
e execution. P

lacing data abort at a higher priority than F
IQ

 is necessary to
ensure that the transfer error does not escape detection. T

he tim
e for this exception

entry should be added to w
orst-case F

IQ
 latency calculations.

3.10
Interrupt Latencies

T
he w

orst case latency for F
IQ

, assum
ing that it is enabled, consists of the longest

tim
e the request can take to pass through the synchroniser (Tsyncm

ax if
asynchronous), plus the tim

e for the longest instruction to com
plete (T

ldm
, the longest

instruction is an LD
M

 w
hich loads all the registers including the P

C
), plus the tim

e for
the data abort entry (Texc), plus the tim

e for F
IQ

 entry (T
fiq). A

t the end of this tim
e

A
R

M
7T

D
M

I w
ill be executing the instruction at 0x1C

.

Tsyncm
ax is 3 processor cycles, T

ldm
 is 20 cycles,Texc is 3 cycles, and

T
fiq is 2

cycles. T
he total tim

e is therefore 28 processor cycles. T
his is just over 1.4

m
icroseconds in a system

 w
hich uses a continuous 20 M

H
z processor clock. T

he
m

axim
um

 IR
Q

 latency calculation is sim
ilar, but m

ust allow
 for the fact that F

IQ
 has

higher priority and could delay entry into the IR
Q

 handling routine for an arbitrary
length of tim

e. T
he m

inim
um

 latency for F
IQ

 or IR
Q

 consists of the shortest tim
e the

request can take through the synchroniser (Tsyncm
in) plus

T
fiq. T

his is 4 processor
cycles.

1��
" �#22

�� 3�
4�
��$

A
R

M
7T

D
M

I D
ata S

heet
A

R
M

 D
D

I 0029E

3-15

Open Access

3.11
R

eset
W

hen the
nR

E
S

E
T

 signal goes LO
W

, A
R

M
7T

D
M

I abandons the executing instruction
and then continues to fetch instructions from

 increm
enting w

ord addresses.

W
hen

nR
E

S
E

T
 goes H

IG
H

 again, A
R

M
7T

D
M

I:

1
O

verw
rites R

14_svc and S
P

S
R

_svc by copying the current values of the P
C

and C
P

S
R

 into them
. T

he value of the saved P
C

 and S
P

S
R

 is not defined.

2
F

orces M
[4:0] to 10011 (S

upervisor m
ode), sets the I and F

 bits in the C
P

S
R

,
and clears the C

P
S

R
’s T

 bit.

3
F

orces the P
C

 to fetch the next instruction from
 address 0x00.

4
E

xecution resum
es in A

R
M

 state.

1��
" �#22

�� 3�
4�
��$

A
R

M
7T

D
M

I D
ata S

heet
A

R
M

 D
D

I 0029E

3-16

Open Access

A
R

M
7T

D
M

I D
ata S

heet
A

R
M

 D
D

I 0029E

4-1

11

Open Access

78
0
	
��
����
�

���

T
his chapter describes the A

R
M

 instruction set.

4.1
Instruction S

et S
um

m
ary

4-2

4.2
T

he C
ondition F

ield
4-5

4.3
B

ranch and E
xchange (B

X
)

4-6

4.4
B

ranch and B
ranch w

ith Link (B
, B

L)
4-8

4.5
D

ata P
rocessing

4-10

4.6
P

S
R

 Transfer (M
R

S
, M

S
R

)
4-18

4.7
M

ultiply and M
ultiply-A

ccum
ulate (M

U
L, M

LA
)

4-23

4.8
M

ultiply Long and M
ultiply-A

ccum
ulate Long (M

U
LL,M

LA
L)

4-25

4.9
S

ingle D
ata Transfer (LD

R
, S

T
R

)
4-28

4.10
H

alfw
ord and S

igned D
ata Transfer

4-34

4.11
B

lock D
ata Transfer (LD

M
, S

T
M

)
4-40

4.12
S

ingle D
ata S

w
ap (S

W
P

)
4-47

4.13
S

oftw
are Interrupt (S

W
I)

4-49

4.14
C

oprocessor D
ata O

perations (C
D

P
)

4-51

4.15
C

oprocessor D
ata Transfers (LD

C
, S

T
C

)
4-53

4.16
C

oprocessor R
egister Transfers (M

R
C

, M
C

R
)

4-57

4.17
U

ndefined Instruction
4-60

4.18
Instruction S

et E
xam

ples
4-61

9:
4�������
���
�!�� ;
!�22
#�<

A
R

M
7T

D
M

I D
ata S

heet
A

R
M

 D
D

I 0029E

4-2

Open Access 4.1
Instruction S

et S
um

m
ary

4.1.1
F

orm
at sum

m
ary

T
he A

R
M

 instruction set form
ats are show

n below
.

 F
igure 4-1: A

R
M

 instruction set form
ats

N
ote

S
om

e instruction codes are not defined but do not cause the U
ndefined instruction trap

to be taken, for instance a M
ultiply instruction w

ith bit 6 changed to a 1. T
hese

instructions
should

not
be

used,
as

their
action

m
ay

change
in

future
A

R
M

im
plem

entations.

31
30

29
28

27
26

25
24

23
22

21
20

19
18

17
16

15
14

13
12

11
10

9
8

7
6

5
4

3
2

1
0

C
ond

0
0

I
O

pcode
S

R
n

R
d

O
perand 2

Data Processing /
PSR Transfer

C
ond

0
0

0
0

0
0

A
S

R
d

R
n

R
s

1
0

0
1

R
m

M
ultiply

C
ond

0
0

0
0

1
U

A
S

R
dH

i
R

dLo
R

n
1

0
0

1
R

m
M

ultiply Long

C
ond

0
0

0
1

0
B

0
0

R
n

R
d

0
0

0
0

1
0

0
1

R
m

Single Data Swap

C
ond

0
0

0
1

0
0

1
0

1
1

1
1

1
1

1
1

1
1

1
1

0
0

0
1

R
n

Branch and Exchange

C
ond

0
0

0
P

U
0

W
L

R
n

R
d

0
0

0
0

1
S

H
1

R
m

Halfword Data Transfer:
register offset

C
ond

0
0

0
P

U
1

W
L

R
n

R
d

O
ffset

1
S

H
1

O
ffset

Halfword Data Transfer:
im

m
ediate offset

C
ond

0
1

I
P

U
B

W
L

R
n

R
d

O
ffset

Single Data Transfer

C
ond

0
1

1
1

Undefined

C
ond

1
0

0
P

U
S

W
L

R
n

R
egister List

Block Data Transfer

C
ond

1
0

1
L

O
ffset

Branch

C
ond

1
1

0
P

U
N

W
L

R
n

C
R

d
C

P
#

O
ffset

Coprocessor Data
Transfer

C
ond

1
1

1
0

C
P

 O
pc

C
R

n
C

R
d

C
P

#
C

P
0

C
R

m
Coprocessor Data
O

peration

C
ond

1
1

1
0

C
P

 O
pc

L
C

R
n

R
d

C
P

#
C

P
1

C
R

m
Coprocessor Register
Transfer

C
ond

1
1

1
1

Ignored by processor
Software Interrupt

31
30

29
28

27
26

25
24

23
22

21
20

19
18

17
16

15
14

13
12

11
10

9
8

7
6

5
4

3
2

1
0

9:
4�������
���
�!�� ;
!�22
#�<

A
R

M
7T

D
M

I D
ata S

heet
A

R
M

 D
D

I 0029E

4-3

Open Access

4.1.2
Instruction sum

m
ary

M
nem

onic
Instruction

A
ction

S
ee S

ection:

A
D

C
A

dd w
ith carry

R
d :=

 R
n +

 O
p2 +

 C
arry

4.5

A
D

D
A

dd
R

d :=
 R

n +
 O

p2
4.5

A
N

D
A

N
D

R
d :=

 R
n A

N
D

 O
p2

4.5

B
B

ranch
R

15 :=
 address

4.4

B
IC

B
it C

lear
R

d :=
 R

n A
N

D
 N

O
T

 O
p2

4.5

B
L

B
ranch w

ith Link
R

14 :=
 R

15, R
15 :=

 address
4.4

B
X

B
ranch and E

xchange
R

15 :=
 R

n,
T

 bit :=
 R

n[0]
4.3

C
D

P
C

oprocesor D
ata P

rocessing
(C

oprocessor-specific)
4.14

C
M

N
C

om
pare N

egative
C

P
S

R
 flags :=

 R
n +

 O
p2

4.5

C
M

P
C

om
pare

C
P

S
R

 flags :=
 R

n - O
p2

4.5

E
O

R
E

xclusive O
R

R
d :=

 (R
n A

N
D

 N
O

T
 O

p2)
O

R
 (op2 A

N
D

 N
O

T
 R

n)
4.5

LD
C

Load coprocessor from
m

em
ory

C
oprocessor load

4.15

LD
M

Load m
ultiple registers

S
tack m

anipulation (P
op)

4.11

LD
R

Load register from
 m

em
ory

R
d :=

 (address)
4.9, 4.10

M
C

R
M

ove C
P

U
 register to

coprocessor register
cR

n :=
 rR

n {<
op>

cR
m

}
4.16

M
LA

M
ultiply A

ccum
ulate

R
d :=

 (R
m

 * R
s) +

 R
n

4.7, 4.8

M
O

V
M

ove register or constant
R

d : =
 O

p2
4.5

M
R

C
M

ove from
 coprocessor

register to C
P

U
 register

R
n :=

 cR
n {<

op>
cR

m
}

4.16

M
R

S
M

ove P
S

R
 status/flags to

register
R

n :=
 P

S
R

4.6

M
S

R
M

ove register to P
S

R
status/flags

P
S

R
 :=

 R
m

4.6

M
U

L
M

ultiply
R

d :=
 R

m
 * R

s
4.7, 4.8

M
V

N
M

ove negative register
R

d :=
 0xF

F
F

F
F

F
F

F
 E

O
R

 O
p2

4.5

O
R

R
O

R
R

d :=
 R

n O
R

 O
p2

4.5

 Table 4-1: T
he A

R
M

 Instruction set

9:
4�������
���
�!�� ;
!�22
#�<

A
R

M
7T

D
M

I D
ata S

heet
A

R
M

 D
D

I 0029E

4-4

Open Access

R
S

B
R

everse S
ubtract

R
d :=

 O
p2 - R

n
4.5

R
S

C
R

everse S
ubtract w

ith C
arry

R
d :=

 O
p2 - R

n - 1 +
 C

arry
4.5

S
B

C
S

ubtract w
ith C

arry
R

d :=
 R

n - O
p2 - 1 +

 C
arry

4.5

S
T

C
S

tore coprocessor register to
m

em
ory

address :=
 C

R
n

4.15

S
T

M
S

tore M
ultiple

S
tack m

anipulation (P
ush)

4.11

S
T

R
S

tore register to m
em

ory
<

address>
 :=

 R
d

4.9, 4.10

S
U

B
S

ubtract
R

d :=
 R

n - O
p2

4.5

S
W

I
S

oftw
are Interrupt

O
S

 call
4.13

S
W

P
S

w
ap register w

ith m
em

ory
R

d :=
 [R

n], [R
n] :=

 R
m

4.12

T
E

Q
T

est bitw
ise equality

C
P

S
R

 flags :=
 R

n E
O

R
 O

p2
4.5

T
S

T
T

est bits
C

P
S

R
 flags :=

 R
n A

N
D

 O
p2

4.5

M
nem

onic
Instruction

A
ction

S
ee S

ection:

 Table 4-1: T
he A

R
M

 Instruction set (C
ontinued)

9:
4�������
���
�!�� ;
��
������
�=��$
�

A
R

M
7T

D
M

I D
ata S

heet
A

R
M

 D
D

I 0029E

4-5

Open Access

4.2
T

he C
ondition F

ield
In A

R
M

 state, all instructions are conditionally executed according to the state of the
C

P
S

R
 condition codes and the instruction’s condition field. T

his field (bits 31:28)
determ

ines the circum
stances under w

hich an instruction is to be executed. If the state
of the C

, N
, Z

 and V
 flags fulfils the conditions encoded by the field, the instruction is

executed, otherw
ise it is ignored.

T
here are sixteen possible conditions, each represented by a tw

o-character suffix that

�

can be appended to the instruction’s m
nem

onic. F
or exam

ple, a B
ranch (B

 in assem
bly

language) becom
es

B
E

Q for "B
ranch if E

qual", w
hich m

eans the B
ranch w

ill only be
taken if the Z

 flag is set.

In practice, fifteen different conditions m
ay be used: these are listed in(

T
able 4-2:

C
ondition code sum

m
ary. T

he sixteenth (1111) is reserved, and m
ust not be used.

In the absence of a suffix, the condition field of m
ost instructions is set to "A

lw
ays"

(sufix A
L). T

his m
eans the instruction w

ill alw
ays be executed regardless of the C

P
S

R
condition codes.

C
ode

S
uffix

F
lags

M
eaning

0000
E

Q
Z

 set
equal

0001
N

E
Z

 clear
not equal

0010
C

S
C

 set
unsigned higher or sam

e

0011
C

C
C

 clear
unsigned low

er

0100
M

I
N

 set
negative

0101
P

L
N

 clear
positive or zero

0110
V

S
V

 set
overflow

0111
V

C
V

 clear
no overflow

1000
H

I
C

 set and Z
 clear

unsigned higher

1001
LS

C
 clear or Z

 set
unsigned low

er or sam
e

1010
G

E
N

 equals V
greater or equal

1011
LT

N
 not equal to V

less than

1100
G

T
Z

 clear A
N

D
 (N

 equals V
)

greater than

1101
LE

Z
 set O

R
 (N

 not equal to V
)

less than or equal

1110
A

L
(ignored)

alw
ays

 Table 4-2: C
ondition code sum

m
ary

9:
4�������
���
�!�� ;
��
������
�=��$
�A

R
M

7T
D

M
I D

ata S
heet

A
R

M
 D

D
I 0029E

4-6

Open Access 4.3
B

ranch and E
xchange (B

X
)

T
his instruction is only executed if the condition is true. T

he various conditions are
defined in(

T
able 4-2: C

ondition code sum
m

ary on page 4-5.

T
his instruction perform

s a branch by copying the contents of a general register, R
n,

into the program
 counter, P

C
. T

he branch causes a pipeline flush and refill from
 the

address specified by R
n. T

his instruction also perm
its the instruction set to be

exchanged. W
hen the instruction is executed, the value of R

n[0] determ
ines w

hether
the instruction stream

 w
ill be decoded as A

R
M

 or T
H

U
M

B
 instructions.

 F
igure 4-2: B

ranch and E
xchange instructions

4.3.1
Instruction cycle tim

es

T
he B

X
 instruction takes 2S

 +
 1N

 cycles to execute, w
here S

 and N
 are as defined in

(

6.2 C
ycle T

ypes on page 6-2.

4.3.2
A

ssem
bler syntax

B
X

 - branch and exchange.

B
X

{co
n

d
} R

n

{cond}
Tw

o character condition m
nem

onic. S
ee (

T
able 4-2: C

ondition code
sum

m
ary on page 4-5.

R
n

is an expression evaluating to a valid register num
ber.

4.3.3
U

sing R
15 as an operand

If R
15 is used as an operand, the behaviour is undefined.

C
ond

0
0

0
1

0
0

1
0

0
0

0
1

 R
n

0
3

4
7

8
11

12
15

16
19

20
23

24
27

28
31

O
perand register

If bit 0 of R
n =

 1, subsequent instructions decoded as T
H

U
M

B
 instructions

If bit 0 of R
n =

 0, subsequent instructions decoded as A
R

M
 instructions

C
ondition F

ield

1
1

1
1

1
1

1
1

1
1

1
1

9:
4�������
���
�!�� ;
��
������
�=��$
�

A
R

M
7T

D
M

I D
ata S

heet
A

R
M

 D
D

I 0029E

4-7

Open Access

4.3.4
E

xam
ples

A
D

R
 R

0
, In

to
_

T
H

U
M

B
 +

 1
; G

e
n

e
ra

te
 b

ra
n

ch
 ta

rg
e

t a
d

d
re

ss
; a

n
d

 se
t b

it 0
 h

ig
h

 - h
e

n
ce

; a
rrive

 in
 T

H
U

M
B

 sta
te

.
B

X
 R

0
; B

ra
n

ch
 a

n
d

 ch
a

n
g

e
 to

 T
H

U
M

B
; sta

te
.

C
O

D
E

1
6

; A
sse

m
b

le
 su

b
se

q
u

e
n

t co
d

e
 a

s
In

to
_

T
H

U
M

B
; T

H
U

M
B

 in
stru

ctio
n

s

..
A

D
R

 R
5

, B
a

ck_
to

_
A

R
M

: G
e

n
e

ra
te

 b
ra

n
ch

 ta
rg

e
t to

 w
o

rd
: a

lig
n

e
d

; a
d

d
re

ss - h
e

n
ce

 b
it 0

; is lo
w

 a
n

d
 so

 ch
a

n
g

e
 b

a
ck to

 A
R

M
; sta

te
.

B
X

 R
5

; B
ra

n
ch

 a
n

d
 ch

a
n

g
e

 b
a

ck to
 A

R
M

; sta
te

.
..A

L
IG

N
; W

o
rd

 a
lig

n
C

O
D

E
3

2
; A

sse
m

b
le

 su
b

se
q

u
e

n
t co

d
e

 a
s A

R
M

B
a

ck_
to

_
A

R
M

; in
stru

ctio
n

s

..

9:
4�������
���
�!�� ;
>? >@

A
R

M
7T

D
M

I D
ata S

heet
A

R
M

 D
D

I 0029E

4-8

Open Access 4.4
B

ranch and B
ranch w

ith Link (B
, B

L)
T

he instruction is only executed if the condition is true. T
he various conditions are

defined(

T
able 4-2: C

ondition code sum
m

ary on page 4-5. T
he instruction encoding

is show
n in(

F
igure 4-3: B

ranch instructions, below
. F
igure 4-3: B

ranch instructions

B
ranch instructions contain a signed 2's com

plem
ent 24 bit offset. T

his is shifted left
tw

o bits, sign extended to 32 bits, and added to the P
C

. T
he instruction can therefore

specify a branch of +
/- 32M

bytes. T
he branch offset m

ust take account of the prefetch
operation, w

hich causes the P
C

 to be 2 w
ords (8 bytes) ahead of the current

instruction.

B
ranches beyond +

/- 32M
bytes m

ust use an offset or absolute destination w
hich has

been previously loaded into a register. In this case the P
C

 should be m
anually saved

in R
14 if a B

ranch w
ith Link type operation is required.

4.4.1
T

he link bitB
ranch w

ith Link (B
L) w

rites the old P
C

 into the link register (R
14) of the current bank.

T
he P

C
 value w

ritten into R
14 is adjusted to allow

 for the prefetch, and contains the
address of the instruction follow

ing the branch and link instruction. N
ote that the C

P
S

R
is not saved w

ith the P
C

 and R
14[1:0] are alw

ays cleared.

To return from
 a routine called by B

ranch w
ith Link use M

O
V

 P
C

,R
14 if the link register

is still valid or LD
M

 R
n!,{..P

C
} if the link register has been saved onto a stack pointed

to by R
n.

4.4.2
Instruction cycle tim

es

B
ranch and B

ranch w
ith Link instructions take 2S

 +
 1N

 increm
ental cycles, w

here S
and N

 are as defined in(

6.2 C
ycle T

ypes on page 6-2.

C
ond

101
L

offset

31
28

27
25

24
23

0

Link bit
0 = B

ranch
1 = B

ranch w
ith Link

C
ondition field

9:
4�������
���
�!�� ;
>? >@

A
R

M
7T

D
M

I D
ata S

heet
A

R
M

 D
D

I 0029E

4-9

Open Access

4.4.3
A

ssem
bler syntax

Item
s in {} are optional. Item

s in <
>

 m
ust be present.

B
{L

}{co
n

d
} <

e
xp

re
ssio

n
>

{L}
is used to request the B

ranch w
ith Link form

 of the instruction.
If absent, R

14 w
ill not be affected by the instruction.

{cond}
is a tw

o-character m
nem

onic as show
n in(

T
able 4-2:

C
ondition code sum

m
ary on page 4-5. If absent then A

L
(A

Lw
ays) w

ill be used.

<
expression>

is the destination. T
he assem

bler calculates the offset.

4.4.4
E

xam
ples

h
e

re
B

A
L

h
e

re
; a

sse
m

b
le

s to
 0

xE
A

F
F

F
F

F
E

 (n
o

te
 e

ffe
ct o

f
; P

C
 o

ffse
t).

B
th

e
re

; A
lw

a
ys co

n
d

itio
n

 u
se

d
 a

s d
e

fa
u

lt.
C

M
P

R
1

,#
0

; C
o

m
p

a
re

 R
1

 w
ith

 ze
ro

 a
n

d
 b

ra
n

ch
 to

 fre
d

; if R
1

 w
a

s ze
ro

, o
th

e
rw

ise
 co

n
tin

u
e

B
E

Q
fre

d
; co

n
tin

u
e

 to
 n

e
xt in

stru
ctio

n
.

B
L

su
b

+
R

O
M

; C
a

ll su
b

ro
u

tin
e

 a
t co

m
p

u
te

d
 a

d
d

re
ss.

A
D

D
S

R
1

,#
1

; A
d

d
 1

 to
 re

g
iste

r 1
, se

ttin
g

 C
P

S
R

 fla
g

s
; o

n
 th

e
 re

su
lt th

e
n

 ca
ll su

b
ro

u
tin

e
 if

B
L

C
C

su
b

; th
e

 C
 fla

g
 is cle

a
r, w

h
ich

 w
ill b

e
 th

e
; ca

se
 u

n
le

ss R
1

 h
e

ld
 0

xF
F

F
F

F
F

F
F

.

9:
4�������
���
�!�� ;
%#�#

& ��������"A
R

M
7T

D
M

I D
ata S

heet
A

R
M

 D
D

I 0029E

4-10

Open Access 4.5
D

ata
P

rocessing
T

he data processing instruction is only executed if the condition is true. T
he conditions

are defined in(

T
able 4-2: C

ondition code sum
m

ary on page 4-5.

T
he instruction encoding is show

n in(

F
igure 4-4: D

ata processing instructionsbelow
.

 F
igure 4-4: D

ata processing instructions

T
he instruction produces a result by perform

ing a specified arithm
etic or logical

operation on one or tw
o operands. T

he first operand is alw
ays a register (R

n).

C
ond

00
I

O
pC

ode
R

n
R

d
O

perand 2

0
1

1
1

2
1

5
1

6
1

9
2

0
2

1
2

4
2

5
2

6
2

7
2

8
3

1

D
estination register

1st operand register
S

et condition codes

O
peration C

ode

0 =
 do not alter condition codes

1 =
 set condition codes

0000 =
 A

N
D

 - R
d:=

 O
p1 A

N
D

 O
p2

0010 =
 S

U
B

 - R
d:=

 O
p1 - O

p2
0011 =

 R
S

B
 - R

d:=
 O

p2 - O
p1

0100 =
 A

D
D

 - R
d:=

 O
p1 +

 O
p2

0101 =
 A

D
C

 - R
d:=

 O
p1 +

 O
p2 +

 C
0110 =

 S
B

C
 - R

d:=
 O

p1 - O
p2 +

 C
0111 =

 R
S

C
 - R

d:=
 O

p2 - O
p1 +

 C
1000 =

 T
S

T
 - set condition codes on O

p1 A
N

D
 O

p2
1001 =

 T
E

Q
 - set condition codes on O

p1 E
O

R
 O

p2
1010 =

 C
M

P
 - set condition codes on O

p1 - O
p2

1011 =
 C

M
N

 - set condition codes on O
p1 +

 O
p2

1100 =
 O

R
R

 - R
d:=

 O
p1 O

R
 O

p2
1101 =

 M
O

V
 - R

d:=
 O

p2
1110 =

 B
IC

 - R
d:=

 O
p1 A

N
D

 N
O

T
 O

p2
1111 =

 M
V

N
 - R

d:=
 N

O
T

 O
p2

Im
m

ediate O
perand

0 =
 operand 2 is a register

1 =
 operand 2 is an im

m
ediate value

S
hift

R
m

R
otate

S

U
nsigned 8 bit im

m
ediate value

2nd operand register
shift applied to R

m

shift applied to Im
m

Im
m

C
ondition field

1
1

8
7

0 0
3

4
1

1

0001 =
 E

O
R

 - R
d:=

 O
p1 E

O
R

 O
p2

- 1- 1

9:
4�������
���
�!�� ;
%#�#

& ��������"

A
R

M
7T

D
M

I D
ata S

heet
A

R
M

 D
D

I 0029E

4-11

Open Access

T
he second operand m

ay be a shifted register (R
m

) or a rotated 8 bit im
m

ediate value
(Im

m
) according to the value of the I bit in the instruction. T

he condition codes in the
C

P
S

R
 m

ay be preserved or updated as a result of this instruction, according to the
value of the S

 bit in the instruction.

C
ertain operations (T

S
T, T

E
Q

, C
M

P, C
M

N
) do not w

rite the result to R
d. T

hey are used
only to perform

 tests and to set the condition codes on the result and alw
ays have the

S
 bit set. T

he instructions and their effects are listed in (

T
able 4-3: A

R
M

 D
ata

processing instructions on page 4-11.

4.5.1
C

P
S

R
 flagsT

he data processing operations m
ay be classified as logical or arithm

etic. T
he logical

operations (A
N

D
, E

O
R

, T
S

T, T
E

Q
, O

R
R

, M
O

V, B
IC

, M
V

N
) perform

 the logical action
on all corresponding bits of the operand or operands to produce the result. If the S

 bit
is set (and R

d is not R
15, see below

) the V
 flag in the C

P
S

R
 w

ill be unaffected, the C
flag w

ill be set to the carry out from
 the barrel shifter (or preserved w

hen the shift
operation is LS

L #0), the Z
 flag w

ill be set if and only if the result is all zeros, and the
N

 flag w
ill be set to the logical value of bit 31 of the result.

A
ssem

bler
M

nem
onic

O
pC

ode
A

ction

A
N

D
0000

operand1 A
N

D
 operand2

E
O

R
0001

operand1 E
O

R
 operand2

S
U

B
0010

operand1 - operand2

R
S

B
0011

operand2 - operand1

A
D

D
0100

operand1 +
 operand2

A
D

C
0101

operand1 +
 operand2 +

 carry

S
B

C
0110

operand1 - operand2 +
 carry - 1

R
S

C
0111

operand2 - operand1 +
 carry - 1

T
S

T
1000

as A
N

D
, but result is not w

ritten

T
E

Q
1001

as E
O

R
, but result is not w

ritten

C
M

P
1010

as S
U

B
, but result is not w

ritten

C
M

N
1011

as A
D

D
, but result is not w

ritten

O
R

R
1100

operand1 O
R

 operand2

M
O

V
1101

operand2
(operand1 is ignored)

B
IC

1110
operand1 A

N
D

 N
O

T
 operand2

(B
it clear)

M
V

N
1111

N
O

T
 operand2

(operand1 is ignored)

 Table 4-3: A
R

M
 D

ata processing instructions

9:
4�������
���
�!�� ;
!A�B��

A
R

M
7T

D
M

I D
ata S

heet
A

R
M

 D
D

I 0029E

4-12

Open Access

T
he arithm

etic operations (S
U

B
, R

S
B

, A
D

D
, A

D
C

, S
B

C
, R

S
C

, C
M

P, C
M

N
) treat each

operand as a 32 bit integer (either unsigned or 2's com
plem

ent signed, the tw
o are

equivalent). If the S
 bit is set (and R

d is not R
15) the V

 flag in the C
P

S
R

 w
ill be set if

an overflow
 occurs into bit 31 of the result; this m

ay be ignored if the operands w
ere

considered unsigned, but w
arns of a possible error if the operands w

ere 2's
com

plem
ent signed. T

he C
 flag w

ill be set to the carry out of bit 31 of the A
LU

, the Z
flag w

ill be set if and only if the result w
as zero, and the N

 flag w
ill be set to the value

of bit 31 of the result (indicating a negative result if the operands are considered to be
2's com

plem
ent signed).

4.5.2
S

hifts

W
hen the second operand is specified to be a shifted register, the operation of the

barrel shifter is controlled by the S
hift field in the instruction. T

his field indicates the
type of shift to be perform

ed (logical left or right, arithm
etic right or rotate right). T

he
am

ount by w
hich the register should be shifted m

ay be contained in an im
m

ediate field
in the instruction, or in the bottom

 byte of another register (other than R
15). T

he
encoding for the different shift types is show

n in(

F
igure 4-5: A

R
M

 shift operations.

 F
igure 4-5: A

R
M

 shift operations

Instruction specified shift am
ount

W
hen the shift am

ount is specified in the instruction, it is contained in a 5 bit field w
hich

m
ay take any value from

 0 to 31. A
 logical shift left (LS

L) takes the contents of R
m

 and
m

oves each bit by the specified am
ount to a m

ore significant position. T
he least

significant bits of the result are filled w
ith zeros, and the high bits of R

m
 w

hich do not
m

ap into the result are discarded, except that the least significant discarded bit
becom

es the shifter carry output w
hich m

ay be latched into the C
 bit of the C

P
S

R
 w

hen
the A

LU
 operation is in the logical class (see above). F

or exam
ple, the effect of LS

L
#5

is show
n in (

F
igure 4-6: Logical shift left.

0
0

1
R

s

11
8

7
6

5
4

11
7

6
5

4

S
hift type

S
hift am

ount
5 bit unsigned integer

00 = logical left
01 = logical right
10 = arithm

etic right
11 = rotate right

S
hift type

S
hift register

00 = logical left
01 = logical right
10 = arithm

etic right
11 = rotate right

S
hift am

ount specified in
bottom

 byte of R
s

9:
4�������
���
�!�� ;
!A�B��

A
R

M
7T

D
M

I D
ata S

heet
A

R
M

 D
D

I 0029E

4-13

Open Access

 F
igure 4-6: Logical shift left

N
ote

LS
L #0 is a special case, w

here the shifter carry out is the old value of the C
P

S
R

 C
flag. T

he contents of R
m

 are used directly as the second operand.

