1o 13

http:/Aww.geoditiescom/SiliconVdley/Ridge/2544/aamVlinux-aam.ixt

LI NUX ASSEMBLER TUTORI AL
by
Robi n M yagi
@

http://ww. geocities.com SiliconValley/Ri dge/ 2544/

start@ Thu Feb 03 02:14:37 UTC 2000
update: Fri Jul 30 23:52:23 UTC 2000
update: Fri Sep 15 22:39:17 UTC 2000 :

- This tutorial now explains Linux assenbler in ternms of the
assenbl er “as'.

- Information about Binutils programs such as Objdunp, and
Di scussi on on Debuggi ng and T gdb’ IS ad

update: Thu Jan 11 20:13:06 UTC 2001 :

* | ntroduction

When programm ng in assenbler for Linux (or any other Unix var

for that matter), it is inportant to renmenber that Linux
protected node operating system (on i386 machines, Linux oper
the CPU in protected node). This neans that ordinary user

processes are not allowed to do certain things, such as access
or access IO ports. Witing Linux kernel nodules on the other
(which operate in kernel node), are allowed to access hard
directly (Read the Assenbler-HOMO on ny assenbler page for
information on this issue). User node processes may access hard
using device files. Device files actually access kernel nod
whi ch access hardware directly. This file wll be restricte
user node operation. See ny pages on kernel nodul e programm ng.

Pl ease emai|l me comments and suggestions regarding this tutoria
pengui n@ccnet.com .

* System Cal | s

In programming in assenbler for DOS you probably nade use

4/10/2001 4:00 PM

http:/Aww.geoditiescom/SiliconVdley/Ridge/2544/aamVlinux-aam.ixt

software interrupts, especially the int Ox21 functions which

the DOS systemcalls. In Linux, systemcalls are made via int O
The sytem call nunber is passed via register EAX, and the parane
to the systemcall are passed via the remaining registers.

di scussion only applies if there are no nore than five parane
passed to the system call. |If there are nore than 5 paranet
The paranmeters nust be located in nenory (e.g. on the stack),
EBX nmust contain the address of the beginning of the paraneters.

If you would like a list of the systemcall nunbers, |ook at
contents of /fusr/include/asnf unistd. h. If you woul d

i nformati on about a specific system call (e.g. wite ()), type
2 wite' at the pronpt. Section 2 of the |linux man pages co

sytem call s.

If you |look at the contents of /usr/include/asm unistd.h, you
see the following line near the top of the file;

#define _ NR wite 4

This indicates that register EAX nust be set to 4 in order to
the wite () system call. Now, if you execute the follo
comrand,;

$ mn 2 wite

you get the following function description (under the SYNC
headi ng) .

ssize t wite(int fd, const void *buf, size_t count);

This indicates that ebx is equal to the file descriptor of the

you want to wite to, ecx is a pointer of the string you wan
write, and edx contains the |length of the string. If there we
nore paraneters to this systemcall, they would be placed in

and edi respectively.

How do | know the file discriptor for stdout is 1. If you | oo
your /dev directory, you will notice that /dev/stdout is a synb
link that points to /proc/self/fd/1. Therefore stdout is
descriptor 1.

| I eave | ooking up the _exit systemcall as an exercise.

In Iinux, systemcalls are processed by the kernel.

* GNU Assenbl er

On nost Linux systenms, you will usually find the GNU C conp
(gcc). This conpiler wuses an assenbler called "as' as a back-

20113 4/10/2001 4:00 PM

http:/Aww.geoditiescom/SiliconVdley/Ridge/2544/aamVlinux-aam.ixt

This means that the C conpiler translates the C code into assenb
which in turn is assenbled by "as' to an object file (*.0).

"As' uses the AT&T syntax. Experienced intel syntax assermr
programrers find AT&T ‘really weird' . It is really no nore o
less difficult than intel syntax. | switched over to "as' bec

there is less anmbiguity, works better with the standard GNU L
progranms such as gdb (supports the gstabs format), objdunp (obj
di ssassenbles code in "as' syntax). In short, it is a stan
component of a GNU Linux systemw th progranm ng tools installed
wi || explain debuggi ng and objdunp later in this tutorial.

If you would I|ike more information about “as' look in the

docunentation under as (e.g. type “info as' at the shell prom
Also ook in the info docunentation on the Binutils package (
package contains such programm ng tools as objdunp, Id, etc.).

** GNU assenbler v.s. Intel Syntax

Si nce nost assenbl er docunentation for the i386 platformis wri
using intel syntax, sone conparison between the 2 formats
order. Here is a summarized |ist of the differences;

- In “as' the source conmes before the the destination, opposit
the intel syntax.

