
Startup state of Linux/i386 ELF binary
Copyright (C) 1999-2000 by Konstantin Boldyshev

(the primary url for this document is http://linuxassembly.org/startup.html)

All information provided here has derived from my own research. So, mistakes and deficiencies could exist.
If you find any -- please contact me.

Contents

1. Introduction
2. Overview
3. Stack layout
4. Registers

4.1 Linux 2.0
4.2 Linux 2.2

5. Other info
6. Summary
7. Contact

1. Introduction

The objective of this document is to describe several startup process details and the initial state of the stack &
registers of the ELF binary program, for Linux Kernel 2.2.x and 2.0.x on i386.

Portions of material represented here may be applicable to any ELF-based IA-32 OS (FreeBSD, NetBSD,
BeOS, etc).

Please note that in general case you can apply this information only to plain assembly programs (gas/nasm); some
things described here (stack/registers state) are not true for anything compiled/linked with gcc (C as well as
assembly) -- gcc inserts its own startup code which is executed before control is passed to main() function.

Main source and authority of information provided below is Linux Kernel's fs/binfmt_elf.c file.
If you want all details of the startup process -- go read it.

All assembly code examples use nasm syntax.

You can download program suite that was used while writing this document at the Linux Assembly (binaries,
source).

2. Overview

Every program is executed by means of sys_execve() system call; usually one just types program name at the

1 of 7 4/10/2001 4:20 PM

Startup state of the Linux/i386 ELF binary http://linuxassembly.org/startup.html

shell prompt. In fact a lot of interesting things happen after you press enter. Shortly, startup process of the ELF
binary can be represented with the following step-by-step figure:

Function Kernel file Comments

shell ... on user side one types in program name and strikes
enter

execve() ... shell calls libc function
sys_execve() ... libc calls kernel...
sys_execve() arch/i386/kernel/process.c arrive to kernel side
do_execve() fs/exec.c open file and do some preparation

search_binary_handler() fs/exec.c find out type of executable

load_elf_binary() fs/binfmt_elf.c load ELF (and needed libraries) and create user
segment

start_thread() include/asm-i386/processor.h and finally pass control to program code

Figure 1. Startup process of ELF binary.

Layout of segment created for ELF binary shortly can be represented with Figure 2. Yellow parts represent
correspondent program sections. Shared libraries are not shown here; their layout duplicates layout of program,
except that they reside in earlier addresses.

0x08048000
code .text section
data .data section
bss .bss section
...
...
...

free space

stack stack (described later)
arguments program arguments

environment program environment
program name filename of program (duplicated in arguments section)
null (dword) final dword of zero

0xBFFFFFFF

Figure 2. Segment layout of ELF binary.

Program takes at least two pages of memory (1 page == 4 KB), even if it consists of single sys_exit(); at least
one page for ELF data (yellow color), and one for stack, arguments, and environment. Stack is growing to meet
.bss; also you can use memory beyond .bss section for dynamic data allocation.

Note: this information was gathered from fs/binfmt_elf.c, include/linux/sched.h (task_struct.addr_limit),
and core dumps investigated with ultimate binary viewer biew).

2 of 7 4/10/2001 4:20 PM

Startup state of the Linux/i386 ELF binary http://linuxassembly.org/startup.html

3. Stack layout

Initial stack layout is very important, because it provides access to command line and environment of a program.
Here is a picture of what is on the stack when program is launched:

argc [dword] argument counter (integer)
argv[0] [dword] program name (pointer)
argv[1]

...

argv[argc-1]

[dword] program args (pointers)

NULL [dword] end of args (integer)
env[0]

env[1]

...

env[n]

[dword] environment variables (pointers)

NULL [dword] end of environment (integer)

Figure 3. Stack layout of ELF binary.

Here is the piece of source from kernel that proves it:

fs/binfmt_elf.c create_elf_tables()

 ...

 put_user((unsigned long) argc, --sp);
 current->mm->arg_start = (unsigned long) p;
 while (argc-- > 0) {
 put_user(p, argv++);
 while (get_user(p++)) /* nothing */
 ;
 }
 put_user(0, argv);
 current->mm->arg_end = current->mm->env_start = (unsigned long) p;
 while (envc-- > 0) {
 put_user(p, envp++);
 while (get_user(p++)) /* nothing */
 ;
 }
 put_user(0, envp);

 ...

3 of 7 4/10/2001 4:20 PM

Startup state of the Linux/i386 ELF binary http://linuxassembly.org/startup.html

So, if you want to get arguments and environment, you just need to pop then one by one; argc and argv[0] are
always present. Here's sample code (quite useless, just shows how to do it):

 pop eax ;get argument counter
 pop ebx ;get our name (argv[0])
.arg:
 pop ecx ;pop all arguments
 test ecx,ecx
 jnz .arg
.env: ;pop all environment vars
 pop edx
 test edx,edx
 jnz .env

In fact you can also access arguments and environment in a different way -- directly. This method is based on
structure of the user segment of loaded ELF binary: arguments and environment lay consequently at the end of
segment (Figure 2). So, you can fetch address of first argument from the stack, and then just use it as start
address. Arguments and environment variables are null-terminated strings; you need to know who is who, so you
have to evaluate start and end of arguments and environment:

 pop eax ;get argument counter
 pop esi ;start of arguments
 mov edi,[esp+eax*4] ;end of arguments
 mov ebp,[esp+(eax+1)*4] ;start of environment

Second way seems to be more complex, you have to distinguish arguments manually. However it can be more
suitable in some cases. Program name also can be fetched by downstepping from 0xBFFFFFFB
(0xBFFFFFF-4) address (Figure 2).