A
 logical shift right (LS

R
) is sim

ilar, but the contents of R
m

 are m
oved to less

significant positions in the result. LS
R

 #5 has the effect show
n in(

F
igure 4-7: Logical

shift right.

 F
igure 4-7: Logical shift right

T
he form

 of the shift field w
hich m

ight be expected to correspond to LS
R

 #0 is used to
encode LS

R
 #32, w

hich has a zero result w
ith bit 31 of R

m
 as the carry output. Logical

shift right zero is redundant as it is the sam
e as logical shift left zero, so the assem

bler
w

ill convert LS
R

 #0 (and A
S

R
 #0 and R

O
R

 #0) into LS
L #0, and allow

 LS
R

 #32 to be
specified.

A
n arithm

etic shift right (A
S

R
) is sim

ilar to logical shift right, except that the high bits
are filled w

ith bit 31 of R
m

 instead of zeros. T
his preserves the sign in 2's com

plem
ent

notation. F
or exam

ple, A
S

R
 #5 is show

n in(

F
igure 4-8: A

rithm
etic shift right.

0
0

0
0

0

contents of R
m

value of operand 2

C

31
27

26
0

carry out

contents of R
m

value of operand 2

31
0

carry out

0
0

0
0

0

5
4

9:
4�������
���
�!�� ;
!A�B��

A
R

M
7T

D
M

I D
ata S

heet
A

R
M

 D
D

I 0029E

4-14

Open Access

 F
igure 4-8: A

rithm
etic shift right

T
he form

 of the shift field w
hich m

ight be expected to give A
S

R
 #0 is used to encode

A
S

R
 #32. B

it 31 of R
m

 is again used as the carry output, and each bit of operand 2 is
also equal to bit 31 of R

m
. T

he result is therefore all ones or all zeros, according to the
value of bit 31 of R

m
.

R
otate right (R

O
R

) operations reuse the bits w
hich “overshoot” in a logical shift right

operation by reintroducing them
 at the high end of the result, in place of the zeros used

to fill the high end in logical right operations. F
or exam

ple, R
O

R
 #5 is show

n in(

F
igure

4-9: R
otate right on page 4-14.

 F
igure 4-9: R

otate right

T
he form

 of the shift field w
hich m

ight be expected to give R
O

R
 #0 is used to encode

a special function of the barrel shifter, rotate right extended (R
R

X
). T

his is a rotate right
by one bit position of the 33 bit quantity form

ed by appending the C
P

S
R

 C
 flag to the

m
ost significant end of the contents of R

m
 as show

n in (

F
igure 4-10: R

otate right
extended.

contents of R
m

value of operand 2

3
1

0

carry out

5
4

3
0

contents of R
m

value of operand 2

31
0carry out

5
4

9:
4�������
���
�!�� ;
!A�B��

A
R

M
7T

D
M

I D
ata S

heet
A

R
M

 D
D

I 0029E

4-15

Open Access

 F
igure 4-10: R

otate right extended

R
egister specified shift am

ount

O
nly the least significant byte of the contents of R

s is used to determ
ine the shift

am
ount. R

s can be any general register other than R
15.

If this byte is zero, the unchanged contents of R
m

 w
ill be used as the second operand,

and the old value of the C
P

S
R

 C
 flag w

ill be passed on as the shifter carry output.

If the byte has a value betw
een 1 and 31, the shifted result w

ill exactly m
atch that of

an instruction specified shift w
ith the sam

e value and shift operation.

If the value in the byte is 32 or m
ore, the result w

ill be a logical extension of the shift
described above:

1
LS

L by 32 has result zero, carry out equal to bit 0 of R
m

.

2
LS

L by m
ore than 32 has result zero, carry out zero.

3
LS

R
 by 32 has result zero, carry out equal to bit 31 of R

m
.

4
LS

R
 by m

ore than 32 has result zero, carry out zero.

5
A

S
R

 by 32 or m
ore has result filled w

ith and carry out equal to bit 31 of R
m

.

6
R

O
R

 by 32 has result equal to R
m

, carry out equal to bit 31 of R
m

.

7
R

O
R

 by n w
here n is greater than 32 w

ill give the sam
e result and carry out

as R
O

R
 by n-32; therefore repeatedly subtract 32 from

 n until the am
ount is

in the range 1 to 32 and see above.

N
ote

T
he zero in bit 7 of an instruction w

ith a register controlled shift is com
pulsory; a one

in this bit w
ill cause the instruction to be a m

ultiply or undefined instruction.

4.5.3
Im

m
ediate operand rotates

T
he im

m
ediate operand rotate field is a 4 bit unsigned integer w

hich specifies a shift
operation on the 8 bit im

m
ediate value. T

his value is zero extended to 32 bits, and then
subject to a rotate right by tw

ice the value in the rotate field. T
his enables m

any
com

m
on constants to be generated, for exam

ple all pow
ers of 2.

contents of R
m

value of operand 2

3
1

0

carry
out

1

Cin

9:
4�������
���
�!�� ;
DEF

? D!D? �41G
�4H

A
R

M
7T

D
M

I D
ata S

heet
A

R
M

 D
D

I 0029E

4-16

Open Access

4.5.4
W

riting to R
15

W
hen R

d is a register other than R
15, the condition code flags in the C

P
S

R
 m

ay be
updated from

 the A
LU

 flags as described above.

W
hen R

d is R
15 and the S

 flag in the instruction is not set the result of the operation
is placed in R

15 and the C
P

S
R

 is unaffected.

W
hen R

d is R
15 and the S

 flag is set the result of the operation is placed in R
15 and

the S
P

S
R

 corresponding to the current m
ode is m

oved to the C
P

S
R

. T
his allow

s state
changes w

hich atom
ically restore both P

C
 and C

P
S

R
. T

his form
 of instruction should

not be used in U
ser m

ode.

4.5.5
U

sing R
15 as an operand

If R
15 (the P

C
) is used as an operand in a data processing instruction the register is

used directly.

T
he P

C
 value w

ill be the address of the instruction, plus 8 or 12 bytes due to instruction
prefetching. If the shift am

ount is specified in the instruction, the P
C

 w
ill be 8 bytes

ahead. If a register is used to specify the shift am
ount the P

C
 w

ill be 12 bytes ahead.

4.5.6
T

E
Q

, T
S

T, C
M

P
 and C

M
N

 opcodes

N
ote

T
E

Q
, T

S
T

, C
M

P
 and C

M
N

 do not w
rite the result of their operation but do set flags in

the C
P

S
R

. A
n assem

bler should alw
ays set the S

 flag for these instructions even if this
is not specified in the m

nem
onic.

T
he T

E
Q

P
 form

 of the T
E

Q
 instruction used in earlier A

R
M

 processors m
ust not be

used: the P
S

R
 transfer operations should be used instead.

T
he action of T

E
Q

P
 in the A

R
M

7T
D

M
I is to m

ove S
P

S
R

_<
m

ode>
 to the C

P
S

R
 if the

processor is in a privileged m
ode and to do nothing if in U

ser m
ode.

4.5.7
Instruction cycle tim

es

D
ata P

rocessing instructions vary in the num
ber of increm

ental cycles taken as
follow

s:

S
, N

 and I are as defined in (

6.2 C
ycle T

ypes on page 6-2.

P
rocessing T

ype
C

ycles

N
orm

al D
ata P

rocessing
1S

D
ata P

rocessing w
ith register specified shift

1S
 +

 1I

D
ata P

rocessing w
ith P

C
 w

ritten
2S

 +
 1N

D
ata P

rocessing w
ith register specified shift and P

C
 w

ritten
2S

 +
 1N

 +
 1I

 Table 4-4: Increm
ental cycle tim

es

9:
4�������
���
�!�� ;
DEF

? D!D? �41G
�4H

A
R

M
7T

D
M

I D
ata S

heet
A

R
M

 D
D

I 0029E

4-17

Open Access

4.5.8
A

ssem
bler syntax

1
M

O
V,M

V
N

 (single operand instructions.)

<
o

p
co

d
e

>
{co

n
d

}{S
} R

d
,<

O
p

2
>

2
C

M
P,C

M
N

,T
E

Q
,T

S
T

 (instructions w
hich do not produce a result.)

<
o

p
co

d
e

>
{co

n
d

} R
n

,<
O

p
2

>

3
A

N
D

,E
O

R
,S

U
B

,R
S

B
,A

D
D

,A
D

C
,S

B
C

,R
S

C
,O

R
R

,B
IC

<
o

p
co

d
e

>
{co

n
d

}{S
} R

d
,R

n
,<

O
p

2
>

w
here:

<
O

p2>
 is R

m
{,<

shift>
} or,<

#expression>

{cond}
is a tw

o-character condition m
nem

onic. S
ee(

T
able 4-2:

C
ondition code sum

m
ary on page 4-5.

{S
}

set condition codes if S
 present (im

plied for C
M

P, C
M

N
, T

E
Q

,
T

S
T

).

R
d, R

n and R
m

are expressions evaluating to a register num
ber.

<
#expression>

if this is used, the assem
bler w

ill attem
pt to generate a shifted

im
m

ediate 8-bit field to m
atch the expression. If this is

im
possible, it w

ill give an error.

<
shift>

 is <
shiftnam

e>
 <

register>
 or <

shiftnam
e>

 #expression, or
R

R
X

 (rotate right one bit w
ith extend).

<
shiftnam

e>
s

 are: A
S

L, LS
L, LS

R
, A

S
R

, R
O

R
. (A

S
L is a synonym

 for LS
L,

they assem
ble to the sam

e code.)

4.5.9
E

xam
ples

A
D

D
E

Q
R

2
,R

4
,R

5
 ; If th

e
 Z

 fla
g

 is se
t m

a
ke

 R
2

:=
R

4
+

R
5

T
E

Q
S

R
4

,#
3

 ; te
st R

4
 fo

r e
q

u
a

lity w
ith

 3
.

 ; (T
h

e
 S

 is in
 fa

ct re
d

u
n

d
a

n
t a

s th
e

 ; a
sse

m
b

le
r in

se
rts it a

u
to

m
a

tica
lly.)

S
U

B
R

4
,R

5
,R

7
,L

S
R

 R
2

; L
o

g
ica

l rig
h

t sh
ift R

7
 b

y th
e

 n
u

m
b

e
r in

 ; th
e

 b
o

tto
m

 b
yte

 o
f R

2
, su

b
tra

ct re
su

lt
 ; fro

m
 R

5
, a

n
d

 p
u

t th
e

 a
n

sw
e

r in
to

 R
4

.
M

O
V

P
C

,R
1

4
 ; R

e
tu

rn
 fro

m
 su

b
ro

u
tin

e
.

M
O

V
S

P
C

,R
1

4
 ; R

e
tu

rn
 fro

m
 e

xce
p

tio
n

 a
n

d
 re

sto
re

 C
P

S
R

 ; fro
m

 S
P

S
R

_
m

o
d

e
.

9:
4�������
���
�!�� ;
4:
!? 4!:

A
R

M
7T

D
M

I D
ata S

heet
A

R
M

 D
D

I 0029E

4-18

Open Access 4.6
P

S
R

 Transfer (M
R

S
, M

S
R

)
T

he instruction is only executed if the condition is true. T
he various conditions are

defined in(

T
able 4-2: C

ondition code sum
m

ary on page 4-5.

T
he M

R
S

 and M
S

R
 instructions are form

ed from
 a subset of the D

ata P
rocessing

operations and are im
plem

ented using the T
E

Q
, T

S
T, C

M
N

 and C
M

P
 instructions

w
ithout the S

 flag set. T
he encoding is show

n in (

F
igure 4-11: P

S
R

 transfer on page
4-19.

T
hese instructions allow

 access to the C
P

S
R

 and S
P

S
R

 registers. T
he M

R
S

instruction allow
s the contents of the C

P
S

R
 or S

P
S

R
_<

m
ode>

 to be m
oved to a

general register. T
he M

S
R

 instruction allow
s the contents of a general register to be

m
oved to the C

P
S

R
 or S

P
S

R
_<

m
ode>

 register.

T
he M

S
R

 instruction also allow
s an im

m
ediate value or register contents to be

transferred to the condition code flags (N
,Z

,C
 and V

) of C
P

S
R

 or S
P

S
R

_<
m

ode>
w

ithout affecting the control bits. In this case, the top four bits of the specified register
contents or 32 bit im

m
ediate value are w

ritten to the top four bits of the relevant P
S

R
.

4.6.1
O

perand restrictions

•
In U

ser m
ode, the control bits of the C

P
S

R
 are protected from

 change, so only
the condition code flags of the C

P
S

R
 can be changed. In other (privileged)

m
odes the entire C

P
S

R
 can be changed.

N
ote that the softw

are m
ust never change the state of the T

 bit in the C
P

S
R

.
If this happens, the processor w

ill enter an unpredictable state.

•
T

he S
P

S
R

 register w
hich is accessed depends on the m

ode at the tim
e of

execution. F
or exam

ple, only S
P

S
R

_fiq is accessible w
hen the processor is in

F
IQ

 m
ode.

•
Y

ou m
ust not specify R

15 as the source or destination register.

•
A

lso, do not attem
pt to access an S

P
S

R
 in U

ser m
ode, since no such register

exists.

9:
4�������
���
�!�� ;
4:
!? 4!:

A
R

M
7T

D
M

I D
ata S

heet
A

R
M

 D
D

I 0029E

4-19

Open Access

 F
igure 4-11: P

S
R

 transfer

C
ond

0

000000000000
R

d
P

00010
s

001111

16
15

12
11

22
28

21
31

23
27

M
R

S
 (transfer P

S
R

 contents to a register)

D
estination register

S
ource P

S
R

C
ondition field

0=
C

P
S

R
1=

S
P

S
R

_<
current m

ode>

C
ond

0

00000000
R

m
P

00010
d

1010011111

4
3

12
11

22
28

21
31

23
27

M
S

R
 (transfer register contents to P

S
R

)

S
ource register

D
estination P

S
R

C
ondition field

0=
C

P
S

R

1=
S

P
S

R
_<

current m
ode>

C
ond

0

S
ource operand

P
00

d
1010001111

12
11

22
28

21
31

23
27

M
S

R
 (transfer register contents or im

m
diate value to P

S
R

 flag bits only)

D
estination P

S
R

Im
m

ediate O
perand

0=
C

P
S

R
1=

S
P

S
R

_<
current m

ode>

I
10

11
4

3
0

0=
source operand is a register

1=
source operand is an im

m
ediate value

11
8

7
0

C
ondition field

00000000

R
otate

Im
m

R
m

S
ource register

U
nsigned 8 bit im

m
ediate value

shift applied to Im
m

9:
4�������
���
�!�� ;
4:
!? 4!:

A
R

M
7T

D
M

I D
ata S

heet
A

R
M

 D
D

I 0029E

4-20

Open Access

4.6.2
R

eserved bits

O
nly tw

elve bits of the P
S

R
 are defined in A

R
M

7T
D

M
I (N

,Z
,C

,V,I,F, T
 &

 M
[4:0]); the

rem
aining bits are reserved for use in future versions of the processor. R

efer to

(

F
igure 3-6: P

rogram
 status register form

at on page 3-8 for a full description of the
P

S
R

 bits.

To ensure the m
axim

um
 com

patibility betw
een A

R
M

7T
D

M
I program

s and future
processors, the follow

ing rules should be observed:

•
T

he reserved bits should be preserved w
hen changing the value in a P

S
R

.

•
P

rogram
s should not rely on specific values from

 the reserved bits w
hen

checking the P
S

R
 status, since they m

ay read as one or zero in future
processors.

A
 read-m

odify-w
rite strategy should therefore be used w

hen altering the control bits of
any P

S
R

 register; this involves transferring the appropriate P
S

R
 register to a general

register using the M
R

S
 instruction, changing only the relevant bits and then

transferring the m
odified value back to the P

S
R

 register using the M
S

R
 instruction.

E
xam

ple

T
he follow

ing sequence perform
s a m

ode change:

M
R

S
R

0
,C

P
S

R
; T

a
ke

 a
 co

p
y o

f th
e

 C
P

S
R

.
B

IC
R

0
,R

0
,#

0
x1

F
; C

le
a

r th
e

 m
o

d
e

 b
its.

O
R

R
R

0
,R

0
,#

n
e

w
_

m
o

d
e

; S
e

le
ct n

e
w

 m
o

d
e

M
S

R
C

P
S

R
,R

0
; W

rite
 b

a
ck th

e
 m

o
d

ifie
d

; C
P

S
R

.

W
hen the aim

 is sim
ply to change the condition code flags in a P

S
R

, a value can be
w

ritten directly to the flag bits w
ithout disturbing the control bits. T

he follow
ing

instruction sets the N
,Z

,C
 and V

 flags:

M
S

R
C

P
S

R
_

flg
,#

0
xF

0
0

0
0

0
0

0
; S

e
t a

ll th
e

 fla
g

s
; re

g
a

rd
le

ss o
f th

e
ir

; p
re

vio
u

s sta
te

 (d
o

e
s n

o
t

; a
ffe

ct a
n

y co
n

tro
l b

its).

N
o attem

pt should be m
ade to w

rite an 8 bit im
m

ediate value into the w
hole P

S
R

 since
such an operation cannot preserve the reserved bits.

4.6.3
Instruction cycle tim

es

P
S

R
 Transfers take 1S

 increm
ental cycles, w

here S
 is as defined in (

6.2 C
ycle T

ypes
on page 6-2.

9:
4�������
���
�!�� ;
4:
!? 4!:

A
R

M
7T

D
M

I D
ata S

heet
A

R
M

 D
D

I 0029E

4-21

Open Access

4.6.4
A

ssem
bler syntax

1
M

R
S

 - transfer P
S

R
 contents to a register

M
R

S
{co

n
d

} R
d

,<
p

sr>

2
M

S
R

 - transfer register contents to P
S

R

M
S

R
{co

n
d

} <
p

sr>
,R

m

3
M

S
R

 - transfer register contents to P
S

R
 flag bits only

M
S

R
{co

n
d

} <
p

srf>
,R

m

T
he m

ost significant four bits of the register contents are w
ritten to the N

,Z
,C

&
 V

 flags respectively.

4
M

S
R

 - transfer im
m

ediate value to P
S

R
 flag bits only

M
S

R
{co

n
d

} <
p

srf>
,<

#
e

xp
re

ssio
n

>

T
he expression should sym

bolise a 32 bit value of w
hich the m

ost significant
four bits are w

ritten to the N
,Z

,C
 and V

 flags respectively.

K
ey:{cond}

tw
o-character condition m

nem
onic. S

ee(
T

able 4-2:
C

ondition code sum
m

ary on page 4-5.

R
d and R

m
are expressions evaluating to a register num

ber other than
R

15

<
psr>

 is C
P

S
R

, C
P

S
R

_all, S
P

S
R

 or S
P

S
R

_all. (C
P

S
R

 and
C

P
S

R
_all are synonym

s as are S
P

S
R

 and S
P

S
R

_all)

<
psrf>

 is C
P

S
R

_flg or S
P

S
R

_flg

<
#expression>

w
here this is used, the assem

bler w
ill attem

pt to generate a
shifted im

m
ediate 8-bit field to m

atch the expression. If this is
im

possible, it w
ill give an error.

9:
4�������
���
�!�� ;
4:
!? 4!:

A
R

M
7T

D
M

I D
ata S

heet
A

R
M

 D
D

I 0029E

4-22

Open Access

4.6.5
E

xam
ples

In U
ser m

ode the instructions behave as follow
s:

M
S

R
C

P
S

R
_

a
ll,R

m
; C

P
S

R
[3

1
:2

8
] <

- R
m

[3
1

:2
8

]
M

S
R

C
P

S
R

_
flg

,R
m

; C
P

S
R

[3
1

:2
8

] <
- R

m
[3

1
:2

8
]

M
S

R
C

P
S

R
_

flg
,#

0
xA

0
0

0
0

0
0

0
; C

P
S

R
[3

1
:2

8
] <

- 0
xA

;(se
t N

,C
; cle

a
r Z

,V
)

M
R

S
R

d
,C

P
S

R
; R

d
[3

1
:0

] <
- C

P
S

R
[3

1
:0

]

In privileged m
odes the instructions behave as follow

s:

M
S

R
C

P
S

R
_

a
ll,R

m
; C

P
S

R
[3

1
:0

] <
- R

m
[3

1
:0

]
M

S
R

C
P

S
R

_
flg

,R
m

; C
P

S
R

[3
1

:2
8

] <
- R

m
[3

1
:2

8
]

M
S

R
C

P
S

R
_

flg
,#

0
x5

0
0

0
0

0
0

0
; C

P
S

R
[3

1
:2

8
] <

- 0
x5

;(se
t Z

,V
; cle

a
r N

,C
)

M
R

S
R

d
,C

P
S

R
; R

d
[3

1
:0

] <
- C

P
S

R
[3

1
:0

]
M

S
R

S
P

S
R

_
a

ll,R
m

;S
P

S
R

_
<

m
o

d
e

>
[3

1
:0

]<
- R

m
[3

1
:0

]
M

S
R

S
P

S
R

_
flg

,R
m

; S
P

S
R

_
<

m
o

d
e

>
[3

1
:2

8
] <

- R
m

[3
1

:2
8

]
M

S
R

S
P

S
R

_
flg

,#
0

xC
0

0
0

0
0

0
0

; S
P

S
R

_
<

m
o

d
e

>
[3

1
:2

8
] <

- 0
xC

;(se
t N

,Z
; cle

a
r C

,V
)

M
R

S
R

d
,S

P
S

R
; R

d
[3

1
:0

] <
- S

P
S

R
_

<
m

o
d

e
>

[3
1

:0
]

9:
4�������
���
�!�� ;
4I@? 4@9

A
R

M
7T

D
M

I D
ata S

heet
A

R
M

 D
D

I 0029E

4-23

Open Access

4.7
M

ultiply and M
ultiply-A

ccum
ulate (M

U
L, M

LA
)

T
he instruction is only executed if the condition is true. T

he various conditions are
defined in(

T
able 4-2: C

ondition code sum
m

ary on page 4-5. T
he instruction encoding

is show
n in(

F
igure 4-12: M

ultiply instructions.

T
he m

ultiply and m
ultiply-accum

ulate instructions use an 8 bit B
ooth's algorithm

 to
perform

 integer m
ultiplication.

 F
igure 4-12: M

ultiply instructions

T
he m

ultiply form
 of the instruction gives R

d:=
R

m
*R

s. R
n is ignored, and should be

set to zero for com
patibility w

ith possible future upgrades to the instruction set.

T
he m

ultiply-accum
ulate form

 gives R
d:=

R
m

*R
s+

R
n, w

hich can save an explicit A
D

D
instruction in som

e circum
stances.

B
oth form

s of the instruction w
ork on operands w

hich m
ay be considered as signed

(2’s com
plem

ent) or unsigned integers.

T
he results of a signed m

ultiply and of an unsigned m
ultiply of 32 bit operands differ

only in the upper 32 bits - the low
 32 bits of the signed and unsigned results are

identical. A
s these instructions only produce the low

 32 bits of a m
ultiply, they can be

used for both signed and unsigned m
ultiplies.

F
or exam

ple consider the m
ultiplication of the operands:

O
perand A

O
perand B

R
esult

0xF
F

F
F

F
F

F
6

 0x0000001
0xF

F
F

F
F

F
38

If the operands are interpreted as signed

O
perand A

 has the value -10, operand B
 has the value 20, and the result is -200 w

hich
is correctly represented as 0xF

F
F

F
F

F
38

If the operands are interpreted as unsigned

O
perand A

 has the value 4294967286, operand B
 has the value 20 and the result is

85899345720, w
hich is represented as 0x13F

F
F

F
F

F
38, so the least significant 32 bits

are 0xF
F

F
F

F
F

38.

C
ond

0
0

0
0

0
0

A
S

 R
d

R
n

 R
s

1
0

0
1

 R
m

0
3

4
7

8
11

12
15

16
19

20
21

22
27

28
31

O
perand registers

D
estination register

S
et condition code

A
ccum

ulate

0 =
 do not alter condition codes

1 =
 set condition codes

0 =
 m

ultiply only
1 =

 m
ultiply and accum

ulate

C
ondition F

ield

9:
4�������
���
�!�� ;
4I@? 4@9

A
R

M
7T

D
M

I D
ata S

heet
A

R
M

 D
D

I 0029E

4-24

Open Access

4.7.1
O

perand restrictions

T
he destination register R

d m
ust not be the sam

e as the operand register R
m

. R
15

m
ust not be used as an operand or as the destination register.

A
ll other register com

binations w
ill give correct results, and R

d, R
n and R

s m
ay use

the sam
e register w

hen required.

4.7.2
C

P
S

R
 flagsS

etting the C
P

S
R

 flags is optional, and is controlled by the S
 bit in the instruction. T

he
N

 (N
egative) and Z

 (Z
ero) flags are set correctly on the result (N

 is m
ade equal to bit

31 of the result, and Z
 is set if and only if the result is zero). T

he C
 (C

arry) flag is set
to a m

eaningless value and the V
 (oV

erflow
) flag is unaffected.

4.7.3
Instruction cycle tim

es

M
U

L takes 1S
 +

 m
I and M

LA
 1S

 +
 (m

+
1)I cycles to execute, w

here S
 and I are as

defined in (

6.2 C
ycle T

ypes on page 6-2.

m
is the num

ber of 8 bit m
ultiplier array cycles required to com

plete the
m

ultiply, w
hich is controlled by the value of the m

ultiplier operand
specified by R

s. Its possible values are as follow
s

1
 if bits [32:8] of the m

ultiplier operand are all zero or all one.
2

 if bits [32:16] of the m
ultiplier operand are all zero or all one.

3
 if bits [32:24] of the m

ultiplier operand are all zero or all one.
4

in all other cases.

4.7.4
A

ssem
bler syntax

M
U

L
{co

n
d

}{S
} R

d
,R

m
,R

s

M
L

A
{co

n
d

}{S
} R

d
,R

m
,R

s,R
n

{cond}
tw

o-character condition m
nem

onic. S
ee (

T
able 4-2:

C
ondition code sum

m
ary on page 4-5.

{S
}

set condition codes if S
 present

R
d, R

m
, R

s and R
n

are expressions evaluating to a register num
ber other

than R
15.

4.7.5
E

xam
ples

M
U

L
R

1
,R

2
,R

3
; R

1
:=

R
2

*R
3

M
L

A
E

Q
S

R
1

,R
2

,R
3

,R
4

; C
o

n
d

itio
n

a
lly R

1
:=

R
2

*R
3

+
R

4
,

; se
ttin

g
 co

n
d

itio
n

 co
d

e
s.

9:
4�������
���
�!�� ;
4I@@? 4@9@

A
R

M
7T

D
M

I D
ata S

heet
A

R
M

 D
D

I 0029E

4-25

Open Access

4.8
M

ultiply Long and M
ultiply-A

ccum
ulate Long (M

U
LL,M

LA
L)

T
he instruction is only executed if the condition is true. T

he various conditions are
defined in(

T
able 4-2: C

ondition code sum
m

ary on page 4-5. T
he instruction encoding

is show
n in(

F
igure 4-13: M

ultiply long instructions.

T
he m

ultiply long instructions perform
 integer m

ultiplication on tw
o 32 bit operands

and produce 64 bit results. S
igned and unsigned m

ultiplication each w
ith optional

accum
ulate give rise to four variations.

 F
igure 4-13: M

ultiply long instructions

T
he m

ultiply form
s (U

M
U

LL and S
M

U
LL) take tw

o 32 bit num
bers and m

ultiply them
to produce a 64 bit result of the form

 R
dH

i,R
dLo :=

 R
m

 * R
s. T

he low
er 32 bits of the

64 bit result are w
ritten to R

dLo, the upper 32 bits of the result are w
ritten to R

dH
i.

T
he m

ultiply-accum
ulate form

s (U
M

LA
L and S

M
LA

L) take tw
o 32 bit num

bers, m
ultiply

them
 and add a 64 bit num

ber to produce a 64 bit result of the form
 R

dH
i,R

dLo :=
 R

m
* R

s +
 R

dH
i,R

dLo. T
he low

er 32 bits of the 64 bit num
ber to add is read from

 R
dLo.

T
he upper 32 bits of the 64 bit num

ber to add is read from
 R

dH
i. T

he low
er 32 bits of

the 64 bit result are w
ritten to R

dLo. T
he upper 32 bits of the 64 bit result are w

ritten
to R

dH
i.

T
he U

M
U

LL and U
M

LA
L instructions treat all of their operands as unsigned binary

num
bers and w

rite an unsigned 64 bit result. T
he S

M
U

LL and S
M

LA
L instructions

treat all of their operands as tw
o's-com

plem
ent signed num

bers and w
rite a tw

o's-
com

plem
ent signed 64 bit result.

4.8.1
O

perand restrictions

•
R

15 m
ust not be used as an operand or as a destination register.

•
R

dH
i, R

dLo, and R
m

 m
ust all specify different registers.

C
ond

0
0

0
0

1
U

A
S

 R
dH

i
R

dLo
 R

s
1

0
0

1
 R

m

0
3

4
7

8
11

12
15

16
19

20
21

22
23

27
28

31

O
perand registers

S
ource destination registers

S
et condition code

A
ccum

ulate

U
nsigned

0 =
 do not alter condition codes

1 =
 set condition codes

0 =
 m

ultiply only
1 =

 m
ultiply and accum

ulate

0 =
 unsigned

1 =
 signed

C
ondition F

ield

9:
4�������
���
�!�� ;
4I@@? 4@9@

A
R

M
7T

D
M

I D
ata S

heet
A

R
M

 D
D

I 0029E

4-26

Open Access

4.8.2
C

P
S

R
 flagsS

etting the C
P

S
R

 flags is optional, and is controlled by the S
 bit in the instruction. T

he
N

 and Z
 flags are set correctly on the result (N

 is equal to bit 63 of the result, Z
 is set

if and only if all 64 bits of the result are zero). B
oth the C

 and V
 flags are set to

m
eaningless values.

4.8.3
Instruction cycle tim

es

M
U

LL takes 1S
 +

 (m
+

1)I and M
LA

L 1S
 +

 (m
+

2)I cycles to execute, w
here

m
 is the

num
ber of 8 bit m

ultiplier array cycles required to com
plete the m

ultiply, w
hich is

controlled by the value of the m
ultiplier operand specified by R

s.