- The opcodes are suffixed with a letter indicating the siz
t he opperands (e.g. 'I' for dword, "W for word, "b' for byt

- I mredi ate val ues nust be prefixed with a "$', and registers
be prefixed with a " %.

- Effective addr esses use t he Cener al sy
DI SP(BASE, | NDEX, SCALE). A concrete exanple would be;

movl mem | ocati on(%ebx, %ecx, 4), %ax
Vhich is equivelent to the following in intel syntax;

nov eax, [eax + ecx*4 + nem.| ocation]

Now for an exanple illustrating the difference (intel versio
comrent s) ;
nmovl %ax, %ebx # nmov %ebx, %eax

movw $0x3cda, %ax

Now for our little program

3013 4/10/2001 4:00 PM

http:/Aww.geoditiescom/SiliconVdley/Ridge/2544/aamVlinux-aam.ixt

hell o-world.s

by Robin M yagi
http://ww. geocities.com SiliconValley/Ri dge/ 2544/

Conpil e Instructions:

e e I
as -0 hello-world.o hello-world.s

1d -0 hello-world -OC0 hell o-world.o

This file is a basic denonstration of the GNU assenb
" as'.

This program displays a friendly string on the screen u
the wite () system cal

HUBH S HHBHHBH Y BH AR B H Y BH G BH B R B H G RH R R RS RH R R R R R R R R R R
.section .data

hel | o:
.ascii "Hello, world!'\n"

hel l o_I en:
.1 ong . - hello

HUBH B HHBHHBH Y BH AR B HY B UG BH B R B H G BH R R RS RH R R H R HHR R R R R R
.section .text
.globl _start

_start:
display string using wite () system calll
xorl %ebx, %ebx # %bx = 0

movl $4, %eax # wite () system cal

xorl % ebx, %ebx # %bx = 0

i ncl %ebx # %bx = 1, fd = stdout

| eal hell o, %ecx # %cx ---> hello

nmovl hello_len, % edx # %edx = count

int $0x80 # execute wite () system cal

term nate programvia _exit () system cal

xorl %ax, %eax # %eax = 0

i ncl %eax # %eax = 1 systemcall _exit ()

xorl % ebx, %ebx # %bx = 0 normal programreturn cod
int $0x80 # execute systemcall _exit ()

In the above program notice the use of "# to start conments.

al so supports the "/* C coment *' syntax. |If you use the C corm
syntax, it works exactly the same as for C (nultiple lines, as
as inline commenting). | always use the "#' coment syntax, as
wor ks better with emacs' asm node. The double "##' is all owed
not neccessary (this is only because of a quirk of emacs asm nod

Noti ce the nanes of the sections .text, and .data. these are

40f 13 4/10/2001 4:00 PM

http:/Awww.geoditiescom/SiliconVdley/Ridge/2544/aamVlinux-aam.ixt

in ELF files to tell the linker where the code and data segm
are. There is also the .bss section to store wuninitialized d
It is only these sections that occupy nmenory durring pro
executi on.

* Accessi ng Conmand Line Argunents and Environnent Vari abl es

VWhen an ELF executable starts running, the conmand |ine argunm
and environnment variables are available on the stack. |In assem
this means that you nmay access these via the pointer stored in
when the program starts execution. See the docunmentation o
assenbl er programm ng page relating to the ELF binary fornmat.

So how is this data arranged on the stack? Quite sinple rea
The nunmber of conmmand line argunents (including the nane of

program are stored as an integer at [esp]. Then, at [esp+
pointer to the first command |ine argunent (which is the nanme of
program is stored. If there were any additional command

paranmeters, their pointers would be stored in [esp+8], [esp+t
etc. After all the command |ine argument pointers, cones a
poi nter. After the NULL pointer are all the pointers to
envi ronnment variables, and then finally a NULL pointer to indi
the end of the environnent variabl es have been reached.

A summary of the initial ELF stack is shown bel ow,

(%esp) argc, count of argunents (integer)
4(Y%esp) char *argv (pointer to first command |ine argunent)
C pointers to the rest of the command |ine argunents
?(%esp) NULL pointer
N pointers to environment variabl es
??(%esp) NULL poi nter

Now for our little program

stack- param s ###HBHHRHBHHBHEBHBHHBHABHBHHBHABHABHBHABHEH

Robin M yagi #H####HBHBHBHBHBHBHBHBHBHBHHHHHHBHBHBHBHBHBHH
http://ww. geocities.conm SiliconValley/Ri dge/ 2544/

This file shows how one can access command |ine parane
via the stack at process start up. This behavior is def
in the ELF specification.

