Startup gate of the Linux/i386 ELF binary http:/linuxassembly.org/sartup.html

lof 7

Startup state of Linux/i386 ELF binary

Copyright (C) 1999-2000 by Konstantin Boldyshev
(the primary url for this document is http://linuxassembly.org/startup.html)

All information provided here has derived from my own research. So, mistakes and deficiencies could exist.
If you find any -- please contact me.

Contents

1. Introduction
2. Overview
3. Stack layout
4. Registers
4.1 Linux 2.0
42Linux 2.2
5. Other info

6. Summary
7. Contact

1. Introduction

The objective of this document is to describe several startup process detals and the initid state of the stack &
registers of the ELF binary program, for Linux Kernd 2.2.x and 2.0.x on i386.

Portions of materid represented here may be gpplicable to any ELF-based 1A-32 OS (FreeBSD, NetBSD,
BeOS, etc).

Please note that in genera case you can gpply this information only to plain assembly programs (gas/nasm); some
things described here (Stack/registers state) are not true for anything compiled/linked with gcc (C as wel as
assembly) -- gec insarts its own startup code whichis executed before control is passed to main() function.

Main source and authority of information provided below is Linux Kernd'sfgbinfmt_elf.cfile
If you want dl details of the startup process -- go read it.

All assembly code examples use nasm syntax.

Y ou can download program suite that was used while writing this document at the Linux Assembly (binaries,
source).

2. Overview

Every program is executed by means of sys execve() system cdl; usudly one just types program name at the

4/10/2001 4:20 PM

Sartup date of the Linux/i386 ELF binary

207

http:/linuxassembly.org/sartup.html

shdl prompt. In fact a lot of interesting things happen after you press enter. Shortly, startup process of the ELF
binary can be represented with the following step-by-step figure:

Function Kernd file Comments
el on user Sde onetypesin program name and strikes
enter

execve() shdl cdlslibc function
sys_execve() libc calskernd...
sys_execve() arch/i386/kernel/process.c ariveto kernd sde
do_execve() fdexec.c open file and do some preparation

search_binary_handler() fdexec.c find out type of executable
load_df binary() tolbinfrmt_if.c load ELF (and needed libraries) and create user
ssgment

start_thread() include/asm-i386/processor.h and findly pass control to program code

Figure 1. Startup process of ELF binary.

Layout of segment created for ELF binary shortly can be represented with Figure 2. Y elow parts represent
correspondent program sections. Shared libraries are not shown here; their layout duplicates layout of program,
except that they reside in earlier addresses.

0x08048000
e e scion
data .data section
bss .bss section
free space
stack stack (described | ater)
arguments program arguments
environment program environment
program name filename of program (duplicated in arguments section)
null (dword) fina dword of zero
OXBFFFFFFF

Figure 2. Segment layout of ELF binary.

Program takes at least two pages of memory (1 page == 4 KB), even if it congsts of angle sys exit(); at least
one page for ELF data (yelow color), and one for stack, arguments, and environment. Stack is growing to meet
.bss; aso you can use memory beyond .bss section for dynamic data alocation.

Note: thisinformation was gathered from fsbinfmt_elf.c, include/linux/sched.h (task_struct.addr_limit),
and core dumps investigated with ultimate binary viewer biew).

4/10/2001 4:20 PM

Startup gate of the Linux/i386 ELF binary http:/linuxassembly.org/startup.html

3. Stack layout

Initial stack layout is very important, because it provides access to command line and environment of a program.
Hereis a picture of what is on the stack when program is launched:

argc [dword] argument counter (integer)
argv[Q] [dword] program name (pointer)
argv(1]

[dword] program args (pointers)

argv[argc-1]
NULL [dword] end of args (integer)
env[Q]

env[1]
[dword] environment variables (pointers)

env[n]
NULL [dword] end of environment (integer)

Figure 3. Stack layout of ELF binary.

Here isthe piece of source from kernd that provesit:

fgbinfmt_elf.ccreate elf tables()

put user((unsigned | ong) argc, --sp);
current->mm >arg_start = (unsigned | ong) p;
while (argc-- > 0) {

put _user(p, argv++);

whil e (get _user(p++)) /* nothing */

}
put _user (0, argv);
current->nm >arg_end = current->mm >env_start = (unsigned |o

while (envc-- > 0) {
put _user(p, envpt+);
whil e (get _user(p++)) /* nothing */

}

put _user (0, envp);

307 4/10/2001 4:20 PM

Startup gate of the Linux/i386 ELF binary http:/linuxassembly.org/sartup.html

So, if you want to get arguments and environment, you just need to pop then one by one; argc and argv[0] are
aways present. Here's sample code (quite useless, just shows how to do it):

pop eax ; get argument counter

pop ebx ;get our name (argv[0])
.arg:

pop ecx ; pop all arguments

t est ecx, ecx

j nz .arg
. env: ; pop all environment vars

pop edx

t est edx, edx

j nz . env

In fact you can aso access arguments and environment in a different way -- directly. This method is based on
structure of the user segment of loaded ELF binary: arguments and environment lay consequently at the end of
segment (Figure 2). So, you can fetch address of firg argument from the stack, and then just use it as Start
address. Arguments and environment variables are null-terminated strings; you need to know who is who, so you
have to evduate start and end of arguments and environment:

pop eax ; get argunment counte
pop esi ;start of argunents
nov edi , [espteax* 4] ;end of argunents
nov ebp, [esp+(eax+l) *4] ;start of environnmen

Second way seems to be more complex, you have to distinguish arguments manudly. However it can be more
qiitéble in some cases. Program name dso can be fetiched by downgtepping from OxBFFFFFFB
(OXBFFFFFF-4) address (Figure 2).