Its possible values are as follow
s:

F
or signed instructions S

M
U

LL, S
M

LA
L:

1
if bits [31:8] of the m

ultiplier operand are all zero or all one.
2

if bits [31:16] of the m
ultiplier operand are all zero or all one.

3
if bits [31:24] of the m

ultiplier operand are all zero or all one.
4

in all other cases.

F
or unsigned instructions U

M
U

LL, U
M

LA
L:

1
if bits [31:8] of the m

ultiplier operand are all zero.
2

if bits [31:16] of the m
ultiplier operand are all zero.

3
if bits [31:24] of the m

ultiplier operand are all zero.
4

in all other cases.

S
 and I are as defined in(

6.2 C
ycle T

ypes on page 6-2.

4.8.4
A

ssem
bler syntax

M
nem

onic
D

escription
P

urpose

U
M

U
LL{cond}{S

} R
dLo,R

dH
i,R

m
,R

s
U

nsigned M
ultiply Long

32 x 32 =
 64

U
M

LA
L{cond}{S

} R
dLo,R

dH
i,R

m
,R

s
U

nsigned M
ultiply &

 A
ccum

ulate Long
32 x 32 +

 64 =
 64

S
M

U
LL{cond}{S

} R
dLo,R

dH
i,R

m
,R

s
S

igned M
ultiply Long

32 x 32 =
 64

S
M

LA
L{cond}{S

} R
dLo,R

dH
i,R

m
,R

s
S

igned M
ultiply &

 A
ccum

ulate Long
32 x 32 +

 64 =
 64

 Table 4-5: A
ssem

bler syntax descriptions

9:
4�������
���
�!�� ;
4I@@? 4@9@

A
R

M
7T

D
M

I D
ata S

heet
A

R
M

 D
D

I 0029E

4-27

Open Access

w
here:

{cond}
tw

o-character condition m
nem

onic. S
ee (

T
able 4-2:

C
ondition code sum

m
ary on page 4-5.

{S
}

set condition codes if S
 present

R
dLo, R

dH
i, R

m
, R

s
are expressions evaluating to a register num

ber other
than R

15.

4.8.5
E

xam
ples

U
M

U
L

L
R

1
,R

4
,R

2
,R

3
; R

4
,R

1
:=

R
2

*R
3

U
M

L
A

L
S

R
1

,R
5

,R
2

,R
3

; R
5

,R
1

:=
R

2
*R

3
+

R
5

,R
1

 a
lso

 se
ttin

g
; co

n
d

itio
n

 co
d

e
s

9:
4�������
���
�!�� ;@%:

? !D:

A
R

M
7T

D
M

I D
ata S

heet
A

R
M

 D
D

I 0029E

4-28

Open Access 4.9
S

ingle D
ata T

ransfer (LD
R

, S
T

R
)

T
he instruction is only executed if the condition is true. T

he various conditions are
defined in(

T
able 4-2: C

ondition code sum
m

ary on page 4-5. T
he instruction encoding

is show
n in(

F
igure 4-14: S

ingle data transfer instructions on page 4-28.

T
he single data transfer instructions are used to load or store single bytes or w

ords of
data. T

he m
em

ory address used in the transfer is calculated by adding an offset to or
subtracting an offset from

 a base register.

T
he result of this calculation m

ay be w
ritten back into the base register if auto-indexing

is required.

 F
igure 4-14: S

ingle data transfer instructions

C
ond

I
R

n
R

d

0
11

12
15

16
19

20
21

24
25

26
27

28
31

01
P

U
B

W
L

O
ffset

22
23

0
11

S
ource/D

estination register
B

ase register
Load/S

tore bit
0 = S

tore to m
em

ory
1 = Load from

 m
em

ory

W
rite-back bit

B
yte/W

ord bit

0 = no w
rite-back

1 = w
rite address into base

0 = transfer w
ord quantity

1 = transfer byte quantity

U
p/D

ow
n bit

P
re/P

ost indexing bit

0 = offset is an im
m

ediate value
Im

m
ediate offset

Im
m

ediate offset

U
nsigned 12 bit im

m
ediate offset

1 = offset is a register
11

0

shift applied to R
m

3
4

C
ondition field

0 = dow
n; subtract offset from

 base
1 = up; add offset to base

0 = post; add offset after transfer
1 = pre; add offset before transfer

O
ffset register

S
hift

R
m

9:
4�������
���
�!�� ;@%:

? !D:

A
R

M
7T

D
M

I D
ata S

heet
A

R
M

 D
D

I 0029E

4-29

Open Access

4.9.1
O

ffsets and auto-indexing

T
he offset from

 the base m
ay be either a 12 bit unsigned binary im

m
ediate value in

the instruction, or a second register (possibly shifted in som
e w

ay). T
he offset m

ay be
added to (U

=
1) or subtracted from

 (U
=

0) the base register R
n. T

he offset m
odification

m
ay be perform

ed either before (pre-indexed, P
=

1) or after (post-indexed, P
=

0) the
base is used as the transfer address.

T
he W

 bit gives optional auto increm
ent and decrem

ent addressing m
odes. T

he
m

odified base value m
ay be w

ritten back into the base (W
=

1), or the old base value
m

ay be kept (W
=

0). In the case of post-indexed addressing, the w
rite back bit is

redundant and is alw
ays set to zero, since the old base value can be retained by

setting the offset to zero. T
herefore post-indexed data transfers alw

ays w
rite back the

m
odified base. T

he only use of the W
 bit in a post-indexed data transfer is in privileged

m
ode code, w

here setting the W
 bit forces non-privileged m

ode for the transfer,
allow

ing the operating system
 to generate a user address in a system

 w
here the

m
em

ory m
anagem

ent hardw
are m

akes suitable use of this hardw
are.

4.9.2
S

hifted register offset

T
he 8 shift control bits are described in the data processing instructions section.

H
ow

ever, the register specified shift am
ounts are not available in this instruction class.

S
ee(

4.5.2 S
hifts on page 4-12.

4.9.3
B

ytes and w
ords

T
his instruction class m

ay be used to transfer a byte (B
=

1) or a w
ord (B

=
0) betw

een
an A

R
M

7T
D

M
I register and m

em
ory.

T
he action of LD

R
(B

) and S
T

R
(B

) instructions is influenced by the
B

IG
E

N
D

 control
signal. T

he tw
o possible configurations are described below

.

Little endian configuration

A
 byte load (LD

R
B

) expects the data on data bus inputs 7 through 0 if the supplied
address is on a w

ord boundary, on data bus inputs 15 through 8 if it is a w
ord address

plus one byte, and so on. T
he selected byte is placed in the bottom

 8 bits of the
destination register, and the rem

aining bits of the register are filled w
ith zeros. P

lease
see(

F
igure 3-2: Little endian addresses of bytes w

ithin w
ords on page 3-3.

A
 byte store (S

T
R

B
) repeats the bottom

 8 bits of the source register four tim
es across

data bus outputs 31 through 0. T
he external m

em
ory system

 should activate the
appropriate byte subsystem

 to store the data.

A
 w

ord load (LD
R

) w
ill norm

ally use a w
ord aligned address. H

ow
ever, an address

offset from
 a w

ord boundary w
ill cause the data to be rotated into the register so that

the addressed byte occupies bits 0 to 7. T
his m

eans that half-w
ords accessed at

offsets 0 and 2 from
 the w

ord boundary w
ill be correctly loaded into bits 0 through 15

of the register. Tw
o shift operations are then required to clear or to sign extend the

upper 16 bits. T
his is illustrated in(

F
igure 4-15: Little endian offset addressing on

page 4-30.

9:
4�������
���
�!�� ;@%:

? !D:

A
R

M
7T

D
M

I D
ata S

heet
A

R
M

 D
D

I 0029E

4-30

Open Access

 F
igure 4-15: Little endian offset addressing

A
 w

ord store (S
T

R
) should generate a w

ord aligned address. T
he w

ord presented to
the data bus is not affected if the address is not w

ord aligned. T
hat is, bit 31 of the

register being stored alw
ays appears on data bus output 31.

B
ig endian configuration

A
 byte load (LD

R
B

) expects the data on data bus inputs 31 through 24 if the supplied
address is on a w

ord boundary, on data bus inputs 23 through 16 if it is a w
ord address

plus one byte, and so on. T
he selected byte is placed in the bottom

 8 bits of the
destination register and the rem

aining bits of the register are filled w
ith zeros. P

lease
see(

F
igure 3-1: B

ig endian addresses of bytes w
ithin w

ords on page 3-3.

A
 byte store (S

T
R

B
) repeats the bottom

 8 bits of the source register four tim
es across

data bus outputs 31 through 0. T
he external m

em
ory system

 should activate the
appropriate byte subsystem

 to store the data.

A
 w

ord load (LD
R

) should generate a w
ord aligned address. A

n address offset of 0 or
2 from

 a w
ord boundary w

ill cause the data to be rotated into the register so that the
addressed byte occupies bits 31 through 24. T

his m
eans that half-w

ords accessed at
these offsets w

ill be correctly loaded into bits 16 through 31 of the register. A
 shift

operation is then required to m
ove (and optionally sign extend) the data into the

bottom
 16 bits. A

n address offset of 1 or 3 from
 a w

ord boundary w
ill cause the data

to be rotated into the register so that the addressed byte occupies bits 15 through 8.

ABCD

m
em

ory

A
+

3

A
+

2

A
+

1

A

241680

ABCD

register241680

LD
R

 from
 w

ord aligned address

ABCD

A
+

3

A
+

2

A
+

1

A

241680

ABCD

241680

LD
R

 from
 address offset by 2

9:
4�������
���
�!�� ;@%:

? !D:

A
R

M
7T

D
M

I D
ata S

heet
A

R
M

 D
D

I 0029E

4-31

Open Access

A
 w

ord store (S
T

R
) should generate a w

ord aligned address. T
he w

ord presented to
the data bus is not affected if the address is not w

ord aligned. T
hat is, bit 31 of the

register being stored alw
ays appears on data bus output 31.

4.9.4
U

se of R
15W

rite-back m
ust not be specified if R

15 is specified as the base register (R
n). W

hen
using R

15 as the base register you m
ust rem

em
ber it contains an address 8 bytes on

from
 the address of the current instruction.

R
15 m

ust not be specified as the register offset (R
m

).

W
hen R

15 is the source register (R
d) of a register store (S

T
R

) instruction, the stored
value w

ill be address of the instruction plus 12.

4.9.5
R

estriction on the use of base register

W
hen configured for late

aborts, the follow
ing exam

ple code is difficult to unw
ind as

the base register, R
n, gets updated before the

abort handler starts. S
om

etim
es it m

ay
be im

possible to calculate the initial value.

A
fter an abort, the follow

ing exam
ple code is difficult to unw

ind as the base register,
R

n, gets updated before the
abort handler starts. S

om
etim

es it m
ay be im

possible to
calculate the initial value.

E
xam

ple:

L
D

R
R

0
,[R

1
],R

1

T
herefore a post-indexed LD

R
 or S

T
R

 w
here R

m
 is the sam

e register as R
n should

not be used.

4.9.6
D

ata abortsA
 transfer to or from

 a legal address m
ay cause problem

s for a m
em

ory m
anagem

ent
system

. F
or instance, in a system

 w
hich uses virtual m

em
ory the required data m

ay
be absent from

 m
ain m

em
ory. T

he m
em

ory m
anager can signal a problem

 by taking
the processor A

B
O

R
T

 input H
IG

H
 w

hereupon the D
ata A

bort trap w
ill be taken. It is

up to the system
 softw

are to resolve the cause of the problem
, then the instruction can

be restarted and the original program
 continued.

4.9.7
Instruction cycle tim

es

N
orm

al LD
R

 instructions take 1S
 +

 1N
 +

 1I and LD
R

 P
C

 take 2S
 +

 2N
 +

1I increm
ental

cycles, w
here S

,N
 and I are as defined in(

6.2 C
ycle T

ypes on page 6-2.

S
T

R
 instructions take 2N

 increm
ental cycles to execute.

9:
4�������
���
�!�� ;@%:

? !D:

A
R

M
7T

D
M

I D
ata S

heet
A

R
M

 D
D

I 0029E

4-32

Open Access

4.9.8
A

ssem
bler syntax

<
L

D
R

|S
T

R
>

{co
n

d
}{B

}{T
} R

d
,<

A
d

d
re

ss>

w
here:

LD
R

load from
 m

em
ory into a register

S
T

R
store from

 a register into m
em

ory

{cond}
tw

o-character condition m
nem

onic. S
ee(

T
able 4-2: C

ondition code
sum

m
ary on page 4-5.

{B
}

if B
 is present then byte transfer, otherw

ise w
ord transfer

{T
}

if T
 is present the W

 bit w
ill be set in a post-indexed instruction, forcing

non-privileged m
ode for the transfer cycle. T

 is not allow
ed w

hen a
pre-indexed addressing m

ode is specified or im
plied.

R
d

 is an expression evaluating to a valid register num
ber.

R
n and R

m
are expressions evaluating to a register num

ber. If R
n is R

15 then the
assem

bler w
ill subtract 8 from

 the offset value to allow
 for A

R
M

7T
D

M
I

pipelining. In this case base w
rite-back should not be specified.

<
A

ddress>
can be:

1
A

n expression w
hich generates an address:

<
e

xp
re

ssio
n

>

T
he assem

bler w
ill attem

pt to generate an instruction using
the P

C
 as a base and a corrected im

m
ediate offset to address

the location given by evaluating the expression. T
his w

ill be a
P

C
 relative, pre-indexed address. If the address is out of

range, an error w
ill be generated.

2
A

 pre-indexed addressing specification:

[R
n

]
offset of zero

[R
n

,<
#

e
xp

re
ssio

n
>

]{!}
offset of <

expression>
bytes

[R
n

,{+
/-}R

m
{,<

sh
ift>

}]{!}
offset of +

/- contents of
index register, shifted
by <

shift>

3
A

 post-indexed addressing specification:

[R
n

],<
#

e
xp

re
ssio

n
>

offset of <
expression>

bytes

[R
n

],{+
/-}R

m
{,<

sh
ift>

}
offset of +

/- contents of
index register, shifted
as by <

shift>
.

9:
4�������
���
�!�� ;@%:

? !D:

A
R

M
7T

D
M

I D
ata S

heet
A

R
M

 D
D

I 0029E

4-33

Open Access

<
shift>

 general shift operation (see data processing instructions) but
you cannot specify the shift am

ount by a register.
{!}

w
rites back the base register (set the W

 bit) if! is present.

4.9.9
E

xam
ples

S
T

R
R

1
,[R

2
,R

4
]!

; S
to

re
 R

1
 a

t R
2

+
R

4
 (b

o
th

 o
f w

h
ich

 a
re

; re
g

iste
rs) a

n
d

 w
rite

 b
a

ck a
d

d
re

ss to
; R

2
.

S
T

R
R

1
,[R

2
],R

4
; S

to
re

 R
1

 a
t R

2
 a

n
d

 w
rite

 b
a

ck
; R

2
+

R
4

 to
 R

2
.

L
D

R
R

1
,[R

2
,#

1
6

]
; L

o
a

d
 R

1
 fro

m
 co

n
te

n
ts o

f R
2

+
1

6
, b

u
t

; d
o

n
't w

rite
 b

a
ck.

L
D

R
R

1
,[R

2
,R

3
,L

S
L

#
2

]
; L

o
a

d
 R

1
 fro

m
 co

n
te

n
ts o

f R
2

+
R

3
*4

.
L

D
R

E
Q

B
R

1
,[R

6
,#

5
]

; C
o

n
d

itio
n

a
lly lo

a
d

 b
yte

 a
t R

6
+

5
 in

to
; R

1
 b

its 0
 to

 7
, fillin

g
 b

its 8
 to

 3
1

; w
ith

 ze
ro

s.
S

T
R

R
1

,P
L

A
C

E
; G

e
n

e
ra

te
 P

C
 re

la
tive

 o
ffse

t to
; a

d
d

re
ss P

L
A

C
E

.
•

P
L

A
C

E

9:
4�������
���
�!�� ;@%:

? !D:

A
R

M
7T

D
M

I D
ata S

heet
A

R
M

 D
D

I 0029E

4-34

Open Access 4.10
H

alfw
ord and S

igned D
ata T

ransfer

(LD
R

H
/S

T
R

H
/LD

R
S

B
/LD

R
S

H
)

T
he instruction is only executed if the condition is true. T

he various conditions are
defined in(

T
able 4-2: C

ondition code sum
m

ary on page 4-5. T
he instruction encoding

is show
n in (

F
igure 4-16: H

alfw
ord and signed data transfer w

ith register offset,
below

, and (

F
igure 4-17: H

alfw
ord and signed data transfer w

ith im
m

ediate offset on
page 4-35.

T
hese instructions are used to load or store half-w

ords of data and also load
sign-extended bytes or half-w

ords of data. T
he m

em
ory address used in the transfer

is calculated by adding an offset to or subtracting an offset from
 a base register. T

he
result of this calculation m

ay be w
ritten back into the base register if auto-indexing is

required.

 F
igure 4-16: H

alfw
ord and signed data transfer w

ith register offset

C
ond

0
0

0
P

U
0

W
L

 R
n

R
d

0
0

0
0

 R
m

0
3

4
7

8
11

12
15

16
19

20
21

22
27

28
31

O
ffset register

B
ase register

S
 H

S
ource/D

estination

00 =
 S

W
P

 instruction
01 =

 U
nsigned halfw

ords

0 =
 store to m

em
ory

1 =
 load from

 m
em

ory

Load/S
tore

1
S

H
1

10 =
 S

igned byte
11 =

 S
igned halfw

ords

register

0 =
 no w

rite-back
1 =

 w
rite address into base

W
rite-back

0 =
 dow

n: subtract offset from
base

U
p/D

ow
n

1 =
 up: add offset to base

0 =
 post: add/subtract offset

P
re/P

ost indexing

after transfer
1 =

 pre: add/subtract offset
before transfer

C
ondition field

23
24

25
5

6

9:
4�������
���
�!�� ;@%:

? !D:

A
R

M
7T

D
M

I D
ata S

heet
A

R
M

 D
D

I 0029E

4-35

Open Access

 F
igure 4-17: H

alfw
ord and signed data transfer w

ith im
m

ediate offset

4.10.1
O

ffsets and auto-indexing

T
he offset from

 the base m
ay be either a 8-bit unsigned binary im

m
ediate value in the

instruction, or a second register. T
he 8-bit offset is form

ed by concatenating bits 11 to
8 and bits 3 to 0 of the instruction w

ord, such that bit 11 becom
es the M

S
B

 and bit 0
becom

es the LS
B

. T
he offset m

ay be added to (U
=

1) or subtracted from
 (U

=
0) the

base register R
n. T

he offset m
odification m

ay be perform
ed either before (pre-

indexed, P
=

1) or after (post-indexed, P
=

0) the base register is used as the transfer
address.

T
he W

 bit gives optional auto-increm
ent and decrem

ent addressing m
odes. T

he
m

odified base value m
ay be w

ritten back into the base (W
=

1), or the old base m
ay be

kept (W
=

0). In the case of post-indexed addressing, the w
rite back bit is redundant and

is alw
ays set to zero, since the old base value can be retained if necessary by setting

the offset to zero. T
herefore post-indexed data transfers alw

ays w
rite back the

m
odified base.

T
he W

rite-back bit should not be set high (W
=

1) w
hen post-indexed addressing is

selected.

C
ond

0
0

0
P

U
1

W
L

 R
n

R
d

 O
ffset

0
3

4
7

8
11

12
15

16
19

20
21

22
27

28
31

Im
m

ediate O
ffset

B
ase register

S
 H

S
ource/D

estination

00 =
 S

W
P

 instruction
01 =

 U
nsigned halfw

ords

0 =
 store to m

em
ory

1 =
 load from

 m
em

ory

Load/S
tore

1
S

H
1

10 =
 S

igned byte
11 =

 S
igned halfw

ords

register

0 =
 no w

rite-back
1 =

 w
rite address into base

W
rite-back

0 =
 dow

n: subtract offset from
base

U
p/D

ow
n

1 =
 up: add offset to base

0 =
 post: add/subtract offset

P
re/P

ost indexing

after transfer
1 =

 pre: add/subtract offset
before transfer

C
ondition field

23
24

25
5

6

 O
ffset

Im
m

ediate O
ffset

(H
igh nibble)

(Low
 nibble)

9:
4�������
���
�!�� ;@%:

? !D:

A
R

M
7T

D
M

I D
ata S

heet
A

R
M

 D
D

I 0029E

4-36

Open Access

4.10.2
H

alfw
ord load and stores

S
etting S

=
0 and H

=
1 m

ay be used to transfer unsigned H
alf-w

ords betw
een an

A
R

M
7T

D
M

I register and m
em

ory.

T
he action of LD

R
H

 and S
T

R
H

 instructions is influenced by the B
IG

E
N

D
 control

signal. T
he tw

o possible configurations are described in the section below
.

4.10.3
S

igned byte and halfw
ord loads

T
he S

 bit controls the loading of sign-extended data. W
hen S

=
1 the H

 bit selects
betw

een B
ytes (H

=
0) and H

alf-w
ords (H

=
1). T

he L bit should not be set low
 (S

tore)
w

hen S
igned (S

=
1) operations have been selected.

T
he LD

R
S

B
 instruction loads the selected B

yte into bits 7 to 0 of the destination
register and bits 31 to 8 of the destination register are set to the value of bit 7, the sign
bit.

T
he LD

R
S

H
 instruction loads the selected H

alf-w
ord into bits 15 to 0 of the destination

register and bits 31 to 16 of the destination register are set to the value of bit 15, the
sign bit.

T
he action of the LD

R
S

B
 and LD

R
S

H
 instructions is influenced by the B

IG
E

N
D

 control
signal. T

he tw
o possible configurations are described in the follow

ing section.

4.10.4
E

ndianness and byte/halfw
ord selection

Little endian configuration

A
 signed byte load (LD

R
S

B
) expects data on data bus inputs 7 through to 0 if the

supplied address is on a w
ord boundary, on data bus inputs 15 through to 8 if it is a

w
ord address plus one byte, and so on. T

he selected byte is placed in the bottom
 8 bit

of the destination register, and the rem
aining bits of the register are filled w

ith the sign
bit, bit 7 of the byte. P

lease see (

F
igure 3-2: Little endian addresses of bytes w

ithin
w

ords on page 3-3

A
 halfw

ord load (LD
R

S
H

 or LD
R

H
) expects data on data bus inputs 15 through to 0 if

the supplied address is on a w
ord boundary and on data bus inputs 31 through to 16

if it is a halfw
ord boundary, (A

[1]=
1).T

he supplied address should alw
ays be on a

halfw
ord boundary. If bit 0 of the supplied address is H

IG
H

 then the A
R

M
7T

D
M

I w
ill

load an unpredictable value. T
he selected halfw

ord is placed in the bottom
 16 bits of

the destination register. F
or unsigned half-w

ords (LD
R

H
), the top 16 bits of the register

are filled w
ith zeros and for signed half-w

ords (LD
R

S
H

) the top 16 bits are filled w
ith

the sign bit, bit 15 of the halfw
ord.

A
 halfw

ord store (S
T

R
H

) repeats the bottom
 16 bits of the source register tw

ice across
the data bus outputs 31 through to 0. T

he external m
em

ory system
 should activate the

appropriate halfw
ord subsystem

 to store the data. N
ote that the address m

ust be
halfw

ord aligned, if bit 0 of the address is H
IG

H
 this w

ill cause unpredictable
behaviour.

9:
4�������
���
�!�� ;@%:

? !D:

A
R

M
7T

D
M

I D
ata S

heet
A

R
M

 D
D

I 0029E

4-37

Open Access

B
ig endian configuration

A
 signed byte load (LD

R
S

B
) expects data on data bus inputs 31 through to 24 if the

supplied address is on a w
ord boundary, on data bus inputs 23 through to 16 if it is a

w
ord address plus one byte, and so on. T

he selected byte is placed in the bottom
 8 bit

of the destination register, and the rem
aining bits of the register are filled w

ith the sign
bit, bit 7 of the byte. P

lease see (

F
igure 3-1: B

ig endian addresses of bytes w
ithin

w
ords on page 3-3

A
 halfw

ord load (LD
R

S
H

 or LD
R

H
) expects data on data bus inputs 31 through to 16

if the supplied address is on a w
ord boundary and on data bus inputs 15 through to 0

if it is a halfw
ord boundary, (A

[1]=
1). T

he supplied address should alw
ays be on a

halfw
ord boundary. If bit 0 of the supplied address is H

IG
H

 then the A
R

M
7T

D
M

I w
ill

load an unpredictable value. T
he selected halfw

ord is placed in the bottom
 16 bits of

the destination register. F
or unsigned half-w

ords (LD
R

H
), the top 16 bits of the register

are filled w
ith zeros and for signed half-w

ords (LD
R

S
H

) the top 16 bits are filled w
ith

the sign bit, bit 15 of the halfw
ord.

A
 halfw

ord store (S
T

R
H

) repeats the bottom
 16 bits of the source register tw

ice across
the data bus outputs 31 through to 0. T

he external m
em

ory system
 should activate the

appropriate halfw
ord subsystem

 to store the data. N
ote that the address m

ust be
halfw

ord aligned, if bit 0 of the address is H
IG

H
 this w

ill cause unpredictable
behaviour.

4.10.5
U

se of R
15W

rite-back should not be specified if R
15 is specified as the base register (R

n). W
hen

using R
15 as the base register you m

ust rem
em

ber it contains an address 8 bytes on
from

 the address of the current instruction.

R
15 should not be specified as the register offset (R

m
).

W
hen R

15 is the source register (R
d) of a H

alf-w
ord store (S

T
R

H
) instruction, the

stored address w
ill be address of the instruction plus 12.

4.10.6
D

ata abortsA
 transfer to or from

 a legal address m
ay cause problem

s for a m
em

ory m
anagem

ent
system

. F
or instance, in a system

 w
hich uses virtual m

em
ory the required data m

ay
be absent from

 the m
ain m

em
ory. T

he m
em

ory m
anager can signal a problem

 by
taking the processor A

B
O

R
T

 input H
IG

H
 w

hereupon the D
ata A

bort trap w
ill be taken.

It is up to the system
 softw

are to resolve the cause of the problem
, then the instruction

can be restarted and the original program
 continued.

4.10.7
Instruction cycle tim

es

N
orm

al LD
R

(H
,S

H
,S

B
) instructions take 1S

 +
 1N

 +
 1I

LD
R

(H
,S

H
,S

B
) P

C
 take 2S

 +
 2N

 +
 1I increm

ental cycles.

S
,N

 and I are defined in (

6.2 C
ycle T

ypes on page 6-2 J

S
T

R
H

 instructions take 2N
 increm

ental cycles to execute.

9:
4�������
���
�!�� ;@%:

? !D:

A
R

M
7T

D
M

I D
ata S

heet
A

R
M

 D
D

I 0029E

4-38

Open Access

4.10.8
A

ssem
bler syntax

<
L

D
R

|S
T

R
>

{co
n

d
}<

H
|S

H
|S

B
>

 R
d

,<
a

d
d

re
ss>

LD
R

load from
 m

em
ory into a register

S
T

R
S

tore from
 a register into m

em
ory

{cond}
tw

o-character condition m
nem

onic. S
ee(

T
able 4-2: C

ondition code
sum

m
ary on page 4-5.

H
Transfer halfw

ord quantity

S
B

Load sign extended byte (O
nly valid for LD

R
)

S
H

Load sign extended halfw
ord (O

nly valid for LD
R

)

R
d

is an expression evaluating to a valid register num
ber.

<
address>

can be:

1
A

n expression w
hich generates an address:

<
e

xp
re

ssio
n

>

T
he assem

bler w
ill attem

pt to generate an instruction using
the P

C
 as a base and a corrected im

m
ediate offset to address

the location given by evaluating the expression. T
his w

ill be a
P

C
 relative, pre-indexed address. If the address is out of

range, an error w
ill be generated.

2
A

 pre-indexed addressing specification:

[R
n]

offset of zero

[R
n,<

#expression>
]{!}

offset of <
expression>

 bytes

[R
n,{+

/-}R
m

]{!}
offset of +

/- contents of
index register

3
A

 post-indexed addressing specification:

[R
n],<

#expression>
offset of <

expression>
 bytes

[R
n],{+

/-}R
m

offset of +
/- contents of

index register.

R
n and R

m
 are expressions evaluating to a register num

ber.
If R

n is R
15 then the assem

bler w
ill subtract 8 from

 the offset
value to allow

 for A
R

M
7T

D
M

I pipelining. In this case base
w

rite-back should not be specified.

5

{!}
w

rites back the base register (set the W
 bit) if ! is present.

9:
4�������
���
�!�� ;@%:

? !D:

A
R

M
7T

D
M

I D
ata S

heet
A

R
M

 D
D

I 0029E

4-39

Open Access

4.10.9
E

xam
ples

L
D

R
H

R
1

,[R
2

,-R
3

]!
; L

o
a

d
 R

1
 fro

m
 th

e
 co

n
te

n
ts o

f th
e

; h
a

lfw
o

rd
 a

d
d

re
ss co

n
ta

in
e

d
 in

; R
2

-R
3

 (b
o

th
 o

f w
h

ich
 a

re
 re

g
iste

rs)
; a

n
d

 w
rite

 b
a

ck a
d

d
re

ss to
 R

2
S

T
R

H
R

3
,[R

4
,#

1
4

]
; S

to
re

 th
e

 h
a

lfw
o

rd
 in

 R
3

 a
t R

1
4

+
1

4
; b

u
t d

o
n

't w
rite

 b
a

ck.
L

D
R

S
B

R
8

,[R
2

],#
-2

2
3

; L
o

a
d

 R
8

 w
ith

 th
e

 sig
n

 e
xte

n
d

e
d

; co
n

te
n

ts o
f th

e
 b

yte
 a

d
d

re
ss

; co
n

ta
in

e
d

 in
 R

2
 a

n
d

 w
rite

 b
a

ck
; R

2
-2

2
3

 to
 R

2
.