4. Registers

Or better to say, general registers. Here things go different for Linux 2.0 and Linux 2.2. First I'll describe Linux
Kernel 2.0.

4.1 Linux Kernel 2.0

Theoretically, all registers except EDX are undefined on program startup when using Linux 2.0. EDX is zeroed
by ELF_PLAT_INIT in fs/binfmt_elf.c create_elf_tables() . Here is the definition of this macro:

include/asm-i386/elf.h

 ...

 /* SVR4/i386 ABI (pages 3-31, 3-32) says that when the program
 starts %edx contains a pointer to a function which might be
 registered using `atexit'. This provides a mean for the
 dynamic linker to call DT_FINI functions for shared libraries
 that have been loaded before the code runs.

4 of 7 4/10/2001 4:20 PM

Startup state of the Linux/i386 ELF binary http://linuxassembly.org/startup.html

 A value of 0 tells we have no such handler. */
#define ELF_PLAT_INIT(_r) _r->edx = 0

 ...

Practically, simple investigation shows that other registers have well-defined values. Here we go...

If you will be patient enough and follow the path shown on Figure 1, you'll find out that pt_regs structure (that
contains register values before system call) is downpassed to load_elf_binary() and create_elf_tables() in
fs/binfmt_elf.c COMPLETELY UNCHANGED (I will not cover this chain and appropriate kernel sources
here to save space, but do not take my words, go check it :). The only modification is done right before passing
control to program code, and was shown above -- EDX is zeroed (note: final start_thread() sets only segment
& stack registers. Also EAX is always zero too, though I haven't found corresponding kernel source). This
means that values of most general registers (EBX, ECX, ESI, EDI, EBP) on program startup are the same as in
caller program before sys_execve()! More to say: one can pass to program any custom values he wants in
ESI, EDI and EBP (certainly by means of direct syscall, not libc execve() function), and called program will
receive them (sys_execve() call needs only EBX (program name), ECX (arguments) and EDX (environment) to
be set). Conclusion: program gets photo of registers state before sys_execve(). You can use this to hack libc :)

I wrote two simple programs to illustrate state of registers -- execve and regs. regs shows registers state on
startup, execve executes given program and shows registers before sys_execve() call. You can easily combine
them - try running

$./execve ./regs

on Linux 2.0 and you will get the picture of what I'm talking about.

Linux Kernel 2.2

On Linux 2.2 things are much simpler and less interesting -- all general register are zeroed by ELF_PLAT_INIT
in create_elf_tables(), because ELF_PLAT_INIT is not the same as in Linux 2.0:

include/asm-i386/elf.h

#define ELF_PLAT_INIT(_r) do { \
 _r->ebx = 0; _r->ecx = 0; _r->edx = 0; \
 _r->esi = 0; _r->edi = 0; _r->ebp = 0; \
 _r->eax = 0; \
} while (0)

Finally, as visual illustration of this difference, here is partial output of regs program both for Linux 2.0 and Linux
2.2:

Linux 2.0 (kernel 2.0.37)

EAX : 0x0
EBX : 0x80A1928
ECX : 0x80A1958
EDX : 0x0

5 of 7 4/10/2001 4:20 PM

Startup state of the Linux/i386 ELF binary http://linuxassembly.org/startup.html

ESI : 0x0
EDI : 0x8049E90
EBP : 0xBFFFFBC4
ESP : 0xBFFFFE14
EFLAGS : 0x282
CS : 0x23
DS : 0x2B
ES : 0x2B
FS : 0x2B
GS : 0x2B
SS : 0x2B

Linux 2.2 (kernel 2.2.10)

EAX : 0x0
EBX : 0x0
ECX : 0x0
EDX : 0x0
ESI : 0x0
EDI : 0x0
EBP : 0x0
ESP : 0xBFFFFB40
EFLAGS : 0x292
CS : 0x23
DS : 0x2B
ES : 0x2B
FS : 0x0
GS : 0x0
SS : 0x2B

In fact you can use this difference to determine quickly what kernel you are running under -- just check whether
EBX or ECX are zeroes on startup:

 test ebx,ebx
 jz .kernel22 ;it is Linux 2.2
.kernel20: ;otherwise it is Linux 2.0
 ...

.kernel22:
 ...

Also, you probably noticed from regs output that FS and GS are not used in Linux 2.2; and they are no longer
present in pt_regs structure..

5. Other info

fs/binfmt_elf.c also contains padzero() function that zeroes out .bss section of a program; so, every variable
contained in .bss section will get value of 0. Once again, you can be sure that uninitialized data will not contain
garbage. You can use this issue if you want to initialize any variable(s) with zero -- Linux will do it for you, just
place them in .bss section.

6 of 7 4/10/2001 4:20 PM

Startup state of the Linux/i386 ELF binary http://linuxassembly.org/startup.html

6. Summary

Brief summary of things to know about ELF binary startup state:

.bss section is zeroed out
on Linux 2.2 all general registers are zeroed out
on Linux 2.0 EAX and EDX are zeroed out, other contain values before sys_execve() call
stack contains argc,argv[0 -- (argc-1)] and envp[0 -- n], in that order

7. Contact

Author: Konstantin Boldyshev <konst@linuxassembly.org>

$Id: startup.html,v 1.12 2000/07/11 10:49:34 konst Exp $

7 of 7 4/10/2001 4:20 PM

Startup state of the Linux/i386 ELF binary http://linuxassembly.org/startup.html