Conpile Instructions:
o I I i I
as -0 stack-param o stack-param s
1d -O0 -0 stack-param stack-paramo

HHHRHH R H TR R TR R R R TR R R R TR R R R R R TR R R TR #
.section .data

50f13 4/10/2001 4:00 PM

60 13

new_| i ne_char:

http:/Aww.geoditiescom/SiliconVdley/Ridge/2544/aamVlinux-aam.ixt

HHHHHH BB HHHHHH BB HHHHH BB HHHH BB HHH R B RHHH R H AR HHH R R

. byte 0x0Oa
.section .text
.globl _start
.align 4
_Sstart:
novl %esp, %ebp #
again:
addl $4, %esp #
movl (%esp), Yeax #
testl % eax, %eax #
j z end_again #
call putstring #
jmp again #
end_agai n:
xorl % eax, %eax #
i ncl % eax #
xorl %ebx, %ebx #
int $0x80 #
prints string to stdout
putstring: .type @ unction
pushl %ebp
novl %esp, %ebp
novl 8(%ebp), %ecx
xorl %edx, %edx

count _chars:

movb (%ecx, %edx, $1), %al

testb %al, %

j z done_count chars

i ncl %edx

jmp count _chars
done_count chars:

movl $4, %eax

xorl % ebx, %ebx

i ncl %ebx

int $0x80

movl $4, %eax

| eal new_|ine_char, %ecx

xorl % edx, %edx

i ncl %edx

int $0x80

novl %ebp, %esp

popl %ebp

ret

store %esp in %bp
%esp ---> next paranmeter on stack
nove next paranmeter into %eax
Y%eax (paraneter) NULL pointer?
get out of loop if yes

out put paraneter to stdout.

repeat | oop

e ax 0
Yeax 1,
o%ebx 0,

execute _exit

systemcall _exit ()
normal programexit.
() system call

4/10/2001 4:00 PM

7013

http:/Awww.geoditiescom/SiliconVdley/Ridge/2544/aamVlinux-aam.ixt

* The Binutils Package

Binutils stands for binary utilities, and includes a |ot of t
useful to progranmers, especially durring debugging.

I will now address sone of these utilities.

Obj dump di plays information about 1 or nore object files.
exanple, to see information about param stack, type the follo
command at shell pronpt (be sure working directory cont
par am st ack) ;

obj dunp -x param stack | |ess

Since the information is likely to span nore than one screen,
out put of objdunp is piped to the standard input of the pa

command " less'. the option “-x' tells objdunp to display
nuneric information in hexadecimal. Here is the output of the a
conmmand;

st ack- param file format el f 32-i 386

st ack- param

architecture: 1386, flags 0x00000112:
EXEC P, HAS SYMsS, D PAGED

start address 0x08048074

Program Header:
LOAD of f 0x00000000 vaddr 0x08048000 paddr 0x08048000
filesz 0x000000be nmenmsz 0x000000be flags r-x
LOAD of f 0x000000c0 vaddr 0x080490c0O paddr 0x080490cO
filesz 0x00000001 nmensz 0x00000004 flags rw

Secti ons:
| dx Nanme Si ze VVA LMVA File off Al
0 .text 0000004a 08048074 08048074 00000074 2*
CONTENTS, ALLCC, LOAD, READONLY, CODE
1 .data 00000001 080490cO0 080490c0O0 000000c0O 2*
CONTENTS, ALLOC, LOAD, DATA
2 .bss 00000000 080490c4 080490c4 000000c4 2*
ALLOC

SYMBOL TABLE

08048074 | d .text 00000000
080490c0 | d .data 00000000
080490c4 | d .bss 00000000
00000000 | d *ABS* 00000000

4/10/2001 4:00 PM

http:/Aww.geoditiescom/SiliconVdley/Ridge/2544/aamVlinux-aam.ixt

00000000 d *ABS* 00000000

00000000 d *ABS* 00000000

080490c0 .data 00000000 new_|ine_char
08048076 .text 00000000 again

I
I
I
I
08048087 | .text 00000000 end_again
I
I
I

0804808e .text 00000000 putstring
08048096 .text 00000000 count chars
080480a0 text 00000000 done_count _chars

00000000 F ;UND* 00000000

080480be g O *ABS* 00000000 _etext
08048074 ¢ .text 00000000 _start
080490c1 g O *ABS* 00000000 __bss_start
080490c1 g O *ABS* 00000000 _edata
080490c4 ¢ O *ABS* 00000000 _end

Notice the Information provided fromthe program header (ELF f
have header information at the beginning of +the file gi
information to the kernel on howto load the file into nenory et

ELF files also contain information about the sections (containe

section tables). Notice that the .text section contains Ox4a b
of information, is located Ox74 bytes into the file, and is ali
at a 4 byte boundary (4 == 2 ** 2), has nenory allocated t

(ALLOC), is readoly, and contains code (the segnent selector cs
this process points to this section (handled by the opera

system).