L
D

R
N

E
S

H
R

1
1

,[R
0

]
; co

n
d

itio
n

a
lly lo

a
d

 R
1

1
 w

ith
 th

e
 sig

n
; e

xte
n

d
e

d
 co

n
te

n
ts o

f th
e

 h
a

lfw
o

rd
; a

d
d

re
ss co

n
ta

in
e

d
 in

 R
0

.
H

E
R

E
; G

e
n

e
ra

te
 P

C
 re

la
tive

 o
ffse

t to
; a

d
d

re
ss F

R
E

D
.

; S
to

re
 th

e
 h

a
lfw

o
rd

 in
 R

5
 a

t a
d

d
re

ss
; F

R
E

D
.

S
T

R
H

R
5

, [P
C

, #
(F

R
E

D
-H

E
R

E
-8

)]
.

F
R

E
D

9:
4�������
���
�!�� ;@%4? !D4

A
R

M
7T

D
M

I D
ata S

heet
A

R
M

 D
D

I 0029E

4-40

Open Access 4.11
B

lock D
ata T

ransfer (LD
M

, S
T

M
)

T
he instruction is only executed if the condition is true. T

he various conditions are
defined in(

T
able 4-2: C

ondition code sum
m

ary on page 4-5. T
he instruction encoding

is show
n in(

F
igure 4-18: B

lock data transfer instructions.

B
lock data transfer instructions are used to load (LD

M
) or store (S

T
M

) any subset of
the currently visible registers. T

hey support all possible stacking m
odes, m

aintaining
full or em

pty stacks w
hich can grow

 up or dow
n m

em
ory, and are very efficient

instructions for saving or restoring context, or for m
oving large blocks of data around

m
ain m

em
ory.

4.11.1
T

he register list

T
he instruction can cause the transfer of any registers in the current bank (and

non-user m
ode program

s can also transfer to and from
 the user bank, see below

). T
he

register list is a 16 bit field in the instruction, w
ith each bit corresponding to a register.

A
 1 in bit 0 of the register field w

ill cause R
0 to be transferred, a 0 w

ill cause it not to
be transferred; sim

ilarly bit 1 controls the transfer of R
1, and so on.

A
ny subset of the registers, or all the registers, m

ay be specified. T
he only restriction

is that the register list should not be em
pty.

W
henever R

15 is stored to m
em

ory the stored value is the address of the S
T

M
instruction plus 12.

 F
igure 4-18: B

lock data transfer instructions

C
ond

R
n

0
1

5
1

6
1

9
2

0
2

1
2

4
2

5
2

7
2

8
3

1

P
U

W
L

2
2

2
3

100
S

R
egister list

B
ase register

Load/S
tore bit

0 =
 S

tore to m
em

ory
1 =

 Load from
 m

em
ory

W
rite-back bit

0 =
 no w

rite-back
1 =

 w
rite address into base

U
p/D

ow
n bit

P
re/P

ost indexing bit

0 =
 dow

n; subtract offset from
 base

1 =
 up; add offset to base

0 =
 post; add offset after transfer

1 =
 pre; add offset before transfer

P
S

R
 &

 force user bit
0 =

 do not load P
S

R
 or force user m

ode
1 =

 load P
S

R
 or force user m

ode

C
ondition field

9:
4�������
���
�!�� ;@%4? !D4

A
R

M
7T

D
M

I D
ata S

heet
A

R
M

 D
D

I 0029E

4-41

Open Access

4.11.2
A

ddressing m
odes

T
he transfer addresses are determ

ined by the contents of the base register (R
n), the

pre/post bit (P
) and the up/dow

n bit (U
). T

he registers are transferred in the order
low

est to highest, so R
15 (if in the list) w

ill alw
ays be transferred last. T

he low
est

register also gets transferred to/from
 the low

est m
em

ory address. B
y w

ay of
illustration, consider the transfer of R

1, R
5 and R

7 in the case w
here R

n=
0x1000 and

w
rite back of the m

odified base is required (W
=

1).(

F
igure 4-19: P

ost-increm
ent

addressing,(
F

igure 4-20: P
re-increm

ent addressing,(

F
igure 4-21: P

ost-decrem
ent

addressing and(
F

igure 4-22: P
re-decrem

ent addressing show
 the sequence of

register transfers, the addresses used, and the value of R
n after the instruction has

com
pleted.

In all cases, had w
rite back of the m

odified base not been required (W
=

0), R
n w

ould
have retained its initial value of 0x1000 unless it w

as also in the transfer list of a load
m

ultiple register instruction, w
hen it w

ould have been overw
ritten w

ith the loaded
value.

4.11.3
A

ddress alignm
ent

T
he address should norm

ally be a w
ord aligned quantity and non-w

ord aligned
addresses do not affect the instruction. H

ow
ever, the bottom

 2 bits of the address w
ill

appear on
A

[1:0] and m
ight be interpreted by the m

em
ory system

.

 F
igure 4-19: P

ost-increm
ent addressing

0x100C

0x1000

0x0F
F

4

R
n

1

0x100C

0x1000

0x0F
F

4

2 R
1

0x100C

0x1000

0x0F
F

4

3

0x100C

0x1000

0x0F
F

4

4 R
1

R
7

R
5

R
1

R
5

R
n

9:
4�������
���
�!�� ;@%4? !D4

A
R

M
7T

D
M

I D
ata S

heet
A

R
M

 D
D

I 0029E

4-42

Open Access

 F
igure 4-20: P

re-increm
ent addressing

 F
igure 4-21: P

ost-decrem
ent addressing

0x100C

0x1000

0x0F
F

4

R
n

1

0x100C

0x1000

0x0F
F

4

2 R
1

0x100C

0x1000

0x0F
F

4

3

0x100C

0x1000

0x0F
F

4

4 R
1

R
7

R
5

R
1

R
5

R
n

0x100C

0x1000

0x0F
F

4

R
n

1

0x100C

0x1000

0x0F
F

4

2 R
1

0x100C

0x1000

0x0F
F

4

3

0x100C

0x1000

0x0F
F

4

4 R
1

R
7

R
5

R
1

R
5

R
n

9:
4�������
���
�!�� ;@%4? !D4

A
R

M
7T

D
M

I D
ata S

heet
A

R
M

 D
D

I 0029E

4-43

Open Access

 F
igure 4-22: P

re-decrem
ent addressing

4.11.4
U

se of the S
 bit

W
hen the S

 bit is set in a LD
M

/S
T

M
 instruction its m

eaning depends on w
hether or not

R
15 is in the transfer list and on the type of instruction. T

he S
 bit should only be set if

the instruction is to execute in a privileged m
ode.

LD
M

 w
ith R

15 in transfer list and S
 bit set (M

ode changes)

If the instruction is a LD
M

 then S
P

S
R

_<
m

ode>
 is transferred to C

P
S

R
 at the sam

e
tim

e as R
15 is loaded.

S
T

M
 w

ith R
15 in transfer list and S

 bit set (U
ser bank transfer)

T
he registers transferred are taken from

 the U
ser bank rather than the bank

corresponding to the current m
ode. T

his is useful for saving the user state on process
sw

itches. B
ase w

rite-back should not be used w
hen this m

echanism
 is em

ployed.

R
15 not in list and S

 bit set (U
ser bank transfer)

F
or both LD

M
 and S

T
M

 instructions, the U
ser bank registers are transferred rather

than the register bank corresponding to the current m
ode. T

his is useful for saving the
user state on process sw

itches. B
ase w

rite-back should not be used w
hen this

m
echanism

 is em
ployed.

W
hen the instruction is LD

M
, care m

ust be taken not to read from
 a banked register

during the follow
ing cycle (inserting a dum

m
y instruction such as M

O
V

 R
0, R

0 after
the LD

M
 w

ill ensure safety).

0x100C

0x1000

0x0F
F

4

R
n

1

0x100C

0x1000

0x0F
F

4

2 R
1

0x100C

0x1000

0x0F
F

4

3

0x100C

0x1000

0x0F
F

4

4 R
1

R
7

R
5

R
1

R
5

R
n

9:
4�������
���
�!�� ;@%4? !D4

A
R

M
7T

D
M

I D
ata S

heet
A

R
M

 D
D

I 0029E

4-44

Open Access

4.11.5
U

se of R
15 as the base

R
15 should not be used as the base register in any LD

M
 or S

T
M

 instruction.

4.11.6
Inclusion of the base in the register list

W
hen w

rite-back is specified, the base is w
ritten back at the end of the second cycle

of the instruction. D
uring a S

T
M

, the first register is w
ritten out at the start of the

second cycle. A
 S

T
M

 w
hich includes storing the base, w

ith the base as the first register
to be stored, w

ill therefore store the unchanged value, w
hereas w

ith the base second
or later in the transfer order, w

ill store the m
odified value. A

 LD
M

 w
ill alw

ays overw
rite

the updated base if the base is in the list.

4.11.7
D

ata abortsS
om

e legal addresses m
ay be unacceptable to a m

em
ory m

anagem
ent system

, and
the m

em
ory m

anager can indicate a problem
 w

ith an address by taking the
A

B
O

R
T

signal H
IG

H
. T

his can happen on any transfer during a m
ultiple register load or store,

and m
ust be recoverable if A

R
M

7T
D

M
I is to be used in a virtual m

em
ory system

.

A
borts during S

T
M

 instructions

If the
abort occurs during a store m

ultiple instruction, A
R

M
7T

D
M

I takes little action
until the instruction com

pletes, w
hereupon it enters the data abort trap. T

he m
em

ory
m

anager is responsible for preventing erroneous w
rites to the m

em
ory. T

he only
change to the internal state of the processor w

ill be the m
odification of the base

register if w
rite-back w

as specified, and this m
ust be reversed by softw

are (and the
cause of the

abort resolved) before the instruction m
ay be retried.

A
borts during LD

M
 instructions

W
hen A

R
M

7T
D

M
I detects a data abort during a load m

ultiple instruction, it m
odifies

the operation of the instruction to ensure that recovery is possible.

1
O

verw
riting of registers stops w

hen the abort happens. T
he

aborting load w
ill

not take place but earlier ones m
ay have overw

ritten registers. T
he P

C
 is

alw
ays the last register to be w

ritten and so w
ill alw

ays be preserved.

2
T

he base register is restored, to its m
odified value if w

rite-back w
as

requested. T
his ensures recoverability in the case w

here the base register is
also in the transfer list, and m

ay have been overw
ritten before the

abort
occurred.

T
he data aborttrap is taken w

hen the load m
ultiple has com

pleted, and the system
softw

are m
ust undo any base m

odification (and resolve the cause of the abort) before
restarting the instruction.

4.11.8
Instruction cycle tim

es

N
orm

al LD
M

 instructions take nS
 +

 1N
 +

 1I and LD
M

 P
C

 takes (n+
1)S

 +
 2N

 +
 1I

increm
ental cycles, w

here S
,N

 and I are as defined in(

6.2 C
ycle T

ypes on page 6-2.
S

T
M

 instructions take (n-1)S
 +

 2N
 increm

ental cycles to execute, w
here

n is the
num

ber of w
ords transferred.

9:
4�������
���
�!�� ;@%4? !D4

A
R

M
7T

D
M

I D
ata S

heet
A

R
M

 D
D

I 0029E

4-45

Open Access

4.11.9
A

ssem
bler syntax

<
L

D
M

|S
T

M
>

{co
n

d
}<

F
D

|E
D

|F
A

|E
A

|IA
|IB

|D
A

|D
B

>
 R

n
{!},<

R
list>

{^}

w
here:

{cond}
tw

o character condition m
nem

onic. S
ee (

T
able 4-2: C

ondition code
sum

m
ary on page 4-5.

R
n

is an expression evaluating to a valid register num
ber

<
R

list>
is a list of registers and register ranges enclosed in {} (e.g. {R

0,R
2-

R
7,R

10}).

{!}
if present requests w

rite-back (W
=

1), otherw
ise W

=
0

{^}
if present set S

 bit to load the C
P

S
R

 along w
ith the P

C
, or force

transfer of user bank w
hen in privileged m

ode

A
ddressing m

ode nam
es

T
here are different assem

bler m
nem

onics for each of the addressing m
odes,

depending on w
hether the instruction is being used to support stacks or for other

purposes. T
he equivalence betw

een the nam
es and the values of the bits in the

instruction are show
n in the follow

ing table:

F
D

, E
D

, FA
, E

A
 define pre/post indexing and the up/dow

n bit by reference to the form
of stack required. T

he F
 and E

 refer to a “full” or “em
pty” stack, i.e. w

hether a pre-index
has to be done (full) before storing to the stack. T

he A
 and D

 refer to w
hether the stack

is ascending or descending. If ascending, a S
T

M
 w

ill go up and LD
M

 dow
n, if

descending, vice-versa.

IA
, IB

, D
A

, D
B

 allow
 control w

hen LD
M

/S
T

M
 are not being used for stacks and sim

ply
m

ean Increm
ent A

fter, Increm
ent B

efore, D
ecrem

ent A
fter, D

ecrem
ent B

efore.

N
am

e
S

tack
O

ther
L bit

P
 bit

U
 bit

pre-increm
ent load

LD
M

E
D

LD
M

IB
1

1
1

post-increm
ent load

LD
M

F
D

LD
M

IA
1

0
1

pre-decrem
ent load

LD
M

E
A

LD
M

D
B

1
1

0

post-decrem
ent load

LD
M

F
A

LD
M

D
A

1
0

0

pre-increm
ent store

S
T

M
F

A
S

T
M

IB
0

1
1

post-increm
ent store

S
T

M
E

A
S

T
M

IA
0

0
1

pre-decrem
ent store

S
T

M
F

D
S

T
M

D
B

0
1

0

post-decrem
ent store

S
T

M
E

D
S

T
M

D
A

0
0

0

 Table 4-6: A
ddressing m

ode nam
es

9:
4�������
���
�!�� ;@%4? !D4

A
R

M
7T

D
M

I D
ata S

heet
A

R
M

 D
D

I 0029E

4-46

Open Access

4.11.10E
xam

plesL
D

M
F

D
S

P
!,{R

0
,R

1
,R

2
}

; U
n

sta
ck 3

 re
g

iste
rs.

S
T

M
IA

R
0

,{R
0

-R
1

5
}

; S
a

ve
 a

ll re
g

iste
rs.

L
D

M
F

D
S

P
!,{R

1
5

}
; R

1
5

 <
- (S

P
),C

P
S

R
 u

n
ch

a
n

g
e

d
.

L
D

M
F

D
S

P
!,{R

1
5

}^
; R

1
5

 <
- (S

P
), C

P
S

R
 <

- S
P

S
R

_
m

o
d

e
; (a

llo
w

e
d

 o
n

ly in
 p

rivile
g

e
d

 m
o

d
e

s).
S

T
M

F
D

R
1

3
,{R

0
-R

1
4

}^
; S

a
ve

 u
se

r m
o

d
e

 re
g

s o
n

 sta
ck

; (a
llo

w
e

d
 o

n
ly in

 p
rivile

g
e

d
 m

o
d

e
s).

T
hese instructions m

ay be used to save state on subroutine entry, and restore it
efficiently on return to the calling routine:

S
T

M
E

D
S

P
!,{R

0
-R

3
,R

1
4

}
; S

a
ve

 R
0

 to
 R

3
 to

 u
se

 a
s w

o
rksp

a
ce

; a
n

d
 R

1
4

 fo
r re

tu
rn

in
g

.
B

L
so

m
e

w
h

e
re

; T
h

is n
e

ste
d

 ca
ll w

ill o
ve

rw
rite

 R
1

4
L

D
M

E
D

S
P

!,{R
0

-R
3

,R
1

5
}

; re
sto

re
 w

o
rksp

a
ce

 a
n

d
 re

tu
rn

.

9:
4�������
���
�!�� ;
!K
1

A
R

M
7T

D
M

I D
ata S

heet
A

R
M

 D
D

I 0029E

4-47

Open Access

4.12
S

ingle D
ata S

w
ap (S

W
P

)

 F
igure 4-23: S

w
ap instruction

T
he instruction is only executed if the condition is true. T

he various conditions are
defined in(

T
able 4-2: C

ondition code sum
m

ary on page 4-5. T
he instruction encoding

is show
n in(

F
igure 4-23: S

w
ap instruction.

T
he data sw

ap instruction is used to sw
ap a byte or w

ord quantity betw
een a register

and external m
em

ory. T
his instruction is im

plem
ented as a m

em
ory read follow

ed by
a m

em
ory w

rite w
hich are “locked” together (the processor cannot be interrupted until

both operations have com
pleted, and the m

em
ory m

anager is w
arned to treat them

 as
inseparable). T

his class of instruction is particularly useful for im
plem

enting softw
are

sem
aphores.

T
he sw

ap address is determ
ined by the contents of the base register (R

n). T
he

processor first reads the contents of the sw
ap address. T

hen it w
rites the contents of

the source register (R
m

) to the sw
ap address, and stores the old m

em
ory contents in

the destination register (R
d). T

he sam
e register m

ay be specified as both the source
and destination.

T
he

LO
C

K
 output goes H

IG
H

 for the duration of the read and w
rite operations to signal

to the external m
em

ory m
anager that they are locked together, and should be allow

ed
to com

plete w
ithout interruption. T

his is im
portant in m

ulti-processor system
s w

here
the sw

ap instruction is the only indivisible instruction w
hich m

ay be used to im
plem

ent
sem

aphores; control of the m
em

ory m
ust not be rem

oved from
 a processor w

hile it is
perform

ing a locked operation.

4.12.1
B

ytes and w
ords

T
his instruction class m

ay be used to sw
ap a byte (B

=
1) or a w

ord (B
=

0) betw
een an

A
R

M
7T

D
M

I register and m
em

ory. T
he S

W
P

 instruction is im
plem

ented as a LD
R

follow
ed by a S

T
R

 and the action of these is as described in the section on single data
transfers. In particular, the description of B

ig and Little E
ndian configuration applies to

the S
W

P
 instruction.

0
11

12
15

16
19

20
27

28
31

23
7

8
4

3

C
ondition field

C
ond

R
n

R
d

1001
0000

R
m

00
B

00010

22
21

D
estination register

S
ource register

B
ase register

B
yte/W

ord bit
0 = sw

ap w
ord quantity

1 = sw
ap byte quantity

9:
4�������
���
�!�� ;
!K
1

A
R

M
7T

D
M

I D
ata S

heet
A

R
M

 D
D

I 0029E

4-48

Open Access

4.12.2
U

se of R
15D

o not use R
15 as an operand (R

d, R
n or R

s) in a S
W

P
 instruction.

4.12.3
D

ata
abortsIf the address used for the sw

ap is unacceptable to a m
em

ory m
anagem

ent system
,

the m
em

ory m
anager can flag the problem

 by driving A
B

O
R

T
 H

IG
H

. T
his can happen

on either the read or the w
rite cycle (or both), and in either case, the D

ata A
bort trap

w
ill be taken. It is up to the system

 softw
are to resolve the cause of the problem

, then
the instruction can be restarted and the original program

 continued.

4.12.4
Instruction cycle tim

es

S
w

ap instructions take 1S
 +

 2N
 +

1I increm
ental cycles to execute, w

here S
,N

 and I
are as defined in(

6.2 C
ycle T

ypes on page 6-2.

4.12.5
A

ssem
bler syntax

<
S

W
P

>
{co

n
d

}{B
} R

d
,R

m
,[R

n
]

{cond}
tw

o-character condition m
nem

onic. S
ee (

T
able 4-2:

C
ondition code sum

m
ary on page 4-5.

{B
}

if B
 is present then byte transfer, otherw

ise w
ord transfer

R
d,R

m
,R

n
are expressions evaluating to valid register num

bers

4.12.6
E

xam
ples

S
W

P
R

0
,R

1
,[R

2
]

; L
o

a
d

 R
0

 w
ith

 th
e

 w
o

rd
 a

d
d

re
sse

d
 b

y R
2

, a
n

d
; sto

re
 R

1
 a

t R
2

.
S

W
P

B
R

2
,R

3
,[R

4
]

; L
o

a
d

 R
2

 w
ith

 th
e

 b
yte

 a
d

d
re

sse
d

 b
y R

4
, a

n
d

; sto
re

 b
its 0

 to
 7

 o
f R

3
 a

t R
4

.
S

W
P

E
Q

R
0

,R
0

,[R
1

]
; C

o
n

d
itio

n
a

lly sw
a

p
 th

e
 co

n
te

n
ts o

f th
e

; w
o

rd
 a

d
d

re
sse

d
 b

y R
1

 w
ith

 R
0

.

9:
4�������
���
�!�� ;
!K
�

A
R

M
7T

D
M

I D
ata S

heet
A

R
M

 D
D

I 0029E

4-49

Open Access

4.13
S

oftw
are Interrupt (S

W
I)

T
he instruction is only executed if the condition is true. T

he various conditions are
defined in(

T
able 4-2: C

ondition code sum
m

ary on page 4-5. T
he instruction encoding

is show
n in(

F
igure 4-24: S

oftw
are interrupt instruction, below

.

 F
igure 4-24: S

oftw
are interrupt instruction

T
he softw

are interrupt instruction is used to enter S
upervisor m

ode in a controlled
m

anner. T
he instruction causes the softw

are interrupt trap to be taken, w
hich effects

the m
ode change. T

he P
C

 is then forced to a fixed value (0x08) and the C
P

S
R

 is
saved in S

P
S

R
_svc. If the S

W
I vector address is suitably protected (by external

m
em

ory m
anagem

ent hardw
are) from

 m
odification by the user, a fully protected

operating system
 m

ay be constructed.

4.13.1
R

eturn from
 the supervisor

T
he P

C
 is saved in R

14_svc upon entering the softw
are interrupt trap, w

ith the P
C

adjusted to point to the w
ord after the S

W
I instruction. M

O
V

S
 P

C
,R

14_svc w
ill return

to the calling program
 and restore the C

P
S

R
.

N
ote that the link m

echanism
 is not re-entrant, so if the supervisor code w

ishes to use
softw

are interrupts w
ithin itself it m

ust first save a copy of the return address and
S

P
S

R
.

4.13.2
C

om
m

ent field

T
he bottom

 24 bits of the instruction are ignored by the processor, and m
ay be used

to com
m

unicate inform
ation to the supervisor code. F

or instance, the supervisor m
ay

look at this field and use it to index into an array of entry points for routines w
hich

perform
 the various supervisor functions.

4.13.3
Instruction cycle tim

es

S
oftw

are interrupt instructions take 2S
 +

 1N
 increm

ental cycles to execute, w
here S

and N
 are as defined in (

6.2 C
ycle T

ypes on page 6-2.

31
28

27
24

23
0

C
ondition field

1111
C

ond
C

om
m

ent field (ignored by P
rocessor)

9:
4�������
���
�!�� ;
!K
�

A
R

M
7T

D
M

I D
ata S

heet
A

R
M

 D
D

I 0029E

4-50

Open Access

4.13.4
A

ssem
bler syntax

S
W

I{co
n

d
} <

e
xp

re
ssio

n
>

{cond}
tw

o character condition m
nem

onic,(

T
able 4-2: C

ondition
code sum

m
ary on page 4-5.

<
expression>

is evaluated and placed in the com
m

ent field (w
hich is

ignored by A
R

M
7T

D
M

I).

4.13.5
E

xam
ples

S
W

I
R

e
a

d
C

; G
e

t n
e

xt ch
a

ra
cte

r fro
m

 re
a

d
 stre

a
m

.
S

W
I

W
rite

I+
”k”

; O
u

tp
u

t a
 “k” to

 th
e

 w
rite

 stre
a

m
.

S
W

IN
E

0
; C

o
n

d
itio

n
a

lly ca
ll su

p
e

rviso
r

; w
ith

 0
 in

 co
m

m
e

n
t fie

ld
.

S
upervisor code

T
he previous exam

ples assum
e that suitable supervisor code exists, for instance:

0
x0

8
 B

 S
u

p
e

rviso
r

; S
W

I e
n

try p
o

in
t

E
n

tryT
a

b
le

; a
d

d
re

sse
s o

f su
p

e
rviso

r ro
u

tin
e

s
 D

C
D

 Z
e

ro
R

tn
 D

C
D

 R
e

a
d

C
R

tn
 D

C
D

 W
rite

IR
tn

 . . .
Z

e
ro

 E
Q

U
 0

R
e

a
d

C
 E

Q
U

 2
5

6
W

rite
I E

Q
U

 5
1

2

S
u

p
e

rviso
r

; S
W

I h
a

s ro
u

tin
e

 re
q

u
ire

d
 in

 b
its 8

-2
3

 a
n

d
 d

a
ta

 (if a
n

y) in
; b

its 0
-7

.
; A

ssu
m

e
s R

1
3

_
svc p

o
in

ts to
 a

 su
ita

b
le

 sta
ck

S
T

M
F

D
R

1
3

,{R
0

-R
2

,R
1

4
}

; S
a

ve
 w

o
rk re

g
iste

rs a
n

d
 re

tu
rn

; a
d

d
re

ss.
L

D
R

R
0

,[R
1

4
,#

-4
]

; G
e

t S
W

I in
stru

ctio
n

.
B

IC
R

0
,R

0
,#

0
xF

F
0

0
0

0
0

0
; C

le
a

r to
p

 8
 b

its.
M

O
V

R
1

,R
0

,L
S

R
#

8
; G

e
t ro

u
tin

e
 o

ffse
t.

A
D

R
R

2
,E

n
tryT

a
b

le
; G

e
t sta

rt a
d

d
re

ss o
f e

n
try ta

b
le

.
L

D
R

R
1

5
,[R

2
,R

1
,L

S
L

#
2

] ; B
ra

n
ch

 to
 a

p
p

ro
p

ria
te

 ro
u

tin
e

.

W
rite

IR
tn

; E
n

te
r w

ith
 ch

a
ra

cte
r in

 R
0

 b
its 0

-7
.

.

.

.

.

.

.

L
D

M
F

D
R

1
3

,{R
0

-R
2

,R
1

5
}^

; R
e

sto
re

 w
o

rksp
a

ce
 a

n
d

 re
tu

rn
,

; re
sto

rin
g

 p
ro

ce
sso

r m
o

d
e

 a
n

d
 fla

g
s.

9:
4�������
���
�!�� ;
�%1

A
R

M
7T

D
M

I D
ata S

heet
A

R
M

 D
D

I 0029E

4-51

Open Access

4.14
C

oprocessor D
ata O

perations (C
D

P
)

T
he instruction is only executed if the condition is true. T

he various conditions are
defined in(

T
able 4-2: C

ondition code sum
m

ary on page 4-5. T
he instruction encoding

is show
n in(

F
igure 4-25: C

oprocessor data operation instruction.

T
his class of instruction is used to tell a coprocessor to perform

 som
e internal

operation. N
o result is com

m
unicated back to A

R
M

7T
D

M
I, and it w

ill not w
ait for the

operation to com
plete. T

he coprocessor could contain a queue of such instructions
aw

aiting execution, and their execution can overlap other activity, allow
ing the

coprocessor and A
R

M
7T

D
M

I to perform
 independent tasks in parallel.

 F
igure 4-25: C

oprocessor data operation instruction

4.14.1
T

he coprocessor fields

O
nly bit 4 and bits 24 to 31 are significant to A

R
M

7T
D

M
I. T

he rem
aining bits are used

by coprocessors. T
he above field nam

es are used by convention, and particular
coprocessors m

ay redefine the use of all fields except C
P

as appropriate. T
he C

P
#

field is used to contain an identifying num
ber (in the range 0 to 15) for each

coprocessor, and a coprocessor w
ill ignore any instruction w

hich does not contain its
num

ber in the C
P

field.

T
he conventional interpretation of the instruction is that the coprocessor should

perform
 an operation specified in the C

P
 O

pc field (and possibly in the C
P

 field) on the
contents of C

R
n and C

R
m

, and place the result in C
R

d.

4.14.2
Instruction cycle tim

es

C
oprocessor data operations take 1S

 +
 bI increm

ental cycles to execute, w
here

b is
the num

ber of cycles spent in the coprocessor busy-w
ait loop.

S
 and I are as defined in(

6.2 C
ycle T

ypes on page 6-2.

C
ond

0
11

12
15

16
19

20
24

27
28

31
23

C
R

d
C

P
#

7
8

1110
C

P
 O

pc
C

R
n

C
P

0
C

R
m

5
4

3

C
oprocessor num

ber

C
ondition field

C
oprocessor inform

ation
C

oprocessor operand register

C
oprocessor destination register

C
oprocessor operand register

C
oprocessor operation code

9:
4�������
���
�!�� ;
�%1

A
R

M
7T

D
M

I D
ata S

heet
A

R
M

 D
D

I 0029E

4-52

Open Access

4.14.3
A

ssem
bler syntax

C
D

P
{co

n
d

} p
#

,<
e

xp
re

ssio
n

1
>

,cd
,cn

,cm
{,<

e
xp

re
ssio

n
2

>
}

{cond}
tw

o character condition m
nem

onic. S
ee(

T
able 4-2:

C
ondition code sum

m
ary on page 4-5.

p#
the unique num

ber of the required coprocessor

<
expression1>

evaluated to a constant and placed in the C
P

 O
pc field

cd, cn and cm
evaluate to the valid coprocessor register num

bers C
R

d, C
R

n
and C

R
m

 respectively

<
expression2>

w
here present is evaluated to a constant and placed in the

C
P

 field

4.14.4
E

xam
ples

C
D

P
p

1
,1

0
,c1

,c2
,c3

; R
e

q
u

e
st co

p
ro

c 1
 to

 d
o

 o
p

e
ra

tio
n

 1
0

; o
n

 C
R

2
 a

n
d

 C
R

3
, a

n
d

 p
u

t th
e

 re
su

lt
; in

 C
R

1
.

C
D

P
E

Q
p

2
,5

,c1
,c2

,c3
,2

; If Z
 fla

g
 is se

t re
q

u
e

st co
p

ro
c 2

; to
 d

o
 o

p
e

ra
tio

n
 5

 (typ
e

 2
) o

n
 C

R
2

; a
n

d
 C

R
3

,a
n

d
 p

u
t th

e
 re

su
lt in

 C
R

1
.