4. Registers

Or better to say, generd regigters. Here things go different for Linux 2.0 and Linux 2.2. Firgt Il describe Linux
Kernd 2.0.

4.1 Linux Kernel 2.0

Theoreticdly, dl registers except EDX are undefined on program startup when using Linux 2.0. EDX is zeroed
by ELF PLAT_INIT in fgbinfmt_elf.c create ef tables) . Here is the ddfinition of this macro:

include/lasm-i386/elf.h

/* SVR4/i 386 ABI (pages 3-31, 3-32) says that when the progr
starts %dx contains a pointer to a function which m ght
regi stered using atexit'. This provides a nean for the
dynam c linker to call DT_FIN functions for shared libra
t hat have been | oaded before the code runs.

407 4/10/2001 4:20 PM

Startup gate of the Linux/i386 ELF binary http:/linuxassembly.org/sartup.html

A value of 0 tells we have no such handl er. */
#define ELF_PLAT _INT(_r) _r->edx =0

Practicdly, Smple investigation shows that other registers have well-defined values. Here we go...

If you will be patient enough and follow the path shown on Figure 1, youll find out that pt_regs structure (that
contains register vaues before system cdl) is downpassed to load_elf binary() and create elf tables() in
fgbinfmt_elf.c COMPLETELY UNCHANGED (I will not cover this chain and appropriate kernel sources
here to save space, but do not take my words, go check it :). The only modificationis done right before passng
control to program code, and was shown above -- EDX is zeroed (note: find start_thread() sets only segment
& stack regigers. Also EAX is dways zero too, though | haven't found corresponding kernel source). This
means that vaues of most generd registers (EBX, ECX, ESI, EDI, EBP) on program gartup are the same as in
cdler program before sys execve()! More to say: one can passto program any custom values he wants in
ESI, EDI and EBP (certainly by means of direct syscdl, not libc execve() function), and called program will
recelve them (sys_execve() cdl needs only EBX (program name), ECX (arguments) and EDX (environment) to
be sat). Concluson: program gets photo of registers state before sys execve(). You can use this to hack libc :)

| wrote two smple programs to illudrate state of registers -- execve and_regs. regs shows registers state on
startup, execve executes given program and shows registers before sys execve() cdl. Y ou can eadly combine
them - try running

$./execve ./regs
on Linux 2.0 and you will get the picture of what I'm talking about.
Linux Kernel 2.2

On Linux 2.2 things are much ampler and lessinteresting -- dl generd register are zeroed by ELF PLAT _INIT
increate_elf tables(), because ELF_PLAT _INIT is not the same as in Linux 2.0:

include/asm-i386/elf.h

#define ELF_PLAT _INT(_r) do { \
_r->ebx = 0; _r->ecx = 0; _r->edx = 0; \
r->esi =0; _r->edi =0; _r->ebp =0; \
_r->eax = 0; \

} while (0)

Findly, asvisud illugtration of this difference, hereis partid output of regs program both for Linux 2.0 and Linux
2.2.

Linux 2.0 (kernd 2.0.37)

EAX : 0x0
EBX : Ox80A1928
ECX : 0x80A1958
EDX : 0x0

50f 7 4/10/2001 4:20 PM

Sartup date of the Linux/i386 ELF binary

60f 7

ESI
EDI
EBP
ESP
EFLAGS
CS
DS
ES
FS
GS
SS

Linux 2.2 (kernel 2.2.10)

EAX
EBX
ECX
EDX
ESI
EDI
EBP
ESP
EFLAGS
CS
DS
ES
FS
GS
SS

0x0
0x8049E90
OxBFFFFBC4
OxBFFFFE14
0x282

0x23

0x2B

0x2B

Ox2B

0x2B

0x2B

0x0
0x0
0x0
0x0
0x0
0x0
0x0
OxBFFFFB40
0x292
0x23
Ox2B
0x2B
0x0
0x0
0x2B

http:/linuxassembly.org/sartup.html

In fact you can use this difference to determine quickly what kernel you are running under -- just check whether
EBX or ECX are zeroes on startup:

t est

jz
. ker nel 20:

. kernel 22:

ebx, ebx
. kernel 22

is Linux 2.2
:otherwi se it

is Linux 2.0

Also, you probably noticed from regs output that FS and GS are not used in Linux 2.2; and they are no longer
present in pt_regs structure..

5. Other info

fgbinfmt_elf.c dso contains padzero() function that zeroes out .bss section of a program; so, every variable
contained in .bss section will get value of 0. Once again, you can be sure that uninitidized datawill not contain
garbage. Y ou can usethisissue if you want to initidize any variable(s) with zero -- Linux will do it for you, just

place them in .bss section.

4/10/2001 4:20 PM

Sartup date of the Linux/i386 ELF binary

6. Summary

Brief summary of things to know about ELF binary startup sate:

» .bsssection is zeroed out

on Linux 2.2 dl generd registers are zeroed out

on Linux 2.0 EAX and EDX are zeroed out, other contain vaues before sys execve() call
stack contains argc,argv[0 -- (argc-1)] and envp[O -- n], in that order

/. Contact

Author: Kongantin Boldyshev <konst@linuxassembly.org>

http:/linuxassembly.org/sartup.html

$Id: startup.html,v 1.12 2000/07/11 10:49:34 konst Exp $

T7of7

4/10/2001 4:20 PM