I nformation about the synbols is also provided. Al |
information s used by debuggers and other programmi ng tool
exam ne binary files.

Obj dump can al so be used to dissasenble binary executables. Typ

the following command will dissassenble the file to standard ou
(this does nothing to the actual file, as objdunmp only reads
the file);

obj dunp -d stack-param | |ess

Here is the output of the above command;

st ack- param file format el f32-i 386
Di sassenbly of section .text:

08048074 <_start>:
8048074: 89 e5 nov| Yesp, Yebp

08048076 <agai n>:

8d 13 4/10/2001 4:00 PM

90 13

http:/Awww.geoditiescom/SiliconVdley/Ridge/2544/aamVlinux-aam.ixt

8048076: 83 c4 04 addl $0x4, Y%esp
8048079: 8b 04 24 nov| (Y%esp, 1), Y%eax
804807c: 85 c0 testl %ax, %eax
804807e: 74 07 je 8048087 <end_
8048080: e8 09 00 00 00 cal | 804808e <puts
8048085: eb ef jmp 8048076 <agai
08048087 <end_agai n>:

8048087: 31 cO xor | Yeax, ¥eax
8048089: 40 i ncl Yeax

804808a: 31 db xor | Y%ebx, Yebx
804808c: cd 80 i nt $0x80
0804808e <putstring>:

804808e: 55 pushl %ebp

804808f : 89 eb nov| Yesp, Yebp
8048091: 8b 4d 08 nov| 0x8(%ebp) , Yec
8048094: 31 d2 xor | Y%edx, Yedx
08048096 <count _chars>:

8048096: 8a 04 11 nmovb (%ecx, %edx, 1)
8048099: 84 cO testb %al, %al
804809b: 74 03 je 80480a0 <done
804809d: 42 i ncl Yedx

804809e: eb 6 j nmp 8048096 <coun
080480a0 <done_count _chars>:

80480a0: b8 04 00 00 00 nov| $0x4, Yeax
80480a5: 31 db xor | Y%ebx, Yebx
80480a7: 43 i ncl Y%ebx

80480a8: cd 80 I nt $0x80
80480aa: b8 04 00 00 00 nov| $0x4, %eax
80480af : 8d 0d cO 90 04 08 | eal 0x80490c0, %ec
80480Db5: 31 d2 xor | Y%edx, Yedx
80480b7: 42 I ncl Y%edx

80480b8: cd 80 i nt $0x80
80480ba: 89 ec nov| Y%ebp, Yesp
80480bc: 5d popl Y%ebp

80480bd: c3 ret

The "-d' tells objdunp to disassenble sections that are expecte
contain code (usually the .text section). Using the “-D op
wi |l disassenble all sections. Objdunp was able to give the n
of labels in the code because of the information contained in
synbol s table.

The first columm displays the virtual nmenory address for each
of code. The second colunn displays the nachine code correspon
toits respective assenbler line of code, and finally the cod
assenbler is contained in the 3rd col um.

4/10/2001 4:00 PM

http:/Aww.geoditiescom/SiliconVdley/Ridge/2544/aamVlinux-aam.ixt

For nmore information ook in the info docunentation system

** CGetting the amount of nmenory used with size

If you do an "Is -I stack-param you get the follow ng

- I WXT WXT - X 1 robin robi n 932 Sep 15 18:21 stac
This tells you that the file is 932 bytes |ong. However this
al so contains header tables, section tables, synbol tables etc.
anmount of menory that this programwi |l use durring run tinme wl
|l ess than this. To find out actual nmenory use, type the foll ow

Si ze stack-param

The above will result in the follow ng output;
t ext dat a bss dec hex fil enane
74 1 0 75 4b st ack- param

This tells you that .text occupies 74 bytes, and .data occupies
byte, for a total of 75 bytes nmenory use.

** Getting rid of synmbol information with strip

The strip conmand can be used to get rid of the synbol informt
Wth no options, this command only strips synbols that are not
for debugging. Wth the "--stip-all' option provided, it wll s
all synmbol information, including those wused for debugging.
reconmend not doing this, as this makes the files harder to ana
with the standard programm ng tools. This command is used onl
file size is of paranmount i nportance.