9:
4�������
���
�!�� ;@%�? !D�

A
R

M
7T

D
M

I D
ata S

heet
A

R
M

 D
D

I 0029E

4-53

Open Access

4.15
C

oprocessor D
ata

Transfers (LD
C

, S
T

C
)

T
he instruction is only executed if the condition is true. T

he various conditions are
defined in(

T
able 4-2: C

ondition code sum
m

ary on page 4-5. T
he instruction encoding

is show
n in(

F
igure 4-26: C

oprocessor data transfer instructions.

T
his class of instruction is used to load (LD

C
) or store (S

T
C

) a subset of a
coprocessors’s registers directly to m

em
ory. A

R
M

7T
D

M
I is responsible for supplying

the m
em

ory address, and the coprocessor supplies or accepts the data and controls
the num

ber of w
ords transferred.

 F
igure 4-26: C

oprocessor data transfer instructions

4.15.1
T

he coprocessor fields

T
he C

P
field is used to identify the coprocessor w

hich is required to supply or accept
the data, and a coprocessor w

ill only respond if its num
ber m

atches the contents of
this field.

T
he C

R
d field and the N

 bit contain inform
ation for the coprocessor w

hich m
ay be

interpreted in different w
ays by different coprocessors, but by convention C

R
d is the

register to be transferred (or the first register w
here m

ore than one is to be
transferred), and the N

 bit is used to choose one of tw
o transfer length options. F

or
instance N

=
0 could select the transfer of a single register, and N

=
1 could select the

transfer of all the registers for context sw
itching.

C
ond

R
n

0
11

12
15

16
19

20
21

24
25

27
28

31

P
U

W
L

22
23

110
N

C
R

d
C

P
#

O
ffset

7
8

C
oprocessor num

ber
U

nsigned 8 bit im
m

ediate offset

B
ase register

Load/S
tore bit

0 = S
tore to m

em
ory

1 = Load from
 m

em
ory

W
rite-back bit

0 = no w
rite-back

1 = w
rite address into base

C
oprocessor source/destination register

P
re/P

ost indexing bit

U
p/D

ow
n bit

0 = dow
n; subtract offset from

 base
1 = up; add offset to base

0 = post; add offset after transfer

Transfer length

C
ondition field

1 = pre; add offset before transfer

9:
4�������
���
�!�� ;@%�? !D�

A
R

M
7T

D
M

I D
ata S

heet
A

R
M

 D
D

I 0029E

4-54

Open Access

4.15.2
A

ddressing m
odes

A
R

M
7T

D
M

I is responsible for providing the address used by the m
em

ory system
 for

the transfer, and the addressing m
odes available are a subset of those used in single

data transfer instructions. N
ote, how

ever, that the im
m

ediate offsets are 8 bits w
ide

and specify w
ord offsets for coprocessor data transfers, w

hereas they are 12 bits w
ide

and specify byte offsets for single data transfers.

T
he 8 bit unsigned im

m
ediate offset is shifted left 2 bits and either added to (U

=
1) or

subtracted from
 (U

=
0) the base register (R

n); this calculation m
ay be perform

ed either
before (P

=
1) or after (P

=
0) the base is used as the transfer address. T

he m
odified

base value m
ay be overw

ritten back into the base register (if W
=

1), or the old value of
the base m

ay be preserved (W
=

0). N
ote that post-indexed addressing m

odes require
explicit setting of the W

 bit, unlike LD
R

 and S
T

R
 w

hich alw
ays w

rite-back w
hen post-

indexed.

T
he value of the base register, m

odified by the offset in a pre-indexed instruction, is
used as the address for the transfer of the first w

ord. T
he second w

ord (if m
ore than

one is transferred) w
ill go to or com

e from
 an address one w

ord (4 bytes) higher than
the first transfer, and the address w

ill be increm
ented by one w

ord for each
subsequent transfer.

4.15.3
A

ddress alignm
ent

T
he base address should norm

ally be a w
ord aligned quantity. T

he bottom
 2 bits of the

address w
ill appear on

A
[1:0] and m

ight be interpreted by the m
em

ory system
.

4.15.4
U

se of R
15If R

n is R
15, the value used w

ill be the address of the instruction plus 8 bytes. B
ase

w
rite-back to R

15 m
ust not be specified.

4.15.5
D

ata abortsIf the address is legal but the m
em

ory m
anager generates an abort, the data trap w

ill
be taken. T

he w
rite-back of the m

odified base w
ill take place, but all other processor

state w
ill be preserved. T

he coprocessor is partly responsible for ensuring that the
data transfer can be restarted after the cause of the

abort has been resolved, and m
ust

ensure that any subsequent actions it undertakes can be repeated w
hen the

instruction is retried.

4.15.6
Instruction cycle tim

es

C
oprocessor data transfer instructions take (n-1)S

 +
 2N

 +
 bI increm

ental cycles to
execute, w

here:

n
is the num

ber of w
ords transferred.

b
is the num

ber of cycles spent in the coprocessor busy-w
ait loop.

S
, N

 and I are as defined in (

6.2 C
ycle T

ypes on page 6-2.

9:
4�������
���
�!�� ;@%�? !D�

A
R

M
7T

D
M

I D
ata S

heet
A

R
M

 D
D

I 0029E

4-55

Open Access

4.15.7
A

ssem
bler syntax

<
L

D
C

|S
T

C
>

{co
n

d
}{L

} p
#

,cd
,<

A
d

d
re

ss>

LD
C

load from
 m

em
ory to coprocessor

S
T

C
store from

 coprocessor to m
em

ory

{L}
w

hen present perform
 long transfer (N

=
1), otherw

ise perform
 short

transfer (N
=

0)

{cond}
tw

o character condition m
nem

onic. S
ee (

T
able 4-2: C

ondition code
sum

m
ary on page 4-5.

p#
the unique num

ber of the required coprocessor

cd
 is an expression evaluating to a valid coprocessor register num

ber
that is placed in the C

R
d field

<
A

ddress>
 can be:

1
A

n expression w
hich generates an address:

<
e

xp
re

ssio
n

>

T
he assem

bler w
ill attem

pt to generate an instruction using
the P

C
 as a base and a corrected im

m
ediate offset to address

the location given by evaluating the expression. T
his w

ill be a
P

C
 relative, pre-indexed address. If the address is out of

range, an error w
ill be generated.

2
A

 pre-indexed addressing specification:

[R
n

]
offset of zero

[R
n

,<
#

e
xp

re
ssio

n
>

]{!}
offset of <

expression>
 bytes

3
A

 post-indexed addressing specification:

[R
n

],<
#

e
xp

re
ssio

n
>

offset of <
expression>

 bytes

{!}
w

rite back the base register

5(set the W
 bit) if! is present

R
n

 is an expression evaluating
to a valid A

R
M

7T
D

M
I

register num
ber.

N
ote

If R
n is R

15, the assem
bler w

ill subtract 8 from
 the offset value to allow

 for A
R

M
7T

D
M

I
pipelining.

9:
4�������
���
�!�� ;@%�? !D�

A
R

M
7T

D
M

I D
ata S

heet
A

R
M

 D
D

I 0029E

4-56

Open Access

4.15.8
E

xam
ples

L
D

C
p

1
,c2

,ta
b

le
; L

o
a

d
 c2

 o
f co

p
ro

c 1
 fro

m
 a

d
d

re
ss

; ta
b

le
, u

sin
g

 a
 P

C
 re

la
tive

 a
d

d
re

ss.
S

T
C

E
Q

L
p

2
,c3

,[R
5

,#
2

4
]!; C

o
n

d
itio

n
a

lly sto
re

 c3
 o

f co
p

ro
c 2

; in
to

 a
n

 a
d

d
re

ss 2
4

 b
yte

s u
p

 fro
m

 R
5

,
; w

rite
 th

is a
d

d
re

ss b
a

ck to
 R

5
, a

n
d

 u
se

; lo
n

g
 tra

n
sfe

r o
p

tio
n

 (p
ro

b
a

b
ly to

; sto
re

 m
u

ltip
le

 w
o

rd
s).

N
ote

A
lthough the address offset is expressed in bytes, the instruction offset field is in

w
ords. T

he assem
bler w

ill adjust the offset appropriately.

9:
4�������
���
�!�� ;
4:
�? 4�:

A
R

M
7T

D
M

I D
ata S

heet
A

R
M

 D
D

I 0029E

4-57

Open Access

4.16
C

oprocessor R
egister T

ransfers (M
R

C
, M

C
R

)
T

he instruction is only executed if the condition is true. T
he various conditions are

defined in(
T

able 4-2: C
ondition code sum

m
ary on page 4-5. T

he instruction encoding
is show

n in(
F

igure 4-27: C
oprocessor register transfer instructions.

T
his class of instruction is used to com

m
unicate inform

ation directly betw
een

A
R

M
7T

D
M

I and a coprocessor. A
n exam

ple of a coprocessor to A
R

M
7T

D
M

I register
transfer (M

R
C

) instruction w
ould be a F

IX
 of a floating point value held in a

coprocessor, w
here the floating point num

ber is converted into a 32 bit integer w
ithin

the coprocessor, and the result is then transferred to A
R

M
7T

D
M

I register. A
 F

LO
A

T
 of

a 32 bit value in A
R

M
7T

D
M

I register into a floating point value w
ithin the coprocessor

illustrates the use of A
R

M
7T

D
M

I register to coprocessor transfer (M
C

R
).

A
n im

portant use of this instruction is to com
m

unicate control inform
ation directly from

the coprocessor into the A
R

M
7T

D
M

I C
P

S
R

 flags. A
s an exam

ple, the result of a
com

parison of tw
o floating point values w

ithin a coprocessor can be m
oved to the

C
P

S
R

 to control the subsequent flow
 of execution.

 F
igure 4-27: C

oprocessor register transfer instructions

4.16.1
T

he coprocessor fields

T
he C

P
field is used, as for all coprocessor instructions, to specify w

hich coprocessor
is being called upon.

T
he C

P
 O

pc, C
R

n, C
P

 and C
R

m
 fields are used only by the coprocessor, and the

interpretation presented here is derived from
 convention only. O

ther interpretations
are allow

ed w
here the coprocessor functionality is incom

patible w
ith this one. T

he
conventional interpretation is that the C

P
 O

pc and C
P

 fields specify the operation the
coprocessor is required to perform

, C
R

n is the coprocessor register w
hich is the

21

C
ond

0
11

12
15

16
19

20
24

27
28

31
23

C
P

#

7
8

1110
C

R
n

C
P

C
R

m

5
4

3

1
L

C
P

 O
pc

R
d

C
oprocessor num

ber
C

oprocessor inform
ation

C
oprocessor operand register

C
oprocessor operation m

ode
C

ondition field

Load/S
tore bit

0 = S
tore to C

o-P
rocessor

1 = Load from
 C

o-P
rocessor

A
R

M
 source/destination register

C
oprocessor source/destination register

9:
4�������
���
�!�� ;
4:
�? 4�:

A
R

M
7T

D
M

I D
ata S

heet
A

R
M

 D
D

I 0029E

4-58

Open Access

source or destination of the transferred inform
ation, and C

R
m

 is a second coprocessor
register w

hich m
ay be involved in som

e w
ay w

hich depends on the particular operation
specified.

4.16.2
Transfers to R

15

W
hen a coprocessor register transfer to A

R
M

7T
D

M
I has R

15 as the destination, bits
31, 30, 29 and 28 of the transferred w

ord are copied into the N
, Z

, C
 and V

 flags
respectively. T

he other bits of the transferred w
ord are ignored, and the P

C
 and other

C
P

S
R

 bits are unaffected by the transfer.

4.16.3
Transfers from

 R
15

A
 coprocessor register transfer from

 A
R

M
7T

D
M

I w
ith R

15 as the source register w
ill

store the P
C

+
12.

4.16.4
Instruction cycle tim

es

M
R

C
 instructions take 1S

 +
 (b+

1)I +
1C

 increm
ental cycles to execute, w

here S
, I and

C
 are as defined in (

6.2 C
ycle T

ypes on page 6-2.

M
C

R
 instructions take 1S

 +
 bI +

1C
 increm

ental cycles to execute, w
here

b
is the

num
ber of cycles spent in the coprocessor busy-w

ait loop.

4.16.5
A

ssem
bler syntax

<
M

C
R

|M
R

C
>

{co
n

d
} p

#
,<

e
xp

re
ssio

n
1

>
,R

d
,cn

,cm
{,<

e
xp

re
ssio

n
2

>
}

M
R

C
m

ove from
 coprocessor to A

R
M

7T
D

M
I register (L=

1)

M
C

R
m

ove from
 A

R
M

7T
D

M
I register to coprocessor (L=

0)

{cond}
tw

o character condition m
nem

onic. S
ee(

T
able 4-2:

C
ondition code sum

m
ary on page 4-5.

p#
the unique num

ber of the required coprocessor

 <
expression1>

evaluated to a constant and placed in the C
P

 O
pc field

R
d

 is an expression evaluating to a valid A
R

M
7T

D
M

I register
num

ber

cn and cm
 are expressions evaluating to the valid coprocessor register
num

bers C
R

n and C
R

m
 respectively

<
expression2>

w
here present is evaluated to a constant and placed in the

C
P

 field

9:
4�������
���
�!�� ;
4:
�? 4�:

A
R

M
7T

D
M

I D
ata S

heet
A

R
M

 D
D

I 0029E

4-59

Open Access

4.16.6
E

xam
ples

M
R

C
p

2
,5

,R
3

,c5
,c6

; R
e

q
u

e
st co

p
ro

c 2
 to

 p
e

rfo
rm

 o
p

e
ra

tio
n

 5
; o

n
 c5

 a
n

d
 c6

, a
n

d
 tra

n
sfe

r th
e

 (sin
g

le
; 3

2
 b

it w
o

rd
) re

su
lt b

a
ck to

 R
3

.

M
C

R
p

6
,0

,R
4

,c5
,c6

; R
e

q
u

e
st co

p
ro

c 6
 to

 p
e

rfo
rm

 o
p

e
ra

tio
n

 0
; o

n
 R

4
 a

n
d

 p
la

ce
 th

e
 re

su
lt in

 c6
.

M
R

C
E

Q
p

3
,9

,R
3

,c5
,c6

,2
; C

o
n

d
itio

n
a

lly re
q

u
e

st co
p

ro
c 3

 to
; p

e
rfo

rm
 o

p
e

ra
tio

n
 9

 (typ
e

 2
) o

n
 c5

 a
n

d
; c6

, a
n

d
 tra

n
sfe

r th
e

 re
su

lt b
a

ck to
 R

3
.

9:
4�������
���
�!�� ;I
���B����

A
R

M
7T

D
M

I D
ata S

heet
A

R
M

 D
D

I 0029E

4-60

Open Access 4.17
U

ndefined Instruction
T

he instruction is only executed if the condition is true. T
he various conditions are

defined in(

T
able 4-2: C

ondition code sum
m

ary on page 4-5. T
he instruction form

at
is show

n in(

F
igure 4-28: U

ndefined instruction. F
igure 4-28: U

ndefined instruction

If the condition is true, the undefined instruction trap w
ill be taken.

N
ote that the undefined instruction m

echanism
 involves offering this instruction to any

coprocessors w
hich m

ay be present, and all coprocessors m
ust refuse to accept it by

driving
C

PA
 and

C
P

B
 H

IG
H

.

4.17.1
Instruction cycle tim

es

T
his instruction takes 2S

 +
 1I +

 1N
 cycles, w

here S
, N

 and I are as defined in(

6.2
C

ycle T
ypes on page 6-2.

4.17.2
A

ssem
bler syntax

T
he assem

bler has no m
nem

onics for generating this instruction. If it is adopted in the
future for som

e specified use, suitable m
nem

onics w
ill be added to the assem

bler.
U

ntil such tim
e, this instruction m

ust not be used.

C
ond

0
24

27
28

31
5

4
3

1
011

xxxx

25

xxxxxxxxxxxxxxxxxxxx

9:
4�������
���
�!�� ;
EL#2

& $��

A
R

M
7T

D
M

I D
ata S

heet
A

R
M

 D
D

I 0029E

4-61

Open Access

4.18
Instruction S

et E
xam

ples
T

he follow
ing exam

ples show
 w

ays in w
hich the basic A

R
M

7T
D

M
I instructions can

com
bine to give efficient code. N

one of these m
ethods saves a great deal of execution

tim
e (although they m

ay save som
e), m

ostly they just save code.

4.18.1
U

sing the conditional instructions

U
sing conditionals for logical O

R
C

M
P

R
n

,#
p

; If R
n

=
p

 O
R

 R
m

=
q

 T
H

E
N

 G
O

T
O

 L
a

b
e

l.
B

E
Q

L
a

b
e

l
C

M
P

R
m

,#
q

B
E

Q
L

a
b

e
l

T
his can be replaced by

C
M

P
R

n
,#

p
C

M
P

N
E

R
m

,#
q

; If co
n

d
itio

n
 n

o
t sa

tisfie
d

 try
; o

th
e

r te
st.

B
E

Q
L

a
b

e
l

A
bsolute value

T
E

Q
R

n
,#

0
; T

e
st sig

n
R

S
B

M
I

R
n

,R
n

,#
0

; a
n

d
 2

's co
m

p
le

m
e

n
t if n

e
ce

ssa
ry.

M
ultiplication by 4, 5 or 6 (run tim

e)
M

O
V

R
c,R

a
,L

S
L

#
2

; M
u

ltip
ly b

y 4
,

C
M

P
R

b
,#

5
; te

st va
lu

e
,

A
D

D
C

S
R

c,R
c,R

a
; co

m
p

le
te

 m
u

ltip
ly b

y 5
,

A
D

D
H

I
R

c,R
c,R

a
; co

m
p

le
te

 m
u

ltip
ly b

y 6
.

C
om

bining discrete and range tests
T

E
Q

R
c,#

1
2

7
; D

iscre
te

 te
st,

C
M

P
N

E
R

c,#
” ”-1

; ra
n

g
e

 te
st

M
O

V
L

S
R

c,#
”.”

; IF
 R

c<
=

” ” O
R

 R
c=

A
S

C
II(1

2
7

)
; T

H
E

N
 R

c:=
”.”

D
ivision and rem

ainder

A
 num

ber of divide routines for specific applications are provided in source form
 as

part of the A
N

S
I C

 library provided w
ith the A

R
M

 C
ross D

evelopm
ent Toolkit, available

from
 your supplier. A

 short general purpose divide routine follow
s.

; E
n

te
r w

ith
 n

u
m

b
e

rs in
 R

a
 a

n
d

 R
b

.
;

M
O

V
R

cn
t,#

1
; B

it to
 co

n
tro

l th
e

 d
ivisio

n
.

D
iv1

C
M

P
R

b
,#

0
x8

0
0

0
0

0
0

0
; M

o
ve

 R
b

 u
n

til g
re

a
te

r th
a

n
 R

a
.

C
M

P
C

C
R

b
,R

a
M

O
V

C
C

R
b

,R
b

,A
S

L
#

1
M

O
V

C
C

R
cn

t,R
cn

t,A
S

L
#

1
B

C
C

D
iv1

M
O

V
R

c,#
0

9:
4�������
���
�!�� ;
EL#2

& $��

A
R

M
7T

D
M

I D
ata S

heet
A

R
M

 D
D

I 0029E

4-62

Open Access

D
iv2

C
M

P
R

a
,R

b
; T

e
st fo

r p
o

ssib
le

 su
b

tra
ctio

n
.

S
U

B
C

S
R

a
,R

a
,R

b
; S

u
b

tra
ct if o

k,
A

D
D

C
S

R
c,R

c,R
cn

t
; p

u
t re

le
va

n
t b

it in
to

 re
su

lt
M

O
V

S
R

cn
t,R

cn
t,L

S
R

#
1

; sh
ift co

n
tro

l b
it

M
O

V
N

E
R

b
,R

b
,L

S
R

#
1

; h
a

lve
 u

n
le

ss fin
ish

e
d

.
B

N
E

D
iv2

;; D
ivid

e
 re

su
lt in

 R
c,

; re
m

a
in

d
e

r in
 R

a
.

O
verflow

 detection in the A
R

M
7T

D
M

I

1
O

verflow
 in unsigned m

ultiply w
ith a 32 bit result

U
M

U
L

L
R

d
,R

t,R
m

,R
n

;3
 to

 6
 cycle

s
T

E
Q

R
t,#

0
;+

1
 cycle

 a
n

d
 a

 re
g

iste
r

B
N

E
o

ve
rflo

w

2
O

verflow
 in signed m

ultiply w
ith a 32 bit result

S
M

U
L

L
R

d
,R

t,R
m

,R
n

;3
 to

 6
 cycle

s
T

E
Q

R
t,R

d
 A

S
R

#
3

1
;+

1
 cycle

 a
n

d
 a

 re
g

iste
r

B
N

E
o

ve
rflo

w

3
O

verflow
 in unsigned m

ultiply accum
ulate w

ith a 32 bit result

U
M

L
A

L
R

d
,R

t,R
m

,R
n

;4
 to

 7
 cycle

s
T

E
Q

R
t,#

0
;+

1
 cycle

 a
n

d
 a

 re
g

iste
r

B
N

E
o

ve
rflo

w

4
O

verflow
 in signed m

ultiply accum
ulate w

ith a 32 bit result

S
M

L
A

L
R

d
,R

t,R
m

,R
n

;4
 to

 7
 cycle

s
T

E
Q

R
t,R

d
, A

S
R

#
3

1
;+

1
 cycle

 a
n

d
 a

 re
g

iste
r

B
N

E
o

ve
rflo

w

5
O

verflow
 in unsigned m

ultiply accum
ulate w

ith a 64 bit result

U
M

U
L

L
R

l,R
h

,R
m

,R
n

;3
 to

 6
 cycle

s
A

D
D

S
R

l,R
l,R

a
1

;lo
w

e
r a

ccu
m

u
la

te
A

D
C

R
h

,R
h

,R
a

2
;u

p
p

e
r a

ccu
m

u
la

te
B

C
S

o
ve

rflo
w

;1
 cycle

 a
n

d
 2

 re
g

iste
rs

6
O

verflow
 in signed m

ultiply accum
ulate w

ith a 64 bit result

S
M

U
L

L
R

l,R
h

,R
m

,R
n

;3
 to

 6
 cycle

s
A

D
D

S
R

l,R
l,R

a
1

;lo
w

e
r a

ccu
m

u
la

te
A

D
C

R
h

,R
h

,R
a

2
;u

p
p

e
r a

ccu
m

u
la

te
B

V
S

o
ve

rflo
w

;1
 cycle

 a
n

d
 2

 re
g

iste
rs

N
ote

O
verflow

 checking is not applicable to unsigned and signed m
ultiplies w

ith a 64-bit
result, since overflow

 does not occur in such calculations.

9:
4�������
���
�!�� ;
EL#2

& $��

A
R

M
7T

D
M

I D
ata S

heet
A

R
M

 D
D

I 0029E

4-63

Open Access

4.18.2
P

seudo-random
 binary sequence generator

It is often necessary to generate (pseudo-) random
 num

bers and the m
ost efficient

algorithm
s are based on shift generators w

ith exclusive-O
R

 feedback rather like a
cyclic redundancy check generator. U

nfortunately the sequence of a 32 bit generator
needs m

ore than one feedback tap to be m
axim

al length (i.e. 2^32-1 cycles before
repetition), so this exam

ple uses a 33 bit register w
ith taps at bits 33 and 20. T

he basic
algorithm

 is new
bit:=

bit 33 eor bit 20, shift left the 33 bit num
ber and put in new

bit at
the bottom

; this operation is perform
ed for all the new

bits needed (i.e. 32 bits). T
he

entire operation can be done in 5 S
 cycles:

; E
n

te
r w

ith
 se

e
d

 in
 R

a
 (3

2
 b

its),
 R

b
 (1

 b
it in

 R
b

 lsb
), u

se
s R

c.
;

T
S

T
R

b
,R

b
,L

S
R

#
1

; T
o

p
 b

it in
to

 ca
rry

M
O

V
S

R
c,R

a
,R

R
X

; 3
3

 b
it ro

ta
te

 rig
h

t
A

D
C

R
b

,R
b

,R
b

; ca
rry in

to
 lsb

 o
f R

b
E

O
R

R
c,R

c,R
a

,L
S

L
#

1
2

; (in
vo

lve
d

!)
E

O
R

R
a

,R
c,R

c,L
S

R
#

2
0

; (sim
ila

rly in
vo

lve
d

!)
; n

e
w

 se
e

d
 in

 R
a

, R
b

 a
s b

e
fo

re

4.18.3
M

ultiplication by constant using the barrel shifter

M
ultiplication by 2^n (1,2,4,8,16,32..)

M
O

V
R

a
, R

b
, L

S
L

 #
n

M
ultiplication by 2^n+1 (3,5,9,17..)

A
D

D
R

a
,R

a
,R

a
,L

S
L

 #
n

M
ultiplication by 2^n-1 (3,7,15..)

R
S

B
R

a
,R

a
,R

a
,L

S
L

 #
n

M
ultiplication by 6

A
D

D
R

a
,R

a
,R

a
,L

S
L

 #
1

; m
u

ltip
ly b

y 3

M
O

V
R

a
,R

a
,L

S
L

#
1

; a
n

d
 th

e
n

 b
y 2

M
ultiply by 10 and add in extra num

ber

A
D

D
R

a
,R

a
,R

a
,L

S
L

#
2

; m
u

ltip
ly b

y 5

A
D

D
R

a
,R

c,R
a

,L
S

L
#

1
; m

u
ltip

ly b
y 2

 a
n

d
 a

d
d

 in
 n

e
xt d

ig
it

G
eneral recursive m

ethod for R
b := R

a*C
, C

 a constant:

1
If C

 even, say C
 =

 2^n*D
, D

 odd:

D
=

1
:

M
O

V
 R

b
,R

a
,L

S
L

 #
n

D
<

>
1

:
{R

b
 :=

 R
a

*D
}

M
O

V
R

b
,R

b
,L

S
L

 #
n

2
If C

 M
O

D
 4 =

 1, say C
 =

 2^n*D
+

1, D
 odd, n>

1:

D
=

1
:

A
D

D
 R

b
,R

a
,R

a
,L

S
L

 #
n

9:
4�������
���
�!�� ;
EL#2

& $��

A
R

M
7T

D
M

I D
ata S

heet
A

R
M

 D
D

I 0029E

4-64

Open Access

D
<

>
1

:
{R

b
 :=

 R
a

*D
}

A
D

D

M

R
b

,R
a

,R
b

,L
S

L
 #

n

3
If C

 M
O

D
 4 =

 3, say C
 =

 2^n*D
-1, D

 odd, n>
1:

D
=

1
:

R
S

B
 R

b
,R

a
,R

a
,L

S
L

 #
n

D
<

>
1

:
{R

b
 :=

 R
a

*D
}

R
S

B
R

b
,R

a
,R

b
,L

S
L

 #
n

T
his is not quite optim

al, but close. A
n exam

ple of its non-optim
ality is m

ultiply
by 45 w

hich is done by:

R
S

B
R

b
,R

a
,R

a
,L

S
L

#
2

; m
u

ltip
ly b

y 3
R

S
B

R
b

,R
a

,R
b

,L
S

L
#

2
; m

u
ltip

ly b
y 4

*3
-1

 =
 1

1
A

D
D

R
b

,R
a

,R
b

,L
S

L
#

 2
; m

u
ltip

ly b
y 4

*1
1

+
1

 =
 4

5

rather than by:

A
D

D
R

b
,R

a
,R

a
,L

S
L

#
3

; m
u

ltip
ly b

y 9
A

D
D

R
b

,R
b

,R
b

,L
S

L
#

2
; m

u
ltip

ly b
y 5

*9
 =

 4
5

4.18.4
Loading a w

ord from
 an unknow

n alignm
ent

; e
n

te
r w

ith
 a

d
d

re
ss in

 R
a

 (3
2

 b
its)

; u
se

s R
b

, R
c; re

su
lt in

 R
d

.
; N

o
te

 d
 m

u
st b

e
 le

ss th
a

n
 c e

.g
. 0

,1
;

B
IC

R
b

,R
a

,#
3

; g
e

t w
o

rd
 a

lig
n

e
d

 a
d

d
re

ss
L

D
M

IA
R

b
,{R

d
,R

c}
; g

e
t 6

4
 b

its co
n

ta
in

in
g

 a
n

sw
e

r
A

N
D

R
b

,R
a

,#
3

; co
rre

ctio
n

 fa
cto

r in
 b

yte
s

M
O

V
S

R
b

,R
b

,L
S

L
#

3
; ...n

o
w

 in
 b

its a
n

d
 te

st if a
lig

n
e

d
M

O
V

N
E

R
d

,R
d

,L
S

R
 R

b
; p

ro
d

u
ce

 b
o

tto
m

 o
f re

su
lt w

o
rd

; (if n
o

t a
lig

n
e

d
)

R
S

B
N

E
R

b
,R

b
,#

3
2

; g
e

t o
th

e
r sh

ift a
m

o
u

n
t

O
R

R
N

E
R

d
,R

d
,R

c,L
S

L
 R

b
; co

m
b

in
e

 tw
o

 h
a

lve
s to

 g
e

t re
su

lt

A
R

M
7T

D
M

I D
ata S

heet
A

R
M

 D
D

I 0029E

6-1

11

Open Access

0�.
�N 	
�
��O��
�

T
his chapter describes the A

R
M

7T
D

M
I m

em
ory interface.

6.1
O

verview
6-2

6.2
C

ycle Types
6-2

6.3
A

ddress Tim
ing

6-4

6.4
D

ata Transfer S
ize

6-9

6.5
Instruction F

etch
6-10

6.6
M

em
ory M

anagem
ent

6-12

6.7
Locked O

perations
6-12

6.8
S

tretching A
ccess Tim

es
6-12

6.9
T

he A
R

M
 D

ata B
us

6-13

6.10
T

he E
xternal D

ata B
us

6-15

4�2
��< �����B#��

A
R

M
7T

D
M

I D
ata S

heet
A

R
M

 D
D

I 0029E

6-2

Open Access 6.1
O

verviewA
R

M
7T

D
M

I’s m
em

ory interface consists of the follow
ing basic elem

ents:

•
32-bit address bus
T

his specifies to m
em

ory the location to be used for the transfer.

•
32-bit data bus
Instructions and data are transferred across this bus. D

ata m
ay be w

ord,
halfw

ord or byte w
ide in size.

A
R

M
7T

D
M

I includes a bidirectional data bus,D
[31:0

], plus separate
unidirectional data busses,D

IN
[31:0] and

D
O

U
T

[31:0]. M
ost of the text in this

chapter describes the bus behaviour assum
ing that the bidirectional is in use.

H
ow

ever, the behaviour applies equally to the unidirectional busses.

•
C

ontrol signals
T

hese specify, for exam
ple, the size of the data to be transferred, and the

direction of the transfer together w
ith providing privileged inform

ation.
T

his collection of signals allow
 A

R
M

7T
D

M
I to be sim

ply interfaced to D
R

A
M

, S
R

A
M

and R
O

M
. To fully exploit page m

ode access to D
R

A
M

, inform
ation is provided on

w
hether or not the m

em
ory accesses are sequential. In general, interfacing to static

m
em

ories is m
uch sim

pler than interfacing to dynam
ic m

em
ory.

6.2
C

ycle T
ypes
A

ll m
em

ory transfer cycles can be placed in one of four categories:

1
N

on-sequential cycle. A
R

M
7T

D
M

I requests a transfer to or from
 an address

w
hich is unrelated to the address used in the preceding cycle.

52
S

equential cycle. A
R

M
7T

D
M

I requests a transfer to or from
 an address w

hich
is either the sam

e as the address in the preceding cycle, or is one w
ord or

halfw
ord after the preceding address.

3
Internal cycle. A

R
M

7T
D

M
I does not require a transfer, as it is perform

ing an
internal function and no useful prefetching can be perform

ed at the sam
e tim

e.

4
C

oprocessor register transfer. A
R

M
7T

D
M

I w
ishes to use the data bus to

com
m

unicate w
ith a coprocessor, but does not require any action by the

m
em

ory system
.

T
hese four classes are distinguishable to the m

em
ory system

 by inspection of the
nM

R
E

Q
and

S
E

Q
 control lines (see(

T
able 6-1: M

em
ory cycle types). T

hese control
lines are generated during phase 1 of the cycle before the cycle w

hose characteristics
they forecast, and this pipelining of the control inform

ation gives the m
em

ory system
sufficient tim

e to decide w
hether or not it can use a page m

ode access.

4�2
��< �����B#��

A
R

M
7T

D
M

I D
ata S

heet
A

R
M

 D
D

I 0029E

6-3

Open Access

(

F
igure 6-1: A

R
M

 m
em

ory cycle tim
ing on page 6-3 show

s the pipelining of the control
signals, and suggests how

 the D
R

A
M

 address strobes (nR
A

S
 and

nC
A

S
) m

ight be
tim

ed to use page m
ode for S

-cycles. N
ote that the N

-cycle is longer than the other
cycles. T

his is to allow
 for the D

R
A

M
 precharge and row

 access tim
e, and is not an

A
R

M
7T

D
M

I requirem
ent.

 F
igure 6-1: A

R
M

 m
em

ory cycle tim
ing

W
hen an S

-cycle follow
s an N

-cycle, the address w
ill alw

ays be one w
ord or halfw

ord
greater than the address used in the N

-cycle. T
his address (m

arked “a” in the above
diagram

) should be checked to ensure that it is not the last in the D
R

A
M

 page before
the m

em
ory system

 com
m

its to the S
-cycle. If it is at the page end, the S

-cycle cannot
be perform

ed in page m
ode and the m

em
ory system

 w
ill have to perform

 a full access.

T
he processor clock m

ust be stretched to m
atch the full access. W

hen an S
-cycle

follow
s an I-cycle, the address w

ill be the sam
e as that used in the I-cycle. T

his fact
m

ay be used to start the D
R

A
M

 access during the preceding cycle, w
hich enables the

S
-cycle to run at page m

ode speed w
hilst perform

ing a full D
R

A
M

 access. T
his is

show
n in(

F
igure 6-2: M

em
ory cycle optim

ization.

nM
R

E
Q

S
E

Q
C

ycle type

0
0

N
on-sequential(N

-cycle)

0
1

S
equential

(S
-cycle)

1
0

Internal
(I-cycle)

1
1

C
oprocessor register transfer

(C
-cycle)

 Table 6-1: M
em

ory cycle types

M
C

LK

A
[31:0]

nM
R

E
Q

S
E

Q

nC
A

S

a
a+

4

I-cycle
S

-cycle
C

-cycle
N

-cycle

nR
A

S

D
[31:0]

a+
8

4�2
��< �����B#��

A
R

M
7T

D
M

I D
ata S

heet
A

R
M

 D
D

I 0029E

6-4

Open Access

.

 F
igure 6-2: M

em
ory cycle optim

ization

6.3
A

ddress T
im

ing
A

R
M

7T
D

M
I’s address bus can operate in one of tw

o configurations - pipelined or
depipelined, and this is controlled by the

A
P

E
 input signal. T

he configurability is
provided to ease the design in of A

R
M

7T
D

M
I to both S

R
A

M
 and D

R
A

M
 based

system
s.

It is a requirem
ent S

R
A

M
s and R

O
M

s that the address be held stable throughout the
m

em
ory cycle. In a system

 containing S
R

A
M

 and R
O

M
 only,A

P
E

 m
ay be tied

perm
anently LO

W
, producing the desired address tim

ing. T
his is show

n in

(

F
igure 6-3: A

R
M

7T
D

M
I de-pipelined addresses.

N
ote

A
P

E
 effects the tim

ing of the address bus
A

[31:0], plus
nR

W
,M

A
S

[1:0],LO
C

K
,

nO
P

C
 and

nT
R

A
N

S
.

M
C

LK

A
[31:0]

nM
R

E
Q

S
E

Q

nC
A

S

I-cycle
S

-cycle

nR
A

S

D
[31:0]

4�2
��< �����B#��

A
R

M
7T

D
M

I D
ata S

heet
A

R
M

 D
D

I 0029E

6-5

Open Access

 F
igure 6-3: A

R
M

7T
D

M
I de-pipelined addresses

In a D
R

A
M

 based system
, it is desirable to obtain the address from

 A
R

M
7T

D
M

I as
early as possible. W

hen
A

P
E

 is H
IG

H
, A

R
M

7T
D

M
I's address becom

es valid in the
M

C
LK

 high phase before the m
em

ory cycle to w
hich it refers. T

his tim
ing allow

s longer
for address decoding and the generation of D

R
A

M
 control signals.(

F
igure 6-4:

A
R

M
7T

D
M

I pipelined addresses on page 6-5 show
s the effect on the tim

ing w
hen

A
P

E
 is H

IG
H

.

 F
igure 6-4: A

R
M

7T
D

M
I pipelined addresses

PQ RSTUVWP XVY
Z VYT[\]^_`

a[\]^_`
PQ RSTUVWP XVY

Z VYT[\]^_`
a[\]^_`

4�2
��< �����B#��

A
R

M
7T

D
M

I D
ata S

heet
A

R
M

 D
D

I 0029E

6-6

Open Access

M
any system

s w
ill contain a m

ixture of D
R

A
M

 and S
R

A
M

/R
O

M
. To cater for the

different address tim
ing requirem

ents,A
P

E
 m

ay be safely changed during the low
phase ofM

C
LK

. Typically,A
P

E
 w

ould be held at one level during a burst of sequential
accesses to one type of m

em
ory. W

hen a non-sequential access occurs, the tim
ing

of m
ost system

s enforce a w
ait state to allow

 for address decoding. A
s a result of the

address decode,A
P

E
 can be driven to the correct value for the particular bank of

m
em

ory being accessed. T
he value ofA

P
E

 can be held until the m
em

ory control
signals denote another non-sequential access.

B
y w

ay of an exam
ple, (

F
igure 6-5: T

ypical system
 tim

ing, show
s a com

bination of
accesses to a m

ixed D
R

A
M

 / S
R

A
M

 system
. H

ere, the S
R

A
M

 has zero w
ait states,

and the D
R

A
M

 has a 2:1 N
-cycle / S

-cycle ratio. A
 single w

ait state is inserted for
address decode w

hen a non-sequential access occurs. Typical, externally generated
D

R
A

M
 control signals are also show

n.

4�2
��< �����B#��

A
R

M
7T

D
M

I D
ata S

heet
A

R
M

 D
D

I 0029E

6-7

Open Access

 F
igure 6-5: T

ypical system
 tim

ing

b c d e
f b g h i
j h i
k l m n o p q
f g r
f r k s t
k u h
v l m n o p q
v w h
f g k j
f c k j

SRAM Cycles Decode DRAM Cycles Decode SRAM Cycles

S S S S S SN N

A A+4 A+8 B B+4 B+8 C C+4 C+8

4�2
��< �����B#��

A
R

M
7T

D
M

I D
ata S

heet
A

R
M

 D
D

I 0029E

6-8

Open Access

P
revious A

R
M

 processors included the
A

LE
 signal, and this is retained for backw

ards
com

patibility. T
his signal also allow

s the address tim
ing to be m

odified to achieve the
sam

e results as
A

P
E

, but in an asynchronous m
anner. To obtain clean

M
C

LK
 low

tim
ing of the address bus by this m

echanism
,A

LE
 m

ust be driven H
IG

H
 w

ith the falling
edge ofM

C
LK

, and LO
W

 w
ith the rising edge ofM

C
LK

.A
LE

 can sim
ply be the inverse

ofM
C

LK
 but the delay from

M
C

LK
 to

A
LE

 m
ust be carefully controlled such that the

Tald tim
ing constraint is achieved. (

F
igure 6-6: S

R
A

M
 com

patible address tim
ing

show
s how

A
LE

 can be used to achieve S
R

A
M

 com
patible address tim

ing. R
efer to

(

C
hapter 12, A

C
 P

aram
eters for details of the exact tim

ing constraints.

 F
igure 6-6: S

R
A

M
 com

patible address tim
ing

N
ote

IfA
LE

 is to be used to change address tim
ing, then

A
P

E
 m

ust be tied H
IG

H
. S

im
ilarly,

ifA
P

E
 is to be used,A

LE
 m

ust be tied H
IG

H
.

xy z{|}~|z~�x �~�
� ~�|� � ����

�� � ����

4�2
��< �����B#��

A
R

M
7T

D
M

I D
ata S

heet
A

R
M

 D
D

I 0029E

6-9

Open Access

6.4
D

ata T
ransfer S

ize
In an A

R
M

7T
D

M
I system

, w
ords, halfw

ords or bytes m
ay be transferred betw

een the
processor and the m

em
ory. T

he size of the transaction taking place is determ
ined by

the
M

A
S

[1:0] pins. T
hese are encoded as follow

s:

M
A

S
[1:0]

00
B

yte
01

halfw
ord

10
w

ord
11

reserved

T
he processor alw

ays produces a byte address, but instructions are either w
ords (4

bytes) or halfw
ords (2 bytes), and data can be any size. N

ote that w
hen w

ord
instructions are fetched from

 m
em

ory,A
[1:0] are undefined and w

hen halfw
ord

instructions are fetched,A
[0] is undefined. T

he
M

A
S

[1:0] outputs share the sam
e

tim
ing as the address bus and thus can be m

odified by the use ofA
LE

 and
A

P
E

 as
described in (

6.3 A
ddress T

im
ing on page 6-4.

W
hen a data read of byte or halfw

ord size is perform
ed (eg LD

R
B

), the m
em

ory
system

 m
ay safely ignore the fact that the request is for a sub-w

ord sized quantity and
present the w

hole w
ord. A

R
M

7T
D

M
I w

ill alw
ays correctly extract the addressed byte

or halfw
ord from

 the data. T
he m

em
ory system

 m
ay also choose just to supply the

addressed byte or halfw
ord. T

his m
ay be desirable in order to save pow

er or to sim
plify

the decode logic.

W
hen a byte or halfw

ord w
rite occurs (eg S

T
R

H
), A

R
M

7T
D

M
I w

ill broadcast the byte
or halfw

ord across the w
hole of the bus. T

he m
em

ory system
 m

ust then decode
A

[1:0]
to enable w

riting only to the addressed byte or halfw
ord.

O
ne w

ay of im
plem

enting the byte decode in a D
R

A
M

 system
 is to separate the 32-bit

w
ide block of D

R
A

M
 into four byte w

ide banks, and generate the colum
n address

strobes independently as show
n in (

F
igure 6-7: D

ecoding byte accesses to m
em

ory
on page 6-11.

W
hen the processor is configured for Little E

ndian operation, byte 0 of the m
em

ory
system

 should be connected to data lines 7 through 0 (D
[7:0]) and strobed by

nC
A

S
0

.
nC

A
S

1
 drives the bank connected to data lines 15 though 8, and so on. T

his has the
added advantage of reducing the load on each colum

n strobe driver, w
hich im

proves
the precision of this tim

e-critical-signal.

In the B
ig E

ndian case, byte 0 of the m
em

ory system
 should be connected to data lines

31 through 24.

4�2
��< �����B#��

A
R

M
7T

D
M

I D
ata S

heet
A

R
M

 D
D

I 0029E

6-10

Open Access 6.5
Instruction F

etch
A

R
M

7T
D

M
I w

ill perform
 32- or 16-bit instruction fetches depending on w

hether the
processor is in A

R
M

 or T
H

U
M

B
 state. T

he processor state m
ay be determ

ined
externally by the value of the

T
B

IT
 signal. W

hen this is LO
W

, the processor is in A
R

M
state and 32-bit instructions are fetched. W

hen
T

B
IT

 is H
IG

H
, the processor is in

T
H

U
M

B
 state and 16-bit instructions are fetched. T

he size of the data being fetched is
also indicated on the

M
A

S
[1:0] bits, as described above.

W
hen the processor is in A

R
M

 state, 32-bit instructions are fetched on
D

[31:0]. W
hen

the processor is in T
H

U
M

B
 state, 16-bit instructions are fetched from

 either the upper,
D

[31:16
], or the low

erD
[15:0

] half of the bus. T
his is determ

ined by the endianism
 of

the m
em

ory system
, as configured by the

B
IG

E
N

D
 input, and the state ofA

[1].(

T
able

6-2: E
ndianism

 effect on instruction position show
s w

hich half of the data bus is
sam

pled in the different configurations.

W
hen a 16-bit instruction is fetched, A

R
M

7T
D

M
I ignores the unused half of the data

bus.

(

T
able 6-2: E

ndianism
 effect on instruction position describes instructions fetched

from
 the bidirectional data bus (i.e.B

U
S

E
N

 is LO
W

). W
hen the unidirectional data

busses are in use (i.e.B
U

S
E

N
 is H

IG
H

), data w
ill be fetched from

 the corresponding
half of the

D
IN

[31:0] bus.

E
ndianism

Little
B

IG
E

N
D

 = 0
B

ig
B

IG
E

N
D

 = 1

A
[1] =

 0
D

[15:0]
D

[31:16]

A
[1] =

 1
D

[31:16]
D

[15:0]

 Table 6-2: E
ndianism

 ef
fect on instruction position

4�2
��< �����B#��

A
R

M
7T

D
M

I D
ata S

heet
A

R
M

 D
D

I 0029E

6-11

Open Access

 F
igure 6-7: D

ecoding byte accesses to m
em

ory

A[0] A[1]
�

MAS[0]
�

MCLK CAS
�

NCAS0

NCAS1

NCAS2

NCAS3
�

G
�

D
�

Q

Quad
�
Latch

[1]
�

MAS[0]
�

[1]
�

4�2
��< �����B#��

A
R

M
7T

D
M

I D
ata S

heet
A

R
M

 D
D

I 0029E

6-12

Open Access 6.6
M

em
ory M

anagem
ent

T
he A

R
M

7T
D

M
I address bus m

ay be processed by an address translation unit before
being presented to the m

em
ory, and A

R
M

7T
D

M
I is capable of running a virtual

m
em

ory system
. T

he
A

B
O

R
T

input to the processor m
ay be used by the m

em
ory

m
anager to inform

 A
R

M
7T

D
M

I of page faults. V
arious other signals enable different

page protection levels to be supported:

1
nR

W
 can be used by the m

em
ory m

anager to protect pages from
 being

w
ritten to.

52
nT

R
A

N
S

 indicates w
hether the processor is in user or a privileged m

ode, and
m

ay be used to protect system
 pages from

 the user, or to support com
pletely

separate m
appings for the system

 and the user.

A
ddress translation w

ill norm
ally only be necessary on an N

-cycle, and this fact m
ay

be exploited to reduce pow
er consum

ption in the m
em

ory m
anager and avoid the

translation delay at other tim
es. T

he tim
es w

hen translation is necessary can be
deduced by keeping track of the cycle types that the processor uses.

6.7
Locked O

perations
T

he A
R

M
 instruction set of A

R
M

7T
D

M
I includes a data sw

ap (S
W

P
) instruction that

allow
s the contents of a m

em
ory location to be sw

apped w
ith the contents of a

processor register. T
his instruction is im

plem
ented as an uninterruptable pair of

accesses; the first access reads the contents of the m
em

ory, and the second w
rites

the register data to the m
em

ory. T
hese accesses m

ust be treated as a contiguous
operation by the m

em
ory controller to prevent another device from

 changing the
affected m

em
ory location before the sw

ap is com
pleted. A

R
M

7T
D

M
I drives the

LO
C

K
signal H

IG
H

 for the duration of the sw
ap operation to w

arn the m
em

ory controller not
to give the m

em
ory to another device.

6.8
S

tretching A
ccess T

im
es

A
ll m

em
ory tim

ing is defined by
M

C
LK

, and long access tim
es can be accom

m
odated

by stretching this clock. It is usual to stretch the LO
W

 period ofM
C

LK
, as this allow

s
the m

em
ory m

anager to
abort the operation if the access is eventually unsuccessful.

E
ither

M
C

LK
 can be stretched before it is applied to A

R
M

7T
D

M
I, or the

nW
A

IT
 input

can be used together w
ith a free-running

M
C

LK
. Taking

nW
A

IT
 LO

W
 has the sam

e
effect as stretching the LO

W
 period ofM

C
LK

, and
nW

A
IT

 m
ust only change w

hen
M

C
LK

 is LO
W

.

A
R

M
7T

D
M

I does not contain any dynam
ic logic w

hich relies upon regular clocking to
m

aintain its internal state. T
herefore there is no lim

it upon the m
axim

um
 period for

w
hich

M
C

LK
 m

ay be stretched, or
nW

A
IT

 held LO
W

.

4�2
��< �����B#��

A
R

M
7T

D
M

I D
ata S

heet
A

R
M

 D
D

I 0029E

6-13

Open Access

6.9
T

he A
R

M
 D

ata B
us

To ease the connection of A
R

M
7T

D
M

I to sub-w
ord sized m

em
ory system

s, input data
and instructions m

ay be latched on a byte by byte basis. T
his is achieved by use of the

B
L[3:0] input signals w

here
B

L[3] controls the latching of the data present on
D

[31:24] of the data bus and so on.

In a m
em

ory system
 containing w

ord w
ide m

em
ory only,B

L[3:0] m
ay be tied H

IG
H

.
F

or sub w
ord w

ide m
em

ory system
s,B

L[3:0] are used to latch the data as it is read
out of m

em
ory. F

or exam
ple, a w

ord access to halfw
ord w

ide m
em

ory m
ust take place

in tw
o m

em
ory cycles. In the first cycle, the data for

D
[15:0] is obtained from

 the
m

em
ory and latched into the processor on the falling edge ofM

C
LK

 w
hen

B
L[1:0]

are
both H

IG
H

. In the second cycle, the data forD
[31:16] is latched into the processor on

the falling edge ofM
C

LK
 w

hen
B

L[3:2] are both H
IG

H
.

A
 m

em
ory access like this is show

n in(
F

igure 6-8: M
em

ory access on page 6-14.
H

ere, a w
ord access is perform

ed from
 halfw

ord w
ide m

em
ory in tw

o cycles.In the first,
the data read is applied to the low

er half of the bus, in the second cycle the read data
is applied to the upper half of the bus. S

ince tw
o m

em
ory cycles w

ere required,nW
A

IT
is used to stretch the internal processor clock. H

ow
ever,nW

A
IT

 does not effect the
operation of the data latches. In this w

ay, data m
ay be extracted from

 m
em

ory w
ord,

halfw
ord or byte at a tim

e, and the m
em

ory m
ay have as m

any w
ait states as required.

In any m
ulti-cycle m

em
ory access,nW

A
IT

 is held LO
W

 until the final quantum
 of data

is latched.

In this exam
ple,B

L[3:0] w
ere driven to value 0x3 in the first cycle so that only the

latches on
D

[15:0]
w

ere opened. In fact,B
L[3:0] could have been driven to value 0xF

and all the latches opened. S
ince in the second cycle, the latches on

D
[31:16] w

ere
w

ritten w
ith the correct data, this w

ould not have effected the processor's operation.

N
ote

B
L[3:0] should all be H

IG
H

 during store cycles.

4�2
��< �����B#��

A
R

M
7T

D
M

I D
ata S

heet
A

R
M

 D
D

I 0029E

6-14

Open Access

 F
igure 6-8: M

em
ory access

A
s a further exam

ple, a halfw
ord load from

 2-w
ait state byte w

ide m
em

ory is show
n in

(

F
igure 6-9: T

w
o-cycle M

em
ory access on page 6-15. H

ere, each m
em

ory access
takes tw

o cycles. In the first, access,B
L[3:0] are driven to value 0xF. T

he correct data
is latched from

D
[7:0] w

hilst unknow
n data is latched from

 D
[31:8]. In the second

access, the byte for
D

[15:8] is latched and so the halfw
ord on D

[15:0] has been
correctly read from

 the m
em

ory. T
he fact that internally D

[31:16]
are unknow

n does
not m

atter because internally the processor w
ill extract only the halfw

ord it is
interested in.

������������
����� �� ¡¢

�£�¤¥¦� �§ ¡¢
¦� �� �¨¢

©�� � ¡¢

0x3
0xC

4ª
«¬
­® ¯°
±ª­²³´ª

A
R

M
7T

D
M

I D
ata S

heet
A

R
M

 D
D

I 0029E

6-15

Open Access

 F
igure 6-9: T

w
o-cycle M

em
ory access

6.10
T

he E
xternal D

ata B
us

A
R

M
7T

D
M

I has a bidirectional data bus,D
[31:0]. H

ow
ever, since som

e A
S

IC
 design

m
ethodologies prohibit the use of bidirectional buses, unidirectional data in,

D
IN

[31:0], and data out,D
O

U
T

[31:0], busses are also provided. T
he logical

arrangem
ent of these buses is show

n in µ

F
igure 6-10: A

R
M

7T
D

M
I external bus

arrangem
ent on page 6-16

¶·¸¹º»¼½¶¾¼¿
À¼¿ºÁ ÂÃÄÅÆ

½ÇºÈÉÊÁ ËÄÅÆ
ÊÁ ÃÌÄÍÆ

Î¸Á ÂÄÅÆ

0xF
0x2

Ïª
«¬
­® ¯°
±ª­²³´ª

A
R

M
7T

D
M

I D
ata S

heet
A

R
M

 D
D

I 0029E

6-16

Open Access

 F
igure 6-10: A

R
M

7T
D

M
I external bus arrangem

ent

W
hen the bidirectional data bus is being used, the unidirectional busses m

ust be
disabled by driving

B
U

S
E

N
 LO

W
. T

he tim
ing of the bus for three cycles,

load-store-load, is show
n in µ

F
igure 6-11: B

idirectional bus tim
ing.

 F
igure 6-11: B

idirectional bus tim
ing

IC
E

breaker

A
R

M
7T

D
M

I

G

D
IN

[31:0]

D
[31:0]

D
O

U
T

[31:0]

ÐÑ ÒÓÔÕ Ö ×ØÙÚ

R
ead C

ycle
S

tore C
ycle

R
ead C

ycle

Ïª
«¬
­® ¯°
±ª­²³´ª

A
R

M
7T

D
M

I D
ata S

heet
A

R
M

 D
D

I 0029E

6-17

Open Access

 F
igure 6-12: U

nidirectional bus tim
ing

6.10.1
T

he unidirectional data bus

W
hen the unidirectional data busses are being used, (i.e. w

hen
B

U
S

E
N

 is H
IG

H
), the

bidirectional bus,D
[31:0], m

ust be left unconnected.

W
hen

B
U

S
E

N
 is H

IG
H

, all instructions and input data are presented on the input data
bus,D

IN
[31:0]. T

he tim
ing of this data is sim

ilar to that of the bidirectional bus w
hen

in input m
ode. D

ata m
ust be set up and held to the falling edge ofM

C
LK

. F
or the exact

tim
ing requirem

ents refer toµ

C
hapter 12, A

C
 P

aram
eters.

In this configuration, all output data is presented on
D

O
U

T
[31:0]. T

he value on this
bus only changes w

hen the processor perform
s a store cycle. A

gain, the tim
ing of the

data is sim
ilar to that of the bidirectional data bus. T

he value on
D

O
U

T
[31:0] changes

off the falling edge ofM
C

LK
.

T
he bus tim

ing of a read-w
rite-read cycle com

bination is show
n in µ

F
igure 6-12:

U
nidirectional bus tim

ing on page 6-17.

W
hen

B
U

S
E

N
 is LO

W
, the buffer betw

een
D

IN
[31:0] and

D
[31:0] is disabled. A

ny
data presented on

D
IN

[31:0] is ignored. A
lso, w

hen
B

U
S

E
N

 is low
, the value on

D
O

U
T

[31:0] is forced to 0x00000000.

Typically, the unidirectional busses w
ould be used internally in A

S
IC

 em
bedded

applications. E
xternally, m

ost system
s still require a bidirectional data bus to interface

to external m
em

ory.µ

F
igure 6-13: E

xternal connection of unidirectional busses on
page 6-18, show

s how
 the unidirectional busses m

ay be joined up at the pads of an
A

S
IC

 to connect to an external bidirectional bus.

ÛÜ ÝÞßàáâ ã äåæç
èéê ëì í îïðñ

ßâ ã äåæç

R
ead C

ycle
S

tore C
ycle

R
ead C

ycle

D
1

D
2

D
out

D
1

D
out

D
2

Ïª
«¬
­® ¯°
±ª­²³´ª

A
R

M
7T

D
M

I D
ata S

heet
A

R
M

 D
D

I 0029E

6-18

Open Access

 F
igure 6-13: E

xternal connection of unidirectional busses

6.10.2
T

he bidirectional data bus

A
R

M
7T

D
M

I has a bidirectional data bus,D
[31:0

]. M
ost of the tim

e, the A
R

M
 reads

from
 m

em
ory and so this bus is configured to input. D

uring w
rite cycles how

ever, the
A

R
M

7T
D

M
I m

ust output data. D
uring phase 2 of the previous cycle, the signal nR

W
is driven H

IG
H

 to indicate a w
rite cycle. D

uring the actual cycle,nE
N

O
U

T
 is driven

LO
W

 to indicate that the A
R

M
7T

D
M

I is driving
D

[31:0] as an output. µ

F
igure 6-14:

D
ata w

rite bus cycle show
s this bus tim

ing (D
B

E
 has been tied H

IG
H

 in this exam
ple).

µ

F
igure 6-15: A

R
M

7T
D

M
I data bus control circuit on page 6-21 show

s the circuit
w

hich exists in A
R

M
7T

D
M

I for controlling exactly w
hen the external bus is driven out.

A
R

M
7T

D
M

I

nE
N

O
U

T

D
O

U
T

[31:0]

D
IN

[31:0]

P
A

D

X
D

A
TA

[31:0]

Ïª
«¬
­® ¯°
±ª­²³´ª

A
R

M
7T

D
M

I D
ata S

heet
A

R
M

 D
D

I 0029E

6-19

Open Access

 F
igure 6-14: D

ata w
rite bus cycle

T
he A

R
M

7T
D

M
I m

acrocell has an additional bus control signal,nE
N

IN
,

w
hich allow

s
the external system

 to m
anually tristate the bus. In the sim

plest system
s,nE

N
IN

 can
be tied LO

W
 and

nE
N

O
U

T
 can be ignored. H

ow
ever, in m

any applications w
hen the

external data bus is a shared resource, greater control m
ay be required. In this

situation,nE
N

IN
 can be used to delay w

hen the external bus is driven. N
ote that for

backw
ards com

patibility,D
B

E
 is also included. A

t the m
acrocell level,D

B
E

 and
nE

N
IN

have alm
ost identical functionality and in m

ost applications one can be tied off.

S
ectionµ

6.10.3 E
xam

ple system
: T

he A
R

M
7T

D
M

I T
estchip on page 6-21 describes

how
 A

R
M

7T
D

M
I m

ay be interfaced to an external data bus, using A
R

M
7T

D
M

I
Testchip as an exam

ple.

A
R

M
7T

D
M

I has another output control signal called
T

B
E

. T
his signal is norm

ally only
used during test and m

ust be tied H
IG

H
 w

hen not in use. W
hen driven LO

W
,T

B
E

forces all three-stateable outputs to high im
pedance. It is as if both

D
B

E
 and

A
B

E
have been driven LO

W
, causing the data bus, the address bus, and all other signals

norm
ally controlled by

A
B

E
 to becom

e high im
pedance. N

ote, how
ever, that there is

no scan cell on
T

B
E

. T
hus,T

B
E

 is com
pletely independent of scan data and m

ay be
used to put the outputs into a high im

pedance state w
hile scan testing takes place.

µ

T
able 6-3: O

utput enable control sum
m

ary, below
, show

s the tri-state control of
A

R
M

7T
D

M
I’s outputs.