* debuggi ng and gdb

Perhaps the npost difficult aspect of programmng is debugg
Quite often the error that caused the program to term
abnormally is not at the |I|ine where the program term nated
exanple later on will show this).

Program that exits with SI G SEGV

stack- param error.s ##H#HHBHHBHBHHBHABHAHHBHABHABHBHABHEH

Robin M yagi #H#H##H#HHBHHHBHHHBHHHBHHHBHHHBHHBBHHRBHHBBHHHH
http://ww. geocities.com SiliconValley/Ridge/ 2544/

100f 13 4/10/2001 4:00 PM

1o 13

##
##
##

##
##
##
H##

http:/Aww.geoditiescom/SiliconVdley/Ridge/2544/aamvlinux-aam.ixt

This file shows how one can access command |ine paranme
via the stack at process start up. This behavior is def
in the ELF specification.

Conpi l e I nstructions:

as --gstabs -o stack-paramerror.o stack-paramerror.s
Id -Q0 -0 stack-paramerror stack-paramerror.o

HitHHHHH B R H TR B R B H R BB H AR B H R R R R H R H R H R RS
.section .data

new_| i ne_char:
. byte 0Ox0a

HUBHHHHBHHBH U BHBBH B U BH B BH B R BHGBHBHH B UGB H B BH BB BH A BH B R B HGBH BB RS
.section .text

.globl _start

.align 4

_start:
novl %esp, %ebp # store %esp in %bp

agai n:
addl $4, %esp # %esp ---> next paraneter on stack
| eal (%esp), Yeax # nove next paranmeter into %eax
testl % eax, %eax # %eax (paraneter) == NULL pointer?
j z end_again # get out of loop if yes
call putstring # out put parameter to stdout.
j Mp again # repeat |oop

end_agai n:
xorl % ax, %eax # %eax = 0
i ncl %eax # %eax = 1, systemcall _exit ()
xorl % ebx, % ebx # %bx = 0, normal programexit.
int $0x80 # execute _exit () system cal
prints string to stdout

put stri ng: .type @unction

pushl %ebp
novl %esp, %ebp
novl 8(%ebp), %ecx
xorl %edx, %edx
count _chars:
movb (%ecx, %edx, $1), %al
testb %al, %l

]z

done_count chars

i ncl %edx
j mp count chars

done_count _

chars:

novl $4, %eax
xorl %ebx, %ebx
i ncl % bx

int $0x80

4/10/2001 4:00 PM

120 13

http:/Aww.geoditiescom/SiliconVdley/Ridge/2544/aamVlinux-aam.ixt

movl $4, %eax
| eal new_|ine_char, %ecx
xorl %edx, %edx

i ncl %edx
int $0x80
novl %ebp, %esp
popl %ebp
ret
Notice that the above programis assenbled wth the °--gst

option of “as'. This make as put debugging information in ou
file, such as the original source file, debugging synbols
Using " objdunmp -x stack-paramerror | less' wll show you
i ncl usi on of debuggi ng synbol s.

Now to find out where our error occurred type the foll ow ng conmr
gdb stack-paramerror
this will get you to the gdb prompt "~ (gdb)';

(gdb) run eat ny shorts

/ hone/ r obi n/ programm ng/ asmt ut/ stack-paramerror
eat

ny

shorts

Program reci eved SI GSEGV, segnentation fault
count _chars () at stack-paramerror.s: 47

47 movb (%ecx, %edx, $1), %al
Current | anguage: auto; currently asm
(gdb) ¢

[~]1$ _

(gdb will output nore than this, | just wanted to highlight
is inportant).

This tells us that the segnentation fault occured at line 4
param st ack-error.s. However the problem was caused in |ine 29.
you look at line 29 of stack-params, you will see that this

reads "~movl (%esp), %ax'. This is due to the way intel i386 op

| ea handl es NULL pointers. EAX was never |loaded with O on a
poi nter (just sone invalid pointer), which caused line 47 to ac
an area of nmenory not available to this process (hence
segnmentation fault). The loop in _start () never stopped nornm
as the condition for breaking out of the |loop is eax being 0, w
never happened.

Debugging is an art that comes with practice. For nore inform
about gdb, look in the info pages (e.g. info gdb'). You can

4/10/2001 4:00 PM

http:/Awww.geoditiescom/SiliconVdley/Ridge/2544/aamVlinux-aam.ixt

type “help' at the (gdb) pronpt.

The only reason gdb was able to tell you what |ine nunber in
source code the error occured is that the debugging synbols
source code was included in the output file (recall that we used
"--gstabs' option).

You are free to make verbatimcopies of this file, providing that th
notice is preserved.

130f 13 4/10/2001 4:00 PM