òó ôõö÷ ø ùúûü
ýþÿý���� �

�÷ ø ùúûü

M
em

ory C
ycle

Ïª
«¬
­® ¯°
±ª­²³´ª

A
R

M
7T

D
M

I D
ata S

heet
A

R
M

 D
D

I 0029E

6-20

Open Access

S
ignals w

ithout�

in the
A

B
E

,D
B

E
 or

T
B

E
 colum

n cannot be driven to the high
im

pedance state:

A
R

M
7T

D
M

I output
A

B
E

D
B

E
T

B
E

A
[31:0]

�

�

D
[31:0]

�

nR
W

�

�

LO
C

K

�

�

M
A

S
[1:0]

�

�

nO
P

C

�

�

nT
R

A
N

S

�

�

D
B

G
A

C
K

E
C

LK

nC
P

I

nE
N

O
U

T

nE
X

E
C

nM
[4:0]

T
B

IT

nM
R

E
Q

S
D

O
U

T
M

S

S
D

O
U

T
D

A
T

A

S
E

Q

D
O

U
T

[31:0]

 Table 6-3: O
utput enable control sum

m
ary

Ïª
«¬
­® ¯°
±ª­²³´ª

A
R

M
7T

D
M

I D
ata S

heet
A

R
M

 D
D

I 0029E

6-21

Open Access
 F

igure 6-15: A
R

M
7T

D
M

I data bus control circuit

6.10.3
E

xam
ple system

: T
he A

R
M

7T
D

M
I T

estchip

C
onnecting A

R
M

7T
D

M
I’s data bus,D

[31:0] to an external shared bus requires som
e

sim
ple additional logic. T

his w
ill vary from

 application to application. A
s an exam

ple,
the follow

ing describes how
 the A

R
M

7T
D

M
I m

acrocell w
as connected to the

bi-directional data bus pads of the A
R

M
7T

D
M

I testchip.

In this application, care m
ust be taken to prevent bus clash on

D
[31:0] w

hen the data
bus drive changes direction. T

he tim
ing ofnE

N
IN

, and the pad control signals m
ust be

arranged so that w
hen the core starts to drive out, the pad drive onto D

[31:0] sw
itches

off before the core starts to drive. S
im

ilarly, w
hen the bus sw

itches back to input, the
core m

ust stop driving before the pad sw
itches on.

A
ll this can be achieved using a sim

ple non-overlapping clock generator. T
he actual

circuit im
plem

ented in the A
R

M
7T

D
M

I testchip is show
n inµ

F
igure 6-16: T

he
A

R
M

7T
D

M
I T

estchip data bus circuit on page 6-22. N
ote that at the core level,T

B
E

and
D

B
E

 are tied H
IG

H
 (inactive). T

his is because in a packaged part, there is no need

nE
N

O
U

T

nE
N

IN

D
[31:0]

D
B

E

T
B

E

C
ore C

ontrol

S
can

C
ell

S
can

C
ell

S
can

C
ell

Ïª
«¬
­® ¯°
±ª­²³´ª

A
R

M
7T

D
M

I D
ata S

heet
A

R
M

 D
D

I 0029E

6-22

Open Access

to ever m
anually force the internal buses into a high im

pedance state. N
ote also that

at the pad level, the signalE
D

B
E

 is factored into the bus control logic. T
his allow

s the
external m

em
ory controller to arbitrate the bus and asynchronously disable

A
R

M
7T

D
M

I testchip if required.

 F
igure 6-16: T

he A
R

M
7T

D
M

I T
estchip data bus circuit

µ

F
igure 6-17: D

ata bus control signal tim
ing on page 6-23 show

s how
 the various

control signals interact. U
nder norm

al conditions, w
hen the data bus is configured as

input,nE
N

O
U

T
 is H

IG
H

,nE
N

1
 is LO

W
, and

nE
N

2
/nE

N
IN

 is H
IG

H
. T

hus the pads
drive

X
D

[31:0] onto D
[31:0].

W
hen a w

rite cycle occurs,nR
W

 is driven H
IG

H
 to indicate a w

rite during phase 2 of
the previous cycle, (ie, w

ith the address). D
uring phase 1 of the actual cycle,nE

N
O

U
T

is driven LO
W

 to indicate that A
R

M
7T

D
M

I is about to drive the bus. T
he falling edge

of this signal m
akes

nE
N

1
 go H

IG
H

, w
hich disables the input half pad from

 driving
D

[31:0]. T
his in turn m

akes
nE

N
2

 go LO
W

, w
hich enables the output half of the pad

so that the A
R

M
7T

D
M

I is now
 driving the external data bus,X

D
[31:0].nE

N
2

 is then
buffered and driven back into the core on

nE
N

IN
, so that finally the A

R
M

7T
D

M
I

m
acrocell drives D

[31:0]. T
he delay betw

een all the signals ensures that there is no
clash on the data bus as it changes direction from

 input to output.

P
ad

nE
N

O
U

T

nE
N

IN

D
[31:0]

nE
N

2

nE
N

1

X
D

[31:0]

A
R

M
7T

D
M

I testchip

E
D

B
E

V
dd

D
B

E
S

R
L

S
R

L

S
R

L

V
dd

T
B

E

A
R

M
7T

D
M

I
C

ore

Ïª
«¬
­® ¯°
±ª­²³´ª

A
R

M
7T

D
M

I D
ata S

heet
A

R
M

 D
D

I 0029E

6-23

Open Access

 F
igure 6-17: D

ata bus control signal tim
ing

W
hen the bus turns around to the other direction at the end of the cycle, the various

control signals sw
itch the other w

ay. A
gain, the non-overlap ensures that there is

never a bus clash. T
his tim

e,nE
N

O
U

T
 is driven H

IG
H

 to denote that A
R

M
7T

D
M

I no
longer needs to drive the bus and the core’s output is im

m
ediately sw

itched off. T
his

causes
nE

N
2

 to disable the output half of the pad w
hich in turn causes

nE
N

1
 to sw

itch
on the input half. T

hus, the bus is back to its original input configuration.

N
ote that the data out tim

e of A
R

M
7T

D
M

I is not directly determ
ined by

nE
N

O
U

T
 and

nE
N

IN
, and so delaying exactly w

hen the bus is driven w
ill not affect the propagation

delay. P
lease refer to µ

C
hapter 11, D

C
 P

aram
eters for tim

ing details.

��	
� �
��	
��	 ��

��	 �	
�� �
���

Ïª
«¬
­® ¯°
±ª­²³´ª

A
R

M
7T

D
M

I D
ata S

heet
A

R
M

 D
D

I 0029E

6-24

Open Access

A
R

M
7T

D
M

I D
ata S

heet
A

R
M

 D
D

I 0029E

10-1

11

Open Access

���������
��
 ! �"#
$% #
�&��
���

T
his chapter describes the A

R
M

7T
D

M
I instruction cycle operations.

10.1
Introduction

10-2

10.2
B

ranch and B
ranch w

ith Link
10-2

10.3
T

H
U

M
B

 B
ranch w

ith Link
10-3

10.4
B

ranch and E
xchange (B

X
)

10-3

10.5
D

ata O
perations

10-4

10.6
M

ultiply and M
ultiply A

ccum
ulate

10-6

10.7
Load R

egister
10-8

10.8
S

tore R
egister

10-9

10.9
Load M

ultiple R
egisters

10-9

10.10
S

tore M
ultiple R

egisters
10-11

10.11
D

ata S
w

ap
10-11

10.12
S

oftw
are Interrupt and E

xception E
ntry

10-12

10.13
C

oprocessor D
ata O

peration
10-13

10.14
C

oprocessor D
ata Transfer (from

 m
em

ory to coprocessor)
10-14

10.15
C

oprocessor D
ata Transfer (from

 coprocessor to m
em

ory)
10-15

10.16
C

oprocessor R
egister Transfer (Load from

 coprocessor)
10-16

10.17
C

oprocessor R
egister Transfer (S

tore to coprocessor)
10-17

10.18
U

ndefined Instructions and C
oprocessor A

bsent
10-18

10.19
U

nexecuted Instructions
10-18

10.20
Instruction S

peed S
um

m
ary

10-19

¯°
'±­(´
±)¬°
*® ´
+ª,- ª
­³±)¬°
'

A
R

M
7T

D
M

I D
ata S

heet
A

R
M

 D
D

I 0029E

10-2

Open Access 10.1
Introduction

In the follow
ing tables

nM
R

E
Q

 and
S

E
Q

 (w
hich are pipelined up to one cycle ahead

of the cycle to w
hich they apply) are show

n in the cycle in w
hich they appear, so they

predict the type of the
next cycle. T

he address, M
A

S
[1:0],nR

W
,nO

P
C

, nT
R

A
N

S
and

T
B

IT
 (w

hich appear up to half a cycle ahead) are show
n in the cycle to w

hich they
apply. T

he address is increm
ented for prefetching of instructions in m

ost cases. S
ince

the instruction w
idth is 4 bytes in A

R
M

 state and 2 bytes in T
H

U
M

B
 state, the

increm
ent w

ill vary accordingly. H
ence the letter L is used to indicate instruction length

(4 bytes in A
R

M
 state and 2 bytes in T

H
U

M
B

 state). S
im

ilarly,M
A

S
[1:0] w

ill indicate
the w

idth of the instruction fetch, i=
2 in A

R
M

 state and i=
1 in T

H
U

M
B

 state
representing w

ord and halfw
ord accesses respectively.

10.2
B

ranch and B
ranch w

ith Link
A

 branch instruction calculates the branch destination in the first cycle, w
hilst

perform
ing a prefetch from

 the current P
C

. T
his prefetch is done in all cases, since by

the tim
e the decision to take the branch has been reached it is already too late to

prevent the prefetch.

D
uring the second cycle a fetch is perform

ed from
 the branch destination, and the

return address is stored in register 14 if the link bit is set.

T
he third cycle perform

s a fetch from
 the destination +

 L, refilling the instruction
pipeline, and if the branch is w

ith link R
14 is m

odified (4 is subtracted from
 it) to

sim
plify return from

S
U

B
 P

C
,R

1
4

,#
4

 to
 M

O
V

 P
C

,R
1

4
. T

his m
akes the

S
T

M
..{R

1
4

} L
D

M
..{P

C
}

 type of subroutine w
ork correctly. T

he cycle tim
ings are

show
n below

 inµ

T
able 10-1: B

ranch instruction cycle operations:

pc
is the address of the branch instruction

alu
is an address calculated by A

R
M

7T
D

M
I

(alu)
are the contents of that address

N
ote

T
his applies to branches in A

R
M

 and T
H

U
M

B
 state, and to B

ranch w
ith Link in A

R
M

state only.

C
ycle

A
ddress

M
A

S
[1:0]

nR
W

D
ata

nM
R

E
Q

S
E

Q
nO

P
C

1
 pc+

2L
i

0
(pc +

 2L)
0

0
0

2
alu

i
0

(alu)
0

1
0

3
alu+

L
i

0
(alu +

 L)
0

1
0

alu+
2L

 Table 10-1: B
ranch instruction cycle operations

¯°
'±­(´
±)¬°
*® ´
+ª,- ª
­³±)¬°
'

A
R

M
7T

D
M

I D
ata S

heet
A

R
M

 D
D

I 0029E

10-3

Open Access

10.3
T

H
U

M
B

 B
ranch w

ith Link
A

 T
H

U
M

B
 B

ranch w
ith Link operation consists of tw

o consecutive T
H

U
M

B
instructions, seeµ

5.19 F
orm

at 19: long branch w
ith link on page 5-40.

T
he first instruction acts like a sim

ple data operation, taking a single cycle to add the
P

C
 to the upper part of the offset, storing the result in R

egister 14 (LR
).

T
he second instruction acts in a sim

ilar fashion to the A
R

M
 B

ranch w
ith Link

instruction, thus its first cycle calculates the final branch destination w
hilst perform

ing
a prefetch from

 the current P
C

.

T
he second cycle of the second instruction perform

s a fetch from
 the branch

destination and the return address is stored in R
14.

T
he third cycle of the second instruction perform

s a fetch from
 the destination +

2,
refilling the instruction pipeline and R

14 is m
odified (2 subtracted from

 it) to sim
plify

the return to
M

O
V

 P
C

, R
1

4
. T

his m
akes the

P
U

S
H

 {..,L
R

} ; P
O

P
 {..,P

C
}

 type
of subroutine w

ork correctly.

T
he cycle tim

ings of the com
plete operation are show

n in µ
T

able 10-2: T
H

U
M

B
 Long

B
ranch w

ith Link

pc
is the address of the first instruction of the operation.

10.4
B

ranch and E
xchange (B

X
)

A
 B

ranch and E
xchange operation takes 3 cycles and is sim

ilar to a B
ranch.

In the first cycle, the branch destination and the new
 core state are extracted from

 the
register source, w

hilst perform
ing a prefetch from

 the current P
C

. T
his prefetch is

perform
ed in all cases, since by the tim

e the decision to take the branch has been
reached, it is already too late to prevent the prefetch.

D
uring the second cycle, a fetch is perform

ed from
 the branch destination using the

new
 instruction w

idth, dependent on the state that has been selected.

T
he third cycle perform

s a fetch from
 the destination +

2 or +
4 dependent on the new

specified state, refilling the instruction pipeline. T
he cycle tim

ings are show
n inµ

T
able

10-3: B
ranch and E

xchange instruction cycle operations on page 10-4.

C
ycle

A
ddress

M
A

S
[1:0]

nR
W

D
ata

nM
R

E
Q

S
E

Q
nO

P
C

1
pc +

 4
1

0
(pc +

 4)
0

1
0

2
pc +

 6
1

0
(pc +

 6)
0

0
0

3
alu

1
0

(alu)
0

1
0

4
alu +

 2
1

0
(alu +

 2)
0

1
0

alu +
 4

 Table 10-2: T
H

U
M

B
 Long B

ranch w
ith Link

¯°
'±­(´
±)¬°
*® ´
+ª,- ª
­³±)¬°
'

A
R

M
7T

D
M

I D
ata S

heet
A

R
M

 D
D

I 0029E

10-4

Open Access

N
otes:

1
W

 and w
 represent the instruction w

idth before and after the B
X

 respectively.
In A

R
M

 state the w
idth equals 4 bytes and in T

H
U

M
B

 state the w
idth equals

2 bytes. F
or exam

ple, w
hen changing from

 A
R

M
 to T

H
U

M
B

 state, W
 w

ould
equal 4 and w

 w
ould equal 2.

2
I and i represent the m

em
ory access size before and after the B

X
 respectively.

In A
R

M
 state, the M

A
S

[1:0] is 2 and in T
H

U
M

B
 state M

A
S

[1:0] is 1. W
hen

changing from
 T

H
U

M
B

 to A
R

M
 state, I w

ould equal 1 and i w
ould equal 2.

3
T

 and t represent the state of the T
B

IT
 before and after the B

X
 respectively.

In A
R

M
 state T

B
IT

 is 0 and in T
H

U
M

B
 state T

B
IT

 is 1. W
hen changing from

A
R

M
 to T

H
U

M
B

 state, T
 w

ould equal 0 and t w
ould equal 1.

10.5
D

ata O
perations

A
 data operation executes in a single datapath cycle except w

here the shift is
determ

ined by the contents of a register. A
 register is read onto the A

 bus, and a
second register or the im

m
ediate field onto the B

 bus. T
he A

LU
 com

bines the A
 bus

source and the shifted B
 bus source according to the operation specified in the

instruction, and the result (w
hen required) is w

ritten to the destination register.
(C

om
pares and tests do not produce results, only the A

LU
 status flags are affected.)

A
n instruction prefetch occurs at the sam

e tim
e as the above operation, and the

program
 counter is increm

ented.

W
hen the shift length is specified by a register, an additional datapath cycle occurs

before the above operation to copy the bottom
 8 bits of that register into a holding latch

in the barrel shifter. T
he instruction prefetch w

ill occur during this first cycle, and the
operation cycle w

ill be internal (ie w
ill not request m

em
ory). T

his internal cycle can be
m

erged w
ith the follow

ing sequential access by the m
em

ory m
anager as the address

rem
ains stable through both cycles.

T
he P

C
 m

ay be one or m
ore of the register operands. W

hen it is the destination,
external bus activity m

ay be affected. If the result is w
ritten to the P

C
, the contents of

the instruction pipeline are invalidated, and the address for the next instruction
prefetch is taken from

 the A
LU

 rather than the address increm
enter. T

he instruction
pipeline is refilled before any further execution takes place, and during this tim

e
exceptions are locked out.

C
ycle

A
ddress

M
A

S
 [1:0]

nR
W

D
ata

nM
R

E
Q

S
E

Q
noP

C
T

B
IT

1
pc +

 2W
I

0
(pc +

 2W
)

0
0

0
T

2
alu

i
0

(alu)
0

1
0

t

3
alu+

w
i

0
(alu+

w
)

0
1

0
t

alu +
 2w

 Table 10-3: B
ranch and E

xchange instruction cycle operations

¯°
'±­(´
±)¬°
*® ´
+ª,- ª
­³±)¬°
'

A
R

M
7T

D
M

I D
ata S

heet
A

R
M

 D
D

I 0029E

10-5

Open Access

P
S

R
 Transfer operations exhibit the sam

e tim
ing characteristics as the data

operations except that the P
C

 is never used as a source or destination register. T
he

cycle tim
ings are show

n belowµ

T
able 10-4: D

ata O
peration instruction cycle

operations.

N
ote

S
hifted registed w

ith destination equals P
C

 is not possible in T
H

U
M

B
 state.

C
ycle

A
ddress

M
A

S
[1:0]

nR
W

D
ata

nM
R

E
Q

S
E

Q
nO

P
C

norm
al

1
pc+

2L
i

0
(pc+

2L)
0

1
0

pc+
3L

dest=
pc

1
pc+

2L
i

0
(pc+

2L)
0

0
0

2
alu

i
0

(alu)
0

1
0

3
alu+

L
i

0
(alu+

L)
0

1
0

alu+
2L

shift(R
s)

1
pc+

2L
i

0
(pc+

2L)
1

0
0

2
pc+

3L
i

0
-

0
1

1

pc+
3L

shift(R
s)

1
pc+

8
2

0
(pc+

8)
1

0
0

dest=
pc

2
pc+

12
2

0
-

0
0

1

3
alu

2
0

(alu)
0

1
0

4
alu+

4
2

0
(alu+

4)
0

1
0

alu+
8

 Table 10-4: D
ata O

peration instruction cycle operations

¯°
'±­(´
±)¬°
*® ´
+ª,- ª
­³±)¬°
'

A
R

M
7T

D
M

I D
ata S

heet
A

R
M

 D
D

I 0029E

10-6

Open Access 10.6
M

ultiply and M
ultiply A

ccum
ulate

T
he m

ultiply instructions m
ake use of special hardw

are w
hich im

plem
ents integer

m
ultiplication w

ith early term
ination. A

ll cycles except the first are internal.

T
he cycle tim

ings are show
n in the follow

ing four tables, w
here

m
 is the num

ber of
cycles

required
by

the
m

ultiplication
algorithm

;
see µ

10.20 Instruction S
peed

S
um

m
ary on page 10-19.

C
ycle

A
ddress

nR
W

M
A

S
[1:0]

D
ata

nM
R

E
Q

S
E

Q
nO

P
C

1
pc+

2L
0

i
(pc+

2L)
1

0
0

2
pc+

3L
0

i
-

1
0

1

•
pc+

3L
0

i
-

1
0

1

m
pc+

3L
0

i
-

1
0

1

m
+

1
pc+

3L
0

i
-

0
1

1

pc+
3L

 Table 10-5: M
ultiply instruction cycle operations

C
ycle

A
ddress

nR
W

M
A

S
[1:0]

D
ata

nM
R

E
Q

S
E

Q
nO

P
C

1
pc+

8
0

2
(pc+

8)
1

0
0

2
pc+

8
0

2
-

1
0

1

•
pc+

12
0

2
-

1
0

1

m
pc+

12
0

2
-

1
0

1

m
+

1
pc+

12
0

2
-

1
0

1

m
+

2
pc+

12
0

2
-

0
1

1

pc+
12

 Table 10-6: M
ultiply-A

ccum
ulate instruction cycle operations

¯°
'±­(´
±)¬°
*® ´
+ª,- ª
­³±)¬°
'

A
R

M
7T

D
M

I D
ata S

heet
A

R
M

 D
D

I 0029E

10-7

Open Access
N

ote
M

ultiply-A
ccum

ulate is not possible in T
H

U
M

B
 state.

C
ycle

A
ddress

nR
W

M
A

S
[1:0]

D
ata

nM
R

E
Q

S
E

Q
nO

P
C

1
pc+

2L
0

i
(pc+

2L)
1

0
0

2
pc+

3L
0

i
-

1
0

1

•
pc+

3L
0

i
-

1
0

1

m
pc+

3L
0

i
-

1
0

1

m
+

1
pc+

3L
0

i
-

1
0

1

m
+

2
pc+

3L
0

i
-

0
1

1

pc+
3L

 Table 10-7: M
ultiply Long instruction cycle operations

C
ycle

A
ddress

nR
W

M
A

S
[1:0]

D
ata

nM
R

E
Q

S
E

Q
nO

P
C

1
pc+

8
0

2
(pc+

8)
1

0
0

2
pc+

8
0

2
-

1
0

1

•
pc+

12
0

2
-

1
0

1

m
pc+

12
0

2
-

1
0

1

m
+

1
pc+

12
0

2
-

1
0

1

m
+

2
pc+

12
0

2
-

1
0

1

m
+

3
pc+

12
0

2
-

0
1

1

pc+
12

 Table 10-8: M
ultiply-A

ccum
ulate Long instruction cycle operations

¯°
'±­(´
±)¬°
*® ´
+ª,- ª
­³±)¬°
'

A
R

M
7T

D
M

I D
ata S

heet
A

R
M

 D
D

I 0029E

10-8

Open Access 10.7
Load R

egister
T

he first cycle of a load register instruction perform
s the address calculation. T

he data
is fetched from

 m
em

ory during the second cycle, and the base register m
odification is

perform
ed during this cycle (if required). D

uring the third cycle the data is transferred
to the destination register, and external m

em
ory is unused. T

his third cycle m
ay

norm
ally be m

erged w
ith the follow

ing prefetch to form
 one m

em
ory N

-cycle. T
he cycle

tim
ings are show

n below
 in µ

T
able 10-9: Load R

egister instruction cycle operations.

E
ither the base or the destination (or both) m

ay be the P
C

, and the prefetch sequence
w

ill be changed if the P
C

 is affected by the instruction.

T
he data fetch m

ay abort, and in this case the destination m
odification is prevented.

b, h and w
 are byte, halfw

ord and w
ord as defined inµ

T
able 9-2: M

A
S

[1:0] signal
encoding on page 9-5.

c represents current m
ode-dependent value.

d w
ill either be 0 if the T

 bit has been specified in the instruction (eg. LD
R

T
), or c at all

other tim
es.

N
ote

D
estination equals P

C
 is not possible in T

H
U

M
B

 state.

 C
ycle

A
ddress

M
A

S
[1:0]

nR
W

D
ata

nM
R

E
Q

S
E

Q
nO

P
C

nT
R

A
N

S

 norm
al

1
pc+

2L
i

0
(pc+

2L)
0

0
0

c

2
alu

b/h/w
0

(alu)
1

0
1

d

3
pc+

3L
i

0
-

0
1

1
c

pc+
3L

dest=
pc

1
pc+

8
2

0
(pc+

8)
0

0
0

c

2
alu

0
pc’

1
0

1
d

3
pc+

12
2

0
-

0
0

1
c

4
pc’

2
0

(pc’)
0

1
0

c

 5
pc’+

4
2

0
(pc’+

4)
0

1
0

c

pc’+
8

 Table 10-9: Load R
egister instruction cycle operations

¯°
'±­(´
±)¬°
*® ´
+ª,- ª
­³±)¬°
'

A
R

M
7T

D
M

I D
ata S

heet
A

R
M

 D
D

I 0029E

10-9

Open Access

10.8
S

tore R
egister

T
he first cycle of a store register is sim

ilar to the first cycle of load register. D
uring the

second cycle the base m
odification is perform

ed, and at the sam
e tim

e the data is
w

ritten to m
em

ory. T
here is no third cycle.

T
he cycle tim

ings are show
n below

 in µ

T
able 10-10: S

tore R
egister instruction cycle

operations.

b, h and w
 are byte, halfw

ord and w
ord as defined inµ

T
able 9-2: M

A
S

[1:0] signal
encoding on page 9-5.

c represents current m
ode-dependent value

d w
ill either be 0 if the T

 bit has been specified in the instruction (eg. S
D

R
T

), or c at all
other tim

es.

10.9
Load M

ultiple R
egisters

T
he first cycle of LD

M
 is used to calculate the address of the first w

ord to be
transferred, w

hilst perform
ing a prefetch from

 m
em

ory. T
he second cycle fetches the

first w
ord, and perform

s the base m
odification. D

uring the third cycle, the first w
ord is

m
oved to the appropriate destination register w

hile the second w
ord is fetched from

m
em

ory, and the m
odified base is latched internally in case it is needed to patch up

after an
abort. T

he third cycle is repeated for subsequent fetches until the last data
w

ord has been accessed, then the final (internal) cycle m
oves the last w

ord to its
destination register. T

he cycle tim
ings are show

n inµ

T
able 10-11: Load M

ultiple
R

egisters instruction cycle operations on page 10-10.

T
he last cycle m

ay be m
erged w

ith the next instruction prefetch to form
 a single

m
em

ory N
-cycle.

If an
abort occurs, the instruction continues to com

pletion, but all register w
riting after

the
abort is prevented. T

he final cycle is altered to restore the m
odified base register

(w
hich m

ay have been overw
ritten by the load activity before the

abort occurred).

W
hen the P

C
 is in the list of registers to be loaded the current instruction pipeline m

ust
be invalidated.

N
ote

T
he P

C
 is alw

ays the last register to be loaded, so an
abort at any point w

ill prevent
the P

C
 from

 being overw
ritten.

N
ote

LD
M

w

ith
destination

=
P

C

cannot
be

executed
in

T
H

U
M

B

state.
H

ow
ever

P
O

P
{R

list,P
C

}
 equates to an LD

M
 w

ith destination=P
C

.

C
ycle

A
ddress

M
A

S
[1:0]

nR
W

D
ata

nM
R

E
Q

S
E

Q
nO

P
C

nT
R

A
N

S

1
pc+

2L
i

0
(pc+

2L)
0

0
0

c

2
alu

b/h/w
1

R
d

0
0

1
d

pc+
3L

 Table 10-10: S
tore R

egister instruction cycle operations

¯°
'±­(´
±)¬°
*® ´
+ª,- ª
­³±)¬°
'

A
R

M
7T

D
M

I D
ata S

heet
A

R
M

 D
D

I 0029E

10-10

Open Access

 C
ycle

A
ddress

M
A

S
[1:0]

nR
W

D
ata

nM
R

E
Q

S
E

Q
nO

P
C

1 register
1

pc+
2L

i
0

(pc+
2L)

0
0

0

2
alu

2
0

(alu)
1

0
1

3
pc+

3L
i

0
-

0
1

1

pc+
3L

1 register
1

pc+
2L

i
0

(pc+
2L)

0
0

0

dest=
pc

2
alu

2
0

pc’
1

0
1

3
pc+

3L
i

0
-

0
0

1

4
pc’

i
0

(pc’)
0

1
0

 5
pc’+

L
i

0
(pc’+

L)
0

1
0

pc’+
2L

n registers
1

pc+
2L

i
0

(pc+
2L)

0
0

0

(n>
1)

2
alu

2
0

(alu)
0

1
1

•
alu+

•
2

0
(alu+

•)
0

1
1

n
alu+

•
2

0
(alu+

•)
0

1
1

n+
1

alu+
•

2
0

(alu+
•)

1
0

1

n+
2

pc+
3L

i
0

-
0

1
1

pc+
3L

n registers
1

pc+
2L

i
0

(pc+
2L)

0
0

0

(n>
1)

2
alu

2
0

(alu)
0

1
1

incl pc
•

alu+
•

2
0

(alu+
•)

0
1

1

n
alu+

•
2

0
(alu+

•)
0

1
1

n+
1

alu+
•

2
0

pc’
1

0
1

n+
2

pc+
3L

i
0

-
0

0
1

n+
3

pc’
i

0
(pc’)

0
1

0

n+
4

pc’+
L

i
0

(pc’+
L)

0
1

0

pc’+
2L

 Table 10-11: Load M
ultiple R

egisters instruction cycle operations

¯°
'±­(´
±)¬°
*® ´
+ª,- ª
­³±)¬°
'

A
R

M
7T

D
M

I D
ata S

heet
A

R
M

 D
D

I 0029E

10-11

Open Access

10.10
S

tore M
ultiple R

egisters
S

tore m
ultiple proceeds very m

uch as load m
ultiple, w

ithout the final cycle. T
he restart

problem
 is m

uch m
ore straightforw

ard here, as there is no w
holesale overw

riting of
registers. T

he cycle tim
ings are show

n inµ

T
able 10-12: S

tore M
ultiple R

egisters
instruction cycle operations, below

.

10.11
D

ata S
w

apT
his is sim

ilar to the load and store register instructions, but the actual sw
ap takes

place in cycles 2 and 3. In the second cycle, the data is fetched from
 external m

em
ory.

In the third cycle, the contents of the source register are w
ritten out to the external

m
em

ory. T
he data read in cycle 2 is w

ritten into the destination register during the
fourth cycle. T

he cycle tim
ings are show

n below
 in µ

T
able 10-13: D

ata S
w

ap
instruction cycle operations on page 10-11.

T
he

LO
C

K
 output of A

R
M

7T
D

M
I is driven H

IG
H

 for the duration of the sw
ap operation

(cycles 2 and 3) to indicate that both cycles should be allow
ed to com

plete w
ithout

interruption.

T
he data sw

apped m
ay be a byte or w

ord quantity (b/w
).

T
he sw

ap operation m
ay be

aborted in either the read or w
rite cycle, and in both cases

the destination register w
ill not be affected.

 C
ycle

A
ddress

M
A

S
[1:0]

nR
W

D
ata

nM
R

E
Q

S
E

Q
nO

P
C

1 register
1

pc+
2L

i
0

(pc+
2L)

0
0

0

2
alu

2
1

R
a

0
0

1

pc+
3L

n registers
1

pc+
8

i
0

(pc+
2L)

0
0

0

(n>
1)

2
alu

2
1

R
a

0
1

1

•
alu+

•
2

1
R

•
0

1
1

n
alu+

•
2

1
R

•
0

1
1

n+
1

alu+
•

2
1

R
•

0
0

1

pc+
12

 Table 10-12: S
tore M

ultiple R
egisters instruction cycle operations

C
ycle

A
ddress

M
A

S
[1:0]

nR
W

D
ata

nM
R

E
Q

S
E

Q
nO

P
C

LO
C

K

1
pc+

8
2

0
(pc+

8)
0

0
0

0

2
R

n
b/w

0
(R

n)
0

0
1

1

 Table 10-13: D
ata S

w
ap instruction cycle operations

¯°
'±­(´
±)¬°
*® ´
+ª,- ª
­³±)¬°
'

A
R

M
7T

D
M

I D
ata S

heet
A

R
M

 D
D

I 0029E

10-12

Open Access

b and w
 are byte and w

ord as defined inµ

T
able 9-2: M

A
S

[1:0] signal encoding on
page 9-5.

N
ote

D
ata sw

ap cannot be executed in T
H

U
M

B
 state.

10.12
S

oftw
are Interrupt and E

xception E
ntry

E
xceptions (and softw

are interrupts) force the P
C

 to a particular value and refill the
instruction pipeline from

 there. D
uring the first cycle the forced address is constructed,

and a m
ode change m

ay take place. T
he return address is m

oved to R
14 and the

C
P

S
R

 to S
P

S
R

_svc.

D
uring the second cycle the return address is m

odified to facilitate return, though this
m

odification is less useful than in the case of branch w
ith link.

T
he third cycle is required only to com

plete the refilling of the instruction pipeline. T
he

cycle tim
ings are show

n below
 in µ

T
able 10-14: S

oftw
are Interrupt instruction cycle

operations.

C
represents the current m

ode-dependent value.

T
represents the current state-dependent value

pc
for softw

are interrupts is the address of the S
W

I instruction.
for exceptions is the address of the instruction follow

ing the last one
to be executed before entering the exception.
for prefetch aborts is the address of the

aborting instruction.
for data aborts is the address of the instruction follow

ing the one
w

hich attem
pted the

aborted data transfer.

X
n

is the appropriate trap address.

3
R

n
b/w

1
R

m
1

0
1

1

4
pc+

12
2

0
-

0
1

1
0

pc+
12

C
ycle

A
ddress

M
A

S
[1:0]

nR
W

D
ata

nM
R

E
Q

S
E

Q
nO

P
C

nT
R

A
N

S
M

ode
T

B
IT

1
pc+

2L
i

0
(pc+

2L)
0

0
0

C
old m

ode
T

2
X

n
2

0
(X

n)
0

1
0

1
exception m

ode
0

3
X

n+
4

2
0

(X
n+

4)
0

1
0

1
exception m

ode
0

X
n+

8

 Table 10-14: S
oftw

are Interrupt instruction cycle operations

C
ycle

A
ddress

M
A

S
[1:0]

nR
W

D
ata

nM
R

E
Q

S
E

Q
nO

P
C

LO
C

K

 Table 10-13: D
ata S

w
ap instruction cycle operations

¯°
'±­(´
±)¬°
*® ´
+ª,- ª
­³±)¬°
'

A
R

M
7T

D
M

I D
ata S

heet
A

R
M

 D
D

I 0029E

10-13

Open Access

10.13
C

oprocessor D
ata O

peration
A

 coprocessor data operation is a request from
 A

R
M

7T
D

M
I for the coprocessor to

initiate som
e action. T

he action need not be com
pleted for som

e tim
e, but the

coprocessor m
ust com

m
it to doing it before driving

C
P

B
 LO

W
.

If the coprocessor can never do the requested task, it should leave
C

PA
 and

C
P

B
H

IG
H

. If it can do the task, but can’t com
m

it right now
, it should drive

C
PA

 LO
W

 but
leave

C
P

B
 H

IG
H

 until it can com
m

it. A
R

M
7T

D
M

I w
ill busy-w

ait untilC
P

B
 goes LO

W
.

T
he cycle tim

ings are show
n in µ

T
able 10-15: C

oprocessor D
ata O

peration instruction
cycle operations.

N
ote

T
his operation cannot occur in T

H
U

M
B

 state.

C
ycle

A
ddress

nR
W

M
A

S
[1:0]

D
ata

nM
R

E
Q

S
E

Q
nO

P
C

nC
P

I
C

P
A

C
P

B

ready
1

pc+
8

0
2

(pc+
8)

0
0

0
0

0
0

pc+
12

not
ready

1
pc+

8
0

2
(pc+

8)
1

0
0

0
0

1

2
pc+

8
0

2
-

1
0

1
0

0
1

•
pc+

8
0

2
-

1
0

1
0

0
1

n
pc+

8
0

2
-

0
0

1
0

0
0

pc+
12

 Table 10-15:
C

oprocessor D
ata O

peration instruction cycle operations

¯°
'±­(´
±)¬°
*® ´
+ª,- ª
­³±)¬°
'

A
R

M
7T

D
M

I D
ata S

heet
A

R
M

 D
D

I 0029E

10-14

Open Access 10.14
C

oprocessor D
ata T

ransfer (from
 m

em
ory to coprocessor)

H
ere the coprocessor should com

m
it to the transfer only w

hen it is ready to accept the
data. W

hen
C

P
B

 goes LO
W

, A
R

M
7T

D
M

I w
ill produce addresses and expect the

coprocessor to take the data at sequential cycle rates. T
he coprocessor is responsible

for determ
ining the num

ber of w
ords to be transferred, and indicates the last transfer

cycle by driving
C

PA
 and

C
P

B
 H

IG
H

.

A
R

M
7T

D
M

I spends the first cycle (and any busy-w
ait cycles) generating the transfer

address, and perform
s the w

rite-back of the address base during the transfer cycles.
T

he cycle tim
ings are show

n in µ

T
able 10-16: C

oprocessor D
ata T

ransfer instruction
cycle operations on page 10-14.

C
ycles

A
ddress

M
A

S
[1:0]

nR
W

D
ata

nM
R

E
Q

S
E

Q
nO

P
C

nC
P

I
C

P
A

C
P

B

1register
1

pc+
8

2
0

(pc+
8)

0
0

0
0

0
0

ready
2

alu
2

0
(alu)

0
0

1
1

1
1

pc+
12

1register
1

pc+
8

2
0

(pc+
8)

1
0

0
0

0
1

not
ready

2
pc+

8
2

0
-

1
0

1
0

0
1

•
pc+

8
2

0
-

1
0

1
0

0
1

n
pc+

8
2

0
-

0
0

1
0

0
0

n+
1

alu
2

0
(alu)

0
0

1
1

1
1

pc+
12

nregis-
ters

1
pc+

8
2

0
(pc+

8)
0

0
0

0
0

0

(n>
1)

2
alu

2
0

(alu)
0

1
1

1
0

0

ready
•

alu+
•

2
0

(alu+
•)

0
1

1
1

0
0

n
alu+

•
2

0
(alu+

•)
0

1
1

1
0

0

n+
1

alu+
•

2
0

(alu+
•)

0
0

1
1

1
1

pc+
12

 Table 10-16: C
oprocessor D

ata T
ransfer instruction cycle operations

¯°
'±­(´
±)¬°
*® ´
+ª,- ª
­³±)¬°
'

A
R

M
7T

D
M

I D
ata S

heet
A

R
M

 D
D

I 0029E

10-15

Open Access

N
ote

T
his operation cannot occur in T

H
U

M
B

 state.

10.15
C

oprocessor D
ata T

ransfer (from
 coprocessor to m

em
ory)

T
he A

R
M

7T
D

M
I controls these instructions exactly as for m

em
ory to coprocessor

transfers, w
ith the one exception that the

nR
W

 line is inverted during the transfer cycle.
T

he cycle tim
ings are show

 inµ

T
able 10-17: C

oprocessor D
ata T

ransfer instruction
cycle operations .

mregis-
ters

1
pc+

8
2

0
(pc+

8)
1

0
0

0
0

1

(m
>

1)
2

pc+
8

2
0

-
1

0
1

0
0

1

not
ready

•
pc+

8
2

0
-

1
0

1
0

0
1

n
pc+

8
2

0
-

0
0

1
0

0
0

n+
1

alu
2

0
(alu)

0
1

1
1

0
0

•
alu+

•
0

(alu+
•)

0
1

1
1

0
0

n+
m

alu+
•

2
0

(alu+
•)

0
1

1
1

0
0

n+
m

+
1

alu+
•

2
0

(alu+
•)

0
0

1
1

1
1

pc+
12

C
ycle

A
ddress

M
A

S
[1:0]

nR
W

D
ata

nM
R

E
Q

S
E

Q
nO

P
C

nC
P

I
C

P
A

C
P

B

1 register
1

pc+
8

2
0

(pc+
8)

0
0

0
0

0
0

ready
2

alu
2

1
C

P
data

0
0

1
1

1
1

pc+
12

1 register
1

pc+
8

2
0

(pc+
8)

1
0

0
0

0
1

not ready
2

pc+
8

2
0

-
1

0
1

0
0

1

•
pc+

8
2

0
-

1
0

1
0

0
1

n
pc+

8
2

0
-

0
0

1
0

0
0

n+
1

alu
2

1
C

P
data

0
0

1
1

1
1

 Table 10-17: C
oprocessor D

ata T
ransfer instruction cycle operations

C
ycles

A
ddress

M
A

S
[1:0]

nR
W

D
ata

nM
R

E
Q

S
E

Q
nO

P
C

nC
P

I
C

P
A

C
P

B

 Table 10-16: C
oprocessor D

ata T
ransfer instruction cycle operations

¯°
'±­(´
±)¬°
*® ´
+ª,- ª
­³±)¬°
'

A
R

M
7T

D
M

I D
ata S

heet
A

R
M

 D
D

I 0029E

10-16

Open Access

N
ote

T
his operation cannot occur in T

H
U

M
B

 state.

10.16
C

oprocessor R
egister T

ransfer (Load from
 coprocessor)

H
ere the busy-w

ait cycles are m
uch as above, but the transfer is lim

ited to one data
w

ord, and A
R

M
7T

D
M

I puts the w
ord into the destination register in the third cycle. T

he
third cycle m

ay be m
erged w

ith the follow
ing prefetch cycle into one m

em
ory N

-cycle
as w

ith all A
R

M
7T

D
M

I register load instructions. T
he cycle tim

ings are show
n in

µ

T
able 10-18: C

oprocessor register transfer (Load from
 coprocessor).

pc+
12

n registers
1

pc+
8

2
0

(pc+
8)

0
0

0
0

0
0

(n>
1)

2
alu

2
1

C
P

data
0

1
1

1
0

0

ready
•

alu+
•

2
1

C
P

data
0

1
1

1
0

0

n
alu+

•
2

1
C

P
data

0
1

1
1

0
0

n+
1

alu+
•

2
1

C
P

data
0

0
1

1
1

1

pc+
12

m
 registers

1
pc+

8
2

0
(pc+

8)
1

0
0

0
0

1

(m
>

1)
2

pc+
8

2
0

-
1

0
1

0
0

1

not ready
•

pc+
8

2
0

-
1

0
1

0
0

1

n
pc+

8
2

0
-

0
0

1
0

0
0

n+
1

alu
2

1
C

P
data

0
1

1
1

0
0

•
alu+

•
2

1
C

P
data

0
1

1
1

0
0

n+
m

alu+
•

2
1

C
P

data
0

1
1

1
0

0

n+
m

+
1

alu+
•

2
1

C
P

data
0

0
1

1
1

1

pc+
12

 C
ycle

A
ddress

M
A

S
[1:0]

nR
W

D
ata

nM
R

E
Q

S
E

Q
nO

P
C

nC
P

I
C

P
A

C
P

B

ready
1

pc+
8

2
0

(pc+
8)

1
1

0
0

0
0

2
pc+

12
2

0
C

P
data

1
0

1
1

1
1

3
pc+

12
2

0
-

0
1

1
1

-
-

 Table 10-18: C
oprocessor register transfer (Load from

 coprocessor)

C
ycle

A
ddress

M
A

S
[1:0]

nR
W

D
ata

nM
R

E
Q

S
E

Q
nO

P
C

nC
P

I
C

P
A

C
P

B

 Table 10-17: C
oprocessor D

ata T
ransfer instruction cycle operations (C

ontinued)

¯°
'±­(´
±)¬°
*® ´
+ª,- ª
­³±)¬°
'

A
R

M
7T

D
M

I D
ata S

heet
A

R
M

 D
D

I 0029E

10-17

Open Access

N
ote

T
his operation cannot occur in T

H
U

M
B

 state.

10.17
C

oprocessor R
egister T

ransfer (S
tore to coprocessor)

A
s for the load from

 coprocessor, except that the last cycle is om
itted. T

he cycle
tim

ings are show
n inµ

T
able 10-19: C

oprocessor register transfer (S
tore to

coprocessor) on page 10-17.

N
ote

T
his operation cannot occur in T

H
U

M
B

 state.

pc+
12

not ready
1

pc+
8

2
0

(pc+
8)

1
0

0
0

0
1

2
pc+

8
2

0
-

1
0

1
0

0
1

•
pc+

8
2

0
-

1
0

1
0

0
1

n
pc+

8
2

0
-

1
1

1
0

0
0

n+
1

pc+
12

2
0

C
P

data
1

0
1

1
1

1

n+
2

pc+
12

2
0

-
0

1
1

1
-

-

pc+
12

 C
ycle

A
ddress

M
A

S
[1:0]

nR
W

D
ata

nM
R

E
Q

S
E

Q
nO

P
C

nC
P

I
C

P
A

C
P

B

ready
1

pc+
8

2
0

(pc+
8)

1
1

0
0

0
0

2
pc+

12
2

 1
R

d
0

0
1

1
1

1

pc+
12

not ready
1

pc+
8

2
0

(pc+
8)

1
0

0
0

0
1

2
pc+

8
2

0
-

1
0

1
0

0
1

•
pc+

8
2

0
-

1
0

1
0

0
1

n
pc+

8
2

0
-

1
1

1
0

0
0

n+
1

pc+
12

2
1

R
d

0
0

1
1

1
1

pc+
12

 Table 10-19:
C

oprocessor register transfer (S
tore to coprocessor)

 C
ycle

A
ddress

M
A

S
[1:0]

nR
W

D
ata

nM
R

E
Q

S
E

Q
nO

P
C

nC
P

I
C

P
A

C
P

B

 Table 10-18: C
oprocessor register transfer (Load from

 coprocessor)

¯°
'±­(´
±)¬°
*® ´
+ª,- ª
­³±)¬°
'

A
R

M
7T

D
M

I D
ata S

heet
A

R
M

 D
D

I 0029E

10-18

Open Access 10.18
U

ndefined Instructions and C
oprocessor A

bsent
W

hen a coprocessor detects a coprocessor instruction w
hich it cannot perform

, and
this m

ust include all undefined instructions, it m
ust not drive

C
PA

orC
P

B
 LO

W
. T

hese
w

ill rem
ain H

IG
H

, causing the undefined instruction trap to be taken. C
ycle tim

ings are
show

n inµ

T
able 10-20: U

ndefined instruction cycle operations.

C
represents the current m

ode-dependent value.

T
represents the current state-dependent value.

N
ote

C
oprocessor Instructions cannot occur in T

H
U

M
B

 state.

10.19
U

nexecuted Instructions
A

ny instruction w
hose condition code is not m

et w
ill fail to execute. It w

ill add one cycle
to the execution tim

e of the code segm
ent in w

hich it is em
bedded (seeµ

T
able 10-21:

U
nexecuted instruction cycle operations).

C
ycle

A
ddress

M
A

S
[1:0]

nR
W

D
ata

nM
R

E
Q

S
E

Q
nO

P
C

nC
P

I
C

P
A

C
P

B
nT

R
A

N
S

M
ode

T
B

IT

1
pc+

2L
i

0
(pc+

2L)
1

0
0

0
1

1
C

O
ld

T

2
pc+

2L
i

0
-

0
0

0
1

1
1

C
O

ld
T

 3
X

n
2

0
(X

n)
0

1
0

1
1

1
1

00100
0

4
X

n+
4

2
0

(X
n+

4)
0

1
0

1
1

1
1

00100
0

X
n+

8

 Table 10-20: U
ndefined instruction cycle operations

C
ycle

A
ddress

M
A

S
[1:0]

nR
W

D
ata

nM
R

E
Q

S
E

Q
nO

P
C

1
pc+

2L
i

0
(pc+

2L)
0

1
0

pc+
3L

 Table 10-21: U
nexecuted instruction cycle operations

¯°
'±­(´
±)¬°
*® ´
+ª,- ª
­³±)¬°
'

A
R

M
7T

D
M

I D
ata S

heet
A

R
M

 D
D

I 0029E

10-19

Open Access

10.20
Instruction S

peed S
um

m
ary

D
ue to the pipelined architecture of the C

P
U

, instructions overlap considerably. In a
typical cycle one instruction m

ay be using the data path w
hile the next is being

decoded and the one after that is being fetched. F
or this reason the follow

ing table
presents the increm

ental num
ber of cycles required by an instruction, rather than the

total num
ber of cycles for w

hich the instruction uses part of the processor. E
lapsed

tim
e (in cycles) for a routine m

ay be calculated from
 these figures w

hich are show
n in

µ

T
able 10-22: A

R
M

 instruction speed sum
m

ary on page 10-20. T
hese figures assum

e
that the instruction is actually executed. U

nexecuted instructions take one cycle.

n
is the num

ber of w
ords transferred

m
 is

1 if bits [32:8] of the m
ultiplier operand are all zero or one.

2 if bits[32:16] of the m
ultiplier operand are all zero or one.

3if bits[31:24] of the m
ultiplier operand are all zero or all one.

4 otherw
ise.

b
is the num

ber of cycles spent in the coprocessor busy-w
ait loop.

If the condition is not m
et all the instructions take one S

-cycle. T
he cycle types N

, S
,

I, and C
 are defined in µ

C
hapter 6, M

em
ory Interface.

¯°
'±­(´
±)¬°
*® ´
+ª,- ª
­³±)¬°
'

A
R

M
7T

D
M

I D
ata S

heet
A

R
M

 D
D

I 0029E

10-20

Open Access

Instruction
C

ycle count
A

dditional

D
ata P

rocessing
1S

+
 1I for S

H
IF

T
(R

s)
+

 1S
 +

 1N
 if R

15 w
ritten

M
S

R
, M

R
S

 1S

LD
R

1S
+

1N
+

1I
+

 1S
 +

 1N
 if R

15 loaded

S
T

R
2N

LD
M

nS
+

1N
+

1I
+

 1S
 +

 1N
 if R

15 loaded

S
T

M
(n-1)S

+
2N

S
W

P
1S

+
2N

+
1I

B
,B

L
2S

+
1N

S
W

I, trap
2S

+
1N

M
U

L
1S

+
m

I

M
LA

1S
+

(m
+

1)I

M
U

LL
1S

+
(m

+
1)I

M
LA

L
1S

+
(m

+
2)I

C
D

P
1S

+
bI

LD
C

,S
T

C
(n-1)S

+
2N

+
bI

M
C

R
1N

+
bI+

1C

M
R

C
1S

+
(b+

1)I+
1C

 Table 10-22: A
R

M
 instruction speed sum

m
ary

A
R

M
7T

D
M

I D
ata S

heet
A

R
M

 D
D

I 0029E

Index-i

11

¯°
.ª
/

Open Access

0A
bortdata

3-12
during block data transfer

4-44
prefetch

3-12
A

bort m
ode

3-4
A

D
CA

R
M

 instruction
4-11

T
H

U
M

B
 instruction

5-3,
5-11

A
D

DA
R

M
 instruction

4-11
T

H
U

M
B

 instruction
5-3,

5-7,
5-9,

5-28,
5-30

w
ith H

i register operand
5-13

address bus
configuring

6-4
A

dvantages
of T

H
U

M
B

1-3
A

N
DA

R
M

 instruction
4-11

T
H

U
M

B
 instruction

5-3,
5-11

A
R

M
 state.S

ee operating state
A

S
RA

R
M

 instruction
4-13

T
H

U
M

B
 instruction

5-3,
5-5,

5-11

1B
 (B

ranch)
A

R
M

 instruction
4-8

T
H

U
M

B
 instruction

conditional5-3,
5-36,

5-37
unconditional5-3,

5-39
B

IC
A

R
M

 instruction
4-11

T
H

U
M

B
 instruction

5-3,
5-12

big endian.S
ee

m
em

ory form
at

B
L (B

ranch and Link)
A

R
M

 instruction
4-8

T
H

U
M

B
 instruction

5-3,
5-41

B
ranch instruction

10-2
branching

in A
R

M
 state

4-8
in T

H
U

M
B

 state
5-3,

5-36,
5-37,

5-39
to subroutine

in A
R

M
 state

4-8
in T

H
U

M
B

 state
5-3,

5-41
B

reakpoints
entering debug state from

8-23
w

ith prefetch abort8-25
B

X
 (B

ranch and E
xchange)

A
R

M
 instruction

4-6
T

H
U

M
B

 instruction
5-3,

5-14
w

ith H
i register operand

5-14

23
Ï4
56Ï¯

A
R

M
7T

D
M

I D
ata S

heet
A

R
M

 D
D

I 0029E

Index-ii

Open Access

B
Y

P
A

S
S

public instruction
8-11

B
ypass register

8-12
byte (data type)

3-3
loading and storing

4-29,
5-3,

5-4,
5-19,

5-20,
5-23

 C
D

PA
R

M
 instruction

4-51
C

LA
M

P
public instruction

8-11
C

LA
M

P
Z

public instruction
8-12

C
lock sw

itching
debug state

8-18
test state

8-19
C

M
NA

R
M

 instruction
4-11,

4-16
T

H
U

M
B

 instruction
5-3,

5-12
C

M
PA

R
M

 instruction
4-11,

4-16
T

H
U

M
B

 instruction
5-3,

5-9,
5-12

w
ith H

i register operand

7

5-14
C

oncepts
of T

H
U

M
B

1-2
condition code flags

3-8
condition codes

sum
m

ary of4-5
conditional execution

in A
R

M
 state

4-5
coprocessor

data operations
4-51

data transfer
4-53

action on data abort4-54
passing instructions to

7-2
pipeline follow

ing
7-3

register transfer
4-57

coprocessor interface
7-2–

7-4
C

ore state
determ

ining
8-19

C
P

(coprocessor num
ber) field

7-2
C

P
S

R
 (C

urrent P
rocessor S

tatus R
egister)

3-8
form

at of
3-8

reading
4-18

w
riting

7
4-18

8data bus
external6-18
internal6-13

D
ata operations

10-4
data transfer

blockin A
R

M
 state

4-40
in T

H
U

M
B

 state
5-3,

5-4,
5-34

singlein A
R

M
 state

4-28
in T

H
U

M
B

 state
5-3,

5-4,
5-16,

5-17,
5-18,

5-19,
5-20,

5-21,
5-22,

5-23,
5-24,

5-26
specifying size of6-9

data types
3-3

D
ebug request

entering debug state via
8-24

D
ebug state

exiting from
8-21

D
ebug system

s
8-2,

8-3
D

evice Identification C
ode register

8-13

9E
O

RA
R

M
 instruction

4-11
T

H
U

M
B

 instruction
5-3,

5-11
exception

entering
3-10

leaving
3-10

priorities
3-14

returning to T
H

U
M

B
 state from

3-10
vectors

3-13
E

X
T

E
S

T
8-10

public instruction
8-10

:F
IQ

 m
ode

3-4
definition of3-11
S

ee also interrupts

¯°
.ª
/

A
R

M
7T

D
M

I D
ata S

heet
A

R
M

 D
D

I 0029E

Index-iii

Open Access

;halfw
ord

loading and storing
4-34

halfw
ord (data type)

3-3,
4-34

loading and storing
5-3,

5-4,
5-20,

5-21,
5-24

H
i register

accessing from
 T

H
U

M
B

 state
3-7

description
3-7

operations
exam

ple code
5-15

operations on
5-13

H
IG

H
Z

public instruction
8-11

�IC
E

breaker
B

reakpoints
9-6

coupling w
ith W

atchpoints
9-11

hardw
are

9-7
softw

are
9-7

B
R

E
A

K
P

T
 signal9-2

com
m

unications
9-14

C
ontrol registers

9-5
D

ebug C
ontrol register

9-9
D

ebug S
tatus register

9-10
disabling

9-13
T

A
P

 controller
9-2,

9-4
W

atchpoint registers
9-3–

9-4
W

atchpoints
coupling w

ith B
reakpoints

9-11
ID

C
O

D
E

public instruction
8-10

Instruction register
8-13

IN
T

E
S

T
public instruction

8-10
IR

Q
 m

ode
3-4

definition of3-12
S

ee also interrupts

<Jtag state m
achine

8-8

=LD
CA

R
M

 instruction
4-53

LD
Maction on data abort4-44
A

R
M

 instruction
4-40

LD
M

IA
T

H
U

M
B

 instruction
5-3,

5-34
LD

RA
R

M
 instruction

4-28
T

H
U

M
B

 instruction
5-3,5-16,5-17,5-19,5-22,

5-26
LD

R
BT
H

U
M

B
 instruction

5-3,
5-19,

5-23
LD

R
HT
H

U
M

B
 instruction

5-3,
5-20,

5-21,
5-24

LD
S

BT
H

U
M

B
 instruction

5-3,
5-20

LD
S

HT
H

U
M

B
 instruction

5-3
little endian.S

ee m
em

ory form
at

Lo registers
3-7

LO
C

K
 output4-47

LS
LA

R
M

 instruction
4-12,

4-13
T

H
U

M
B

 instruction
5-3,

5-5,
5-11

LS
RA

R
M

 instruction
4-13

T
H

U
M

B
 instruction

5-3,
5-5

>m
em

ory
locking

6-12
protecting

6-12
m

em
ory access tim

es
6-12

m
em

ory cycle tim
ing

6-3
m

em
ory cycle types

6-2
m

em
ory form

at
big endian

description
3-3

single data transfer in
4-30

23
Ï4
56Ï¯

A
R

M
7T

D
M

I D
ata S

heet
A

R
M

 D
D

I 0029E

Index-iv

Open Access

little endian
description

3-3
single data transfer in

4-29
m

em
ory transfer cycle

non-sequential6-12
m

em
ory transfer cycle types

6-2
M

LAA
R

M
 instruction

4-23
M

LA
LA
R

M
 instruction

4-23,
4-25

M
O

VA
R

M
 instruction

4-11
T

H
U

M
B

 instruction
5-3,

5-9
w

ith H
i register operand

7

5-14
M

R
SA

R
M

 instruction
4-18

M
S

RA
R

M
 instruction

4-18
M

U
LA

R
M

 instruction
4-23

T
H

U
M

B
 instruction

5-3,
5-12

M
U

LLA
R

M
 instruction

4-23,
4-25

M
V

NA
R

M
 instruction

4-11
T

H
U

M
B

 instruction
5-3,

5-12

?N
E

GT
H

U
M

B
 instruction

5-4,
5-11

$operating m
ode

reading
3-9

setting
3-9

operating state
A

R
M

3-2
reading

3-8
sw

itching
3-2

to A
R

M
3-2,

5-14,
5-15

to T
H

U
M

B
3-2,

4-7
T

H
U

M
B

3-2
O

R
RA

R
M

 instruction
4-11

T
H

U
M

B
 instruction

5-4,
5-12

@pipeline
7-3

P
O

PT
H

U
M

B
 instruction

5-4,
5-32

privileged instruction
7-3

P
ublic instructions

8-9
P

U
S

HT
H

U
M

B
 instruction

5-32

Aregisters
A

R
M

3-4
T

H
U

M
B

3-6
resetaction of processor on

3-15
R

eturn address calculations
8-25

R
O

RA
R

M
 instruction

4-14
T

H
U

M
B

 instruction
5-4,

5-11
rotate operations

4-14,
4-15

R
R

XA
R

M
 instruction

4-14
R

S
BA

R
M

 instruction
4-11

R
S

CA
R

M
 instruction

4-11

BS
A

M
P

LE
/P

R
E

LO
A

D
public instruction

8-12
S

B
CA

R
M

 instruction
4-11

T
H

U
M

B
 instruction

5-11
S

can C
hain S

elect register
8-13

S
can C

hains
8-14

S
can lim

itations
8-6

S
C

A
N

_N
public instruction

8-10
shift operations

4-12,
4-15,

5-5,
5-11

S
oftw

are Interrupt3-13,
4-49,

5-4
S

P
S

R
 (S

aved P
rocessor S

tatus R
egister)

3-8
form

at of
3-8

reading
4-18

w
riting

4-18

¯°
.ª
/

A
R

M
7T

D
M

I D
ata S

heet
A

R
M

 D
D

I 0029E

Index-v

Open Access

stack operations
5-32

S
T

CA
R

M
 instruction

4-53
S

T
MA

R
M

 instruction
4-40

S
T

M
IA

T
H

U
M

B
 instruction

5-4,
5-34

S
T

RA
R

M
 instruction

4-28
T

H
U

M
B

 instruction
5-4,

5-18,
5-22,

5-26
S

T
R

BT
H

U
M

B
 instruction

5-4,
5-19,

5-23
S

T
R

HT
H

U
M

B
 instruction

5-4,
5-20,

5-24
S

U
BA

R
M

 instruction
4-11

T
H

U
M

B
 instruction

5-4,
5-7,

5-9
S

upervisor m
ode

3-4
S

W
I

3-13
A

R
M

 instruction
4-49

T
H

U
M

B
 instruction

5-4,
5-38

S
W

PA
R

M
 instruction

4-47
S

ystem
 m

ode
3-4

S
ystem

 speed access
during debug state

8-25
system

 state
determ

ining
8-21

CT
 bit (in C

P
S

R
)

3-8
T

E
QA

R
M

 instruction
4-11,

4-16
T

H
U

M
B

 B
ranch w

ith Link operation
10-3

T
H

U
M

B
 state. S

ee operating state
T

S
TA

R
M

 instruction
4-11,

4-16
T

H
U

M
B

 instruction
5-4,

5-11

Dundefined instruction
7-4

undefined instruction trap
3-13,

4-2
U

ndefined m
ode

3-4
U

ser m
ode

3-4

Evirtual m
em

ory system
s

3-12

FW
atchpoints

entering debug state from
8-23

w
ord (data type)

address alignm
ent3-3

loading and storing
4-29,

5-3,
5-4,

5-16,
5-18,

5-19,
5-22,

5-26

23
Ï4
56Ï¯

A
R

M
7T

D
M

I D
ata S

heet
A

R
M

 D
D

I 0029E

Index-vi

Open Access

